王超 杜纏纏 楊宏偉 王琦明 樊志龍 殷文 胡發(fā)龍 柴強
摘 要 通過探究氮肥減施對玉米間作箭筈豌豆種間關(guān)系的影響,為進(jìn)一步發(fā)揮禾豆間作優(yōu)勢提供理論依據(jù)。2017年在甘肅省武威市甘肅農(nóng)業(yè)大學(xué)綠洲農(nóng)業(yè)綜合試驗站進(jìn)行試驗,以玉米、箭筈豌豆為試驗對象,設(shè)單作箭筈豌豆(V)、單作玉米(M)、玉米間作箭筈豌豆(M/V)3個種植模式和不施氮(N0,0?? kg·hm-2)、減量施氮(N1,240?? kg·hm-2)、傳統(tǒng)施氮(N2,300?? kg·hm-2)3個施氮水平,探究河西綠洲灌區(qū)減量施氮對玉米間作箭筈豌豆種間關(guān)系及產(chǎn)量的影響。結(jié)果表明,箭筈豌豆干物質(zhì)積累量間作較單作增加43.0%,減量施氮比傳統(tǒng)施氮增加10.9%;玉米干物質(zhì)積累量間作較單作增加26.7%,減量施氮比傳統(tǒng)施氮增加8.5%;共生期內(nèi)箭筈豌豆相對于玉米的競爭比率始終大于1,表明箭筈豌豆的種間競爭力強于玉米,且減量施氮能增強種間競爭;箭筈豌豆收獲后間作和單作玉米生長速率比在不同施氮水平下均大于1,表明間作玉米有明顯的恢復(fù)效應(yīng)。箭筈豌豆產(chǎn)量間作較單作增加37.7%,減量施氮與傳統(tǒng)施氮無顯著差異;玉米產(chǎn)量間作較單作增加3.4%,且間作模式下減量施氮比傳統(tǒng)施氮增加4.0%;各間作處理土地當(dāng)量比無顯著差異且均大于1,說明具有增產(chǎn)優(yōu)勢。因此,玉米間作箭筈豌豆氮肥減施20%可通過調(diào)控種間關(guān)系進(jìn)一步挖掘間作增產(chǎn)潛力,是綠洲灌區(qū)玉米生產(chǎn)的可行措施。
關(guān)鍵詞 禾/豆間作;減量施氮;干物質(zhì)積累;種間關(guān)系;產(chǎn)量
農(nóng)業(yè)生產(chǎn)對化肥的過度依賴,導(dǎo)致化肥使用量居高不下,不僅造成作物增產(chǎn)潛力受限,還引起嚴(yán)重的耕地質(zhì)量退化和環(huán)境污染問題[1-2]。探索高效、可持續(xù)的生產(chǎn)方式,是農(nóng)業(yè)健康發(fā)展的重要基礎(chǔ)。禾/豆間作因物種多樣性提高、種間互作增強,能充分利用資源和空間[3-4],是高產(chǎn)高效和可持續(xù)潛力較大的種植模式。然而實際生產(chǎn)中,物種間過度的營養(yǎng)和光合空間競爭,不僅阻礙組分作物正常生長,還導(dǎo)致嚴(yán)重減產(chǎn)[5]。保持適宜的種間關(guān)系是提高間作系統(tǒng)穩(wěn)定性和有效發(fā)揮間作優(yōu)勢的關(guān)鍵。因此,優(yōu)化間作系統(tǒng)種間互作,對促進(jìn)作物增產(chǎn)和農(nóng)業(yè)健康發(fā)展具有重要科學(xué)意義。
密度[6]、間距[7]、灌水[8]、施肥[9]等農(nóng)藝措施可在間作系統(tǒng)內(nèi)引起組分作物差異生長,進(jìn)而實現(xiàn)種間關(guān)系調(diào)控。其中,施氮是禾/豆間作系統(tǒng)種間關(guān)系調(diào)控不可或缺的手段。研究表明,施氮增大了大麥/豌豆間作群體中禾本科作物的種間競爭力,導(dǎo)致豌豆產(chǎn)量對復(fù)合群體的貢獻(xiàn)下降,而較低的施氮水平則促進(jìn)豆科作物結(jié)瘤和固氮[10-11]。玉米/豌豆間作系統(tǒng)中,將拔節(jié)期氮肥減量后移,能顯著增強共生期內(nèi)豌豆競爭力,并增加豌豆生物固氮量[12]。然而,種間互作的類型不止共生期直接競爭,當(dāng)早熟作物收獲后,晚熟組分通過時空拓展形成的補償效應(yīng),是種間互作的另一表現(xiàn)[13-14],但現(xiàn)有施氮調(diào)控種間關(guān)系的研究多關(guān)注競爭,往往忽視了補償效應(yīng),相關(guān)研究亟待開展。
玉米是河西綠洲灌區(qū)主栽作物,歷年來,水資源限制和過分追求高產(chǎn)使其生產(chǎn)嚴(yán)重依賴化學(xué)氮肥。通過構(gòu)建禾/豆間作系統(tǒng),打破其對化學(xué)氮肥的依賴,成為區(qū)域內(nèi)玉米可持續(xù)生產(chǎn)的重要研究方向[8]。然而,間作系統(tǒng)的構(gòu)建離不開高產(chǎn)目標(biāo),而高產(chǎn)的保持離不開密度支撐,在原有群體密度不變的基礎(chǔ)上增加豆科作物是核心與關(guān)鍵。但該種模式下氮肥減施是否會加劇玉米群體的競爭,且該種競爭是否會引起玉米不可逆的生長,造成恢復(fù)效應(yīng)減弱等尚需進(jìn)一步研究證實。為此,本研究以玉米間作箭筈豌豆為對象,擬在氮肥減施條件下量化該模式中種間關(guān)系的變化特征,以期理清施氮對種間互作和產(chǎn)量的調(diào)控效應(yīng),為間作系統(tǒng)高產(chǎn)高效和氮肥管理提供理論依據(jù)和技術(shù)支撐。
1 材料與方法
1.1 試驗區(qū)概況
試驗在甘肅省武威市涼州區(qū)武威綠洲農(nóng)業(yè)試驗站進(jìn)行。試驗站位于河西走廊東端(E 103°5′,N 37°30′),海拔1 581 m;多年平均無霜期156 d,降水量160 mm,蒸發(fā)量高于2 000 mm,日照時數(shù)2 968.2 h,≥0℃和≥10 ℃的有效積溫分別為3 646 ℃和3 149 ℃,年太陽輻射總量5.04~6.30 kJ·cm-2。玉米是該區(qū)主栽作物,但生產(chǎn)中高度依賴化學(xué)氮肥帶來了生態(tài)和經(jīng)濟(jì)壓力,同時也制約了該地區(qū)農(nóng)業(yè)可持續(xù)發(fā)展。
1.2 試驗設(shè)計
本研究于2017年開展,采用裂區(qū)試驗設(shè)計,主區(qū)為玉米間作箭筈豌豆(M/V)、單作玉米(M)、單作箭筈豌豆(V)3個種植模式;副區(qū)為傳統(tǒng)施氮(N2,300?? kg·hm-2),傳統(tǒng)施氮減量20%(N1,240?? kg·hm-2),不施氮(N0,0?? kg·hm-2) 3個施氮水平,共9個處理,每處理3次重復(fù)。施氮制度按(玉米關(guān)鍵生育時期)基肥∶大喇叭口期追肥∶灌漿期追肥=3∶5∶2進(jìn)行,間作按玉米帶和箭筈豌豆帶單獨施肥,單作箭筈豌豆與間作箭筈豌豆、單作玉米與間作玉米凈占地面積施氮量相同。
供試玉米(Zea mayz L.)品種為‘先玉335,箭筈豌豆(Vicia sativa L.)品種為‘蘭箭2號,箭筈豌豆于4月3日播種,6月30日收獲,玉米于4月20日播種,9月19日收獲。灌溉制度為冬灌水120 mm,間作和單作生育期內(nèi)總灌水定額405 mm,分別在玉米拔節(jié)期、大喇叭口期、抽雄期、開花期、灌漿期灌水90、75、90、75和75 mm。間作系統(tǒng)帶型比110 cm∶70 cm;間作和單作玉米密度均為82 500株·hm-2,行距? 40 cm;間作玉米株距18.5 cm、單作玉米株距? 30 cm(圖1)。所施肥料為尿素(N含量46%)、過磷酸鈣(P2O5含量16%)、磷酸二銨(N含量18%,P2O5含量46%);磷肥施用量為180?? kg P2O5 hm-2,全作基肥。
1.3 測定項目及方法
干物質(zhì)積累量:自玉米苗期,每隔15 d隨機(jī)選取長勢均勻的玉米植株10株,箭筈豌豆收獲后(大喇叭口期—成熟期)每隔25 d選取代表性玉米5株;箭筈豌豆按邊行10株、內(nèi)行10株,取連續(xù)的20株。樣品于105 ℃下殺青,80 ℃烘干至恒量后稱量計算單位面積干物質(zhì)積累量。
干物質(zhì)積累速率:用作物生長速率(CGR)? 表示。
CGR=(DM2―DM1)/(t2―t1)
式中,DM1和DM2為不同測定時間植株的干物質(zhì),t1和t2為前后兩個測定時間。
種間競爭:用箭筈豌豆相對于玉米的競爭比率(CRvetch)測算[15]。
CRvetch=(DMiv/DMsv)×Fv(DMim/DMsm)×Fm
式中,DMiv和DMsv分別表示間作和單作箭筈豌豆的生物量,DMim、DMsm分別表示間作和單作玉米的生物量;Fv、Fm分別表示箭筈豌豆和玉米在間作中的面積比例,即0.39和0.61。若CRvetch >0,說明箭筈豌豆競爭力大于玉米,若CRvetch<0,表明玉米競爭力大于箭筈豌豆。
恢復(fù)效應(yīng):用間作-單作玉米生長速率比(CGRr)量算。
CGRr=CGRim/CGRsm
式中,CGRim和CGRsm分別為間作和單作玉米干物質(zhì)積累速率。CGRr>1表示間作玉米有恢復(fù)效應(yīng),而CGRr≤1表示間作玉米無恢復(fù)效應(yīng)。
籽粒產(chǎn)量:玉米、箭筈豌豆成熟后,按小區(qū)收獲測產(chǎn),測定其籽粒產(chǎn)量。
間作優(yōu)勢:用土地當(dāng)量比(LER)衡量。
LER=(YIM/YSM)+(YIP/YSP)
式中,YIM和YIP 分別代表間作玉米和間作箭筈豌豆籽粒產(chǎn)量,YSM和YSP代表單作玉米和單作箭筈豌豆籽粒產(chǎn)量。LER>1表明間作優(yōu)勢,而LER<1表明間作劣勢。
收獲指數(shù):玉米、箭筈豌豆產(chǎn)量/生物量。
1.4 數(shù)據(jù)統(tǒng)計分析
采用Office Excel 2016進(jìn)行數(shù)據(jù)整理和作圖,用SPSS 19.0軟件進(jìn)行統(tǒng)計分析。
2 結(jié)果與分析
2.1 施氮和間作下對箭筈豌豆、玉米干物質(zhì)積累速率的影響
2.1.1 對箭筈豌豆干物質(zhì)積累速率的影響 箭筈豌豆干物質(zhì)積累速率在全生育期均表現(xiàn)為間作高于單作(圖2),并在箭筈豌豆出苗50 d左右達(dá)到峰值,此時,間作箭筈豌豆干物質(zhì)積累速率最大值在N0、N1、N2水平下比相應(yīng)單作分別提高? 6.1%、7.3%、6.7%。比較全生育期干物質(zhì)積累平均速率,間作模式在N0、N1、N2水平下比單作分別提高34.5%、19.7%、21.5%。施氮水平間,N1處理干物質(zhì)平均積累速率最大,在間作模式下比N0提高19.1%,與N2差異不顯著;在單作模式下比N0提高33.8%,與N2差異不顯著。因此,減量施氮可以滿足箭筈豌豆正常的生物學(xué)? 生長。
2.1.2 對玉米干物質(zhì)積累速率的影響 間作玉米干物質(zhì)積累速率在箭筈豌豆收獲前低于單作,但收獲后高于單作(圖3)。與單作相比,N0、N1、N2水平下間作玉米干物質(zhì)積累速率在箭筈豌豆收獲前分別降低21.9%、15%、13.8%,收獲后則分別提高37.8%、37.9%、39.2%。不同施氮處理中,隨施氮量增加,N0、N2干物質(zhì)積累速率有所下降,N1處理的干物質(zhì)最大和平均積累速率均最高,在間作模式下較N0提高14.9%、12.4%,較N2提高17.3%、11.4%;在單作模式下較N0提高23.7%、17.8%,較N2提高? 17.2%、? 11.8%。干物質(zhì)積累速率最大值差異比較,間作較單作相比N0、N1、N2分別提高? 55.6%、? 44.5%和51.4%,因此,減量施氮可以滿足玉米正常的生物學(xué)生長。
2.2 施氮和間作下對箭筈豌豆、玉米干物質(zhì)積累動態(tài)的影響
2.2.1 對箭筈豌豆干物質(zhì)積累動態(tài)的影響 間作顯著提高了箭筈豌豆在不同生育階段的干物質(zhì)積累量(圖4)。第一階段(0~30 d)差異較小,與單作相比,間作箭筈豌豆干物質(zhì)積累量在N0、N1和N2水平下分別增加336?? kg·hm-2、264?? kg·hm-2和244?? kg·hm-2;第二階段(30~?? 60 d)差異較大,間作在3個施氮水平下較單作分別增加1 637?? kg·hm-2、1 217?? kg·hm-2和? 1 184?? kg·hm-2;第三階段(60~90 d)差異最大,間作在3個施氮水平下較單作分別增加1 714?? kg·hm-2、2 027?? kg·hm-2和1 882?? kg·hm-2。就施氮水平的影響而言,3個階段均表現(xiàn)為N1和N2之間干物質(zhì)積累量差異不顯著,說明N1能獲得與N2相同的干物質(zhì)積累量,且N1與間作結(jié)合對箭筈豌豆生育后期干物質(zhì)積累量的增加作用更為明顯。
2.2.2 對玉米干物質(zhì)積累動態(tài)的影響 間作玉米干物質(zhì)積累量在箭筈豌豆收獲前低于單作,而箭筈豌豆收獲后則高于單作(圖5)。與單作相比,N0、N1和N2水平下間作玉米干物質(zhì)平均積累量在箭筈豌豆收獲前分別降低? 4.2%、8.4%和8.2%,但箭筈豌豆收獲后分別提高20.4%、? 21.9%和38.1%。不同施氮處理間相比,N1處理玉米干物質(zhì)最終積累量在間作模式下比N0提高26.3%,與N2差異不顯著;單作模式下較N0和N2分別提高24.7%和21.7%。說明減量施氮并未引起玉米干物質(zhì)積累量降低。
2.3 玉米間作箭筈豌豆系統(tǒng)的種間競爭與恢復(fù)
2.3.1 共生期箭筈豌豆相對于玉米的競爭動態(tài) 共生期箭筈豌豆相對于玉米的競爭比率(CRvetch)始終大于1,表明箭筈豌豆種間競爭力強于玉米,且在箭筈豌豆出苗后50 d左右達(dá)到最大值(圖 6),此時N0、N1、N2處理的CRvetch分別為1.78、1.73、1.59,且N0和N1處理CRvetch較N2分別提高11.9%和8.8%。比較共生期箭筈豌豆相對于玉米的平均競爭比率,N0和N1處理差異不顯著,但較N2分別提高4.7%和3.9%。說明施氮能弱化箭筈豌豆對玉米的種間競爭,且氮肥施用水平越高,弱化作用越強。
2.3.2 箭筈豌豆收獲后玉米的恢復(fù)效應(yīng) 箭筈豌豆收獲后間作和單作玉米生長速率比(CGRr)在不同施氮水平下均大于1,表明間作玉米有明顯的恢復(fù)效應(yīng)(表1)。第一恢復(fù)階段(90~? 115 d),N0、N1和N2水平間作玉米生長速率比相應(yīng)單作增大35.7%、22.4%和61.2%,第二階段(105~130 d)比相應(yīng)單作增大45.3%、39.5%和37.8%,第三階段(130~145 d)比相應(yīng)單作增大85%、20.5%和35.8%。N1顯著提高了間作玉米在3個恢復(fù)階段的生長速率,與N0和N2相比,第一階段提高15.9%和12.5%,第二個階段提高19.2%和10.0%,第三個階段提高56.1%和85.5%。然而,N1處理的CGRr在第一和第三恢復(fù)階段低于N0和N2,在第二恢復(fù)階段與N2無顯著差異。
2.4 玉米間作箭筈豌豆的產(chǎn)量表現(xiàn)及間作優(yōu)勢
間作系統(tǒng)中箭筈豌豆及玉米籽粒產(chǎn)量均大于相應(yīng)單作(表2),與單作相比,間作箭筈豌豆籽粒產(chǎn)量在N0、N1、N2水平下分別增加31.0%、? 39.0%、42.0%,間作玉米籽粒產(chǎn)量在N0和N1水平下分別增加7.0%和3.6%,但N2水平下差異不顯著;不同施氮水平間,單作和間作箭筈豌豆籽粒產(chǎn)量在N1和N2間無顯著差異,且單作玉米有相似規(guī)律,但間作玉米N1水平較N2提高? 4.0%。收獲指數(shù)分析表明,間作箭筈豌豆較單作在N1、N2水平下分別提高16.7%、15.8%,但間作玉米與單作無顯著差異,且不論間作還是單作,N1和N2水平間無顯著差異。間作的土地當(dāng)量比均大于1,說明均具有間作優(yōu)勢,但各施氮水平間土地當(dāng)量比無顯著差異。
3 討 論
干物質(zhì)是作物光合產(chǎn)物的最終形式,也是作物增產(chǎn)的物質(zhì)保障[16]。前人研究表明,種植模式能調(diào)控作物地上部分干物質(zhì)積累過程,是作物獲得高產(chǎn)的主要方式[17]。本研究中,間作玉米前期干物質(zhì)積累量因箭筈豌豆生長有所降低,但后期積累量增加明顯,其可能原因是間作共生期,箭筈豌豆在滿足自身營養(yǎng)要求的同時會阻礙玉米生長[18],箭筈豌豆收獲后,裸露的空帶為玉米提供良好的通風(fēng)條件和充足的光、溫、水、肥資源[19],進(jìn)而促使了玉米生長。研究發(fā)現(xiàn),干物積累量的大小與不同生育期供氮水平密切相關(guān)[20]。在不同生育時期,調(diào)節(jié)施肥水平可增加作物群體的干物質(zhì)積累量,提高最大增長速率,利于作物生殖生長期干物質(zhì)向收獲器官的轉(zhuǎn)移[21]。然而,本研究中,隨施氮水平增加,單、間作玉米和箭筈豌豆的干物質(zhì)積累呈現(xiàn)出降低趨勢,可能是因為施氮量為300?? kg·hm-2時,氮素的充分提供限制了作物生物學(xué)潛力的發(fā)揮[22-23]。
功能多樣的作物組合可通過生態(tài)位互補和種間促進(jìn)作用緩解種間競爭[24]。在播種期明顯錯位的間作系統(tǒng)中,早播作物和晚播作物根系形態(tài)建成也存在時間差,導(dǎo)致組分作物對資源的利用具有不對稱性,即早播作物對資源的競爭能力更強。本研究結(jié)果表明,兩種作物共生期內(nèi)箭筈豌豆的競爭力始終強于玉米,而施氮可顯著降低種間競爭,且其動態(tài)表現(xiàn)為先增大后減小的趨勢,第一階段至第二階段呈上升趨勢,提高62%;第二階段至第三階段呈下降趨勢,降低28%;這與楊萍等[25]、任家兵等[26]研究發(fā)現(xiàn)施氮可弱化間作作物種間競爭的結(jié)果相似。早熟作物對后熟作物的作用除資源競爭外,能促進(jìn)其恢復(fù)效應(yīng),并影響間作系統(tǒng)的生產(chǎn)力[27-29]。本研究表明,當(dāng)箭筈豌豆收獲后,豆科作物固氮于土壤之中,地下部分土壤氮素差異向玉米根際轉(zhuǎn)移,實現(xiàn)協(xié)同效應(yīng),促進(jìn)玉米進(jìn)行了有效的恢復(fù)生長,并超過單作玉米,且氮肥減施20%對間作玉米恢復(fù)生長未產(chǎn)生明顯不利影響,其生長速率與傳統(tǒng)施氮并無顯著差異。可能原因是減量施氮條件下,豆科生物固氮作用得到提高[30],為間作玉米恢復(fù)生長提供了氮素保障;此外,氮肥減施也促進(jìn)了地上地下協(xié)同作用,地上部分可以更好的利用光照和二氧化碳,而地下部分則增強了水分與養(yǎng)分的互補利用[31]。
間作系統(tǒng)具有提高資源利用率的顯著優(yōu)勢,能增加作物產(chǎn)量[32]。本研究表明,在玉米間作箭筈豌豆模式下,減量施氮使間作玉米的產(chǎn)量顯著高于傳統(tǒng)施氮單作玉米,說明間作能以更低的氮肥投入促進(jìn)作物生長。這是由于禾本科作物與豆科作物在共生內(nèi)形成競爭關(guān)系,豆科作物收獲后促進(jìn)玉米的恢復(fù)效應(yīng),從而增加作物產(chǎn)量;同時,地上部高矮錯位,形成不同時空生態(tài)位互補效應(yīng),提高了作物光合特性,增強了葉片對光能的捕獲[33]。本試驗中,各間作處理LER均大于1,說明間作增產(chǎn)優(yōu)勢明顯,且間作模式對玉米籽粒產(chǎn)量具有增產(chǎn)效應(yīng),促進(jìn)了營養(yǎng)器官的干物質(zhì)向籽粒的轉(zhuǎn)運,從而增加了玉米的收獲指數(shù)[34]。
4 結(jié)論
間作箭筈豌豆干物質(zhì)積累速率最大值與傳統(tǒng)施氮相當(dāng),而全生育期平均干物質(zhì)積累量比傳統(tǒng)施氮增加10%;減量施氮后間作玉米干 物質(zhì)積累速率最大值比傳統(tǒng)施氮增加12.4%,而全生育期平均干物質(zhì)積累量較傳統(tǒng)施氮相當(dāng)。間作共生期內(nèi),箭筈豌豆種間競爭力始終大于玉米,高施氮顯著降低種間競爭力。當(dāng)箭筈豌豆收獲后,間作玉米進(jìn)行了有效的恢復(fù)生長,減量施氮后間作玉米恢復(fù)效應(yīng)未受明顯影響。在不同種植模式中,間作系統(tǒng)產(chǎn)量顯著高于兩種單作模式,并且減量施氮下間作系統(tǒng)籽粒產(chǎn)量與傳統(tǒng)施氮相當(dāng)。因此,傳統(tǒng)施氮減量施氮20%(240?? kg·hm-2)是區(qū)域內(nèi)玉米間作箭筈豌豆種植模式適宜的施氮水平。
參考文獻(xiàn) Reference:
[1] 陳印軍,易小燕,方琳娜,等.中國耕地資源與糧食增產(chǎn)潛力分析[J].中國農(nóng)業(yè)科學(xué),2016,49(6):1117-1131.
CHEN? Y J,YI X Y,F(xiàn)ANG L N,et al.Analysis of cultivated land and grain production potential in China[J].Scientia Agricultura Sinica,2016,49(6):1117-1131.
[2] 陳印軍,肖碧林,方琳娜,等.中國耕地質(zhì)量狀況分析[J].中國農(nóng)業(yè)科學(xué),2011,44(17):3557-3564.
CHEN? Y J,XIAO B L,F(xiàn)ANG L N,et al.The quality?? analysis of cultivated land in china[J].Scientia Agricultura Sinica,2011,44(17):3557-3564.
[3] 劉廣才,楊祁峰,李 隆,等.小麥/玉米間作優(yōu)勢及地上部與地下部因素的相對貢獻(xiàn)[J].植物生態(tài)學(xué)報,2008(2):477-484.
LIU G C,YANG Q F,LI? L,et al.Intercropping advantage and contribution of above-and below-ground? interactions in wheat-maize intercropping[J].Chinese Journal of Plant?? Ecology,2008(2):477-484.
[4] 焦念元,汪江濤,張 均,等.化學(xué)調(diào)控和施磷對玉米/花生間作磷吸收利用和間作優(yōu)勢的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2015,23(9):1093-1101.
JIAO N Y,WANG J T,ZHANG J,et al.Effects of chemical regulation and P fertilization on P absorption and utilization in maize/peanut intercropping system[J].Chinese Journal of Eco-Agriculture,2015,23(9):1093-1101
[5] 儲誠進(jìn),王酉石,劉 宇,等.物種共存理論研究進(jìn)展[J].? 生物多樣性,2017,25(4):345-354.
CHU CH J,WANG Y SH,LIU Y,et al.Advances in species coexistence theory[J].Biodiversity Science,2017,? 25(4):345-354.
[6] 張金丹,范 虹,杜進(jìn)勇,等.小麥玉米同步增密有利于優(yōu)化種間關(guān)系而提高間作產(chǎn)量[J].作物學(xué)報,2021,47(12):2481-2489.
ZHANG J D,F(xiàn)AN H,DU J Y,et al.Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize[J].Acta Agronomica Sinica,2021,47(12):2481-2489.
[7] 郭常英,王 偉,蒲小劍,等.播種方式和行距對燕麥/飼用豌豆混播草地生產(chǎn)性能及種間關(guān)系的影響[J].草地學(xué)報,2022,30(9):2483-2491.
GUO CH? Y,WANG W,PU X J,et al.Effects of sowing method and row spacing on production performance and interspecific relationship of oat/forage pea mixed grassland[J].Acta Agrestia Sinica,2022,30(9):2483-2491.
[8] 李含婷,柴 強,王琦明,等.綠洲灌區(qū)不同施氮水平下玉米綠肥間作模式的水分利用特征[J].中國農(nóng)業(yè)科學(xué),2021,54(12):2608-2618.
LI H T,CHAI Q,WANG Q M,et al.Water? use? characteristics of? maize-green? manure? intercropping under different? nitrogen application levels in the oasis irrigation? area[J].Scientia Agricultura Sinica,2021,54(12):2608-2618.
[9] 柴 強,胡發(fā)龍,陳桂平.禾豆間作氮素高效利用機(jī)理及農(nóng)藝調(diào)控途徑研究進(jìn)展[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2017,25(1):19-26.
CHAI Q,HU F L,CHEN G P,et al.Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping[J].Chinese Journal of Eco-Agriculture,2017,25(1):19-26.
[10] 秦亞洲,王利立,柴 強,等.大麥間作豌豆的種間競爭力及產(chǎn)量對施氮量的響應(yīng)[J].農(nóng)業(yè)現(xiàn)代化研究,2015,? 36(3):482-487.
QIN Y ZH,WANG L L,CHAI Q,et al.Responses of interspecific competition and crop yield to nitrogen applicationsin a barley-field pea intercropping system[J].Research of Agricultural Modernization,2015,36(3):482-487.
[11] HAUGGAARD-NIELSEN H ,AMBUS P ,JENSEN E S.Interspecific competition,N use and interference with weeds in pea–barley intercropping[J].Field Crops Research,2001,70(2):101-109.
[12] FALONG H,CAI Z,F(xiàn)UXUE F,et al.Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea[J].Plant and Soil,2017,412(1/2):235-251.
[13] OLIVIER D,JEAN-FRANOIS V,F(xiàn)LORIAN C.Intercropping with legume for agroecological cropping systems:Complementarity and facilitation processes and the importance of soil microorganisms.A review[J].Agriculture,Ecosystems and Environment, 2017,240(1):148-161.
[14] WEI P Z,GUANG C L,JIAN H S,et al.Temporal dynamics of nutrient uptake by neighbouring plant species:evidence from intercropping[J].Functional Ecology,2017,31(2):469-479.
[15] 鄭 偉,朱進(jìn)忠,庫爾班,等.不同混播方式下豆禾混播草地種間競爭動態(tài)研究[J].草地學(xué)報,2010,18(44):568-575.
ZHENG W,ZHU J ZH,KU ERBAN,et al.Dynamics of? interspecific competition of? legume-grass? mixture under different? mixed sowing? patterns[J].Acta Agrestia Sinica,2010,18(44):568-575.
[16] 魏廷邦,胡發(fā)龍,趙 財,等.氮肥后移對綠洲灌區(qū)玉米干物質(zhì)積累和產(chǎn)量構(gòu)成的調(diào)控效應(yīng)[J].中國農(nóng)業(yè)科學(xué),2017,50(15):2916-2927.
WEI T B,HU F L,ZHAO C,et al.Response of dry matter accumulation and yield components of maize under N fertilizer postponing application in oasis irrigation areas[J].Scientia Agricultura Sinica,2017,50(15):2916-2927.
[17] 趙德強,李 彤,侯玉婷,等.玉米大豆間作模式下干物質(zhì)積累和產(chǎn)量的邊際效應(yīng)及其系統(tǒng)效益[J].中國農(nóng)業(yè)科學(xué),2020,53(10):1971-1985.
ZHAO D Q,LI T,HOU Y T,et al.Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns[J].Scientia Agricultura Sinica,2020,53(10):1971-1985.
[18] 郭 有.苕子、豌豆、大豆固氮特性的初步觀察[J].新農(nóng)業(yè),1978(14):21-24.
GUO Y.Preliminary observation on nitrogen fixation characteristics of common vetch,pea and soybean[J].Modern Agriculture,1978(14):21-24.
[19] 譚 華,鄭德波,鄒成林,等.綠洲灌區(qū)間作和密植對作物干物質(zhì)積累及競爭補償作用的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2015,33(3):18-23.
TAN H,ZHENG D B,ZOU CH L,et al.Effect of drip irrigation and fertilization on grain yield and nitrogen utilization of maize[J].Agricultural Research in the Arid Areas,2015,33(3):18-23.
[20] 李樹軍.淺析氮肥在農(nóng)業(yè)生產(chǎn)中的作用及當(dāng)前存在的問題[J].黑龍江農(nóng)業(yè)科學(xué),2010,187(1):41-44.
LI SH J.Brief? analysis function of nitrogen fertilizer in agricultural production and current existing questions[J].Heilongjiang Agricultural Sciences,2010,187(1):41-44.
[21] 陳國棟,黃高寶,柴 強.不同帶型及施氮條件下玉米間作豌豆的產(chǎn)量表現(xiàn)和氮肥利用率[J].中國土壤與肥料,2013,245(3):78-82.
CHEN G D,HUANG G B,CHAI Q.Effects of different nitrogen applications and intercropping stripe compounds on yield and nitrogen use efficiency under maize /pea intercropping[J].Soil and Fertilizer Sciences in China, 2013,245(3):78-82.
[22] 李含婷,柴 強,胡發(fā)龍,等.間作綠肥彌補減施氮肥引起的玉米產(chǎn)量損失[J].植物營養(yǎng)與肥料學(xué)報,2022,28(7):1329-1340.
LI H T,CHAI Q,HU F L,et al.Intercropping green manure with maize reduces nitrogen fertilizer input and stabilizes grain yield[J].Journal of Plant Nutrition and Fertilizers,2022,28(7):1329-1340.
[23] 李志賢,王建武,楊文亭,等.甘蔗/大豆間作減量施氮對甘蔗產(chǎn)量、品質(zhì)及經(jīng)濟(jì)效益的影響[J].應(yīng)用生態(tài)學(xué)報,2011,22(3):713-719.
LI ZH X,WANG J W,YANG W T,et al.Effects of reduced nitrogen application on the yield,quality,and economic benefit of sugar-cane intercropped with soybean[J].Chinese Journal of Applied Ecology,2011,22(3):713-719.
[24] RYAN M R.Crops better when grown together[J].Naturet Sustainability,2021,10(4):926-927.
[25] 楊 萍,李 杰,張中凱,等.施氮對胡麻/大豆間作體系作物間作優(yōu)勢及種間關(guān)系的影響[J].草業(yè)學(xué)報,2016,? 25(3):181-190.
YANG P,LI J,ZHANG ZH K,et al.Effect of nitrogen application on intercropping advantages and crop interactions under an oil flax and soybean? intercrop system[J].Acta Prataculturae Sinica, 2016,25(3):181-190.
[26] 任家兵,張夢瑤,肖靖秀,等.小麥||蠶豆間作提高間作產(chǎn)量的優(yōu)勢及其氮肥響應(yīng)[J].中國生態(tài)農(nóng)業(yè)學(xué)報(中英文),2020,28(12):1890-1900.
REN J B,ZHANG M Y,XIAO J X,et al.Wheat and faba bean intercropping to improve yield and response to nitrogen[J].Chinese Journal of Eco-Agriculture,2020,? 28(12):1890-1900.
[27] 趙建華,孫建好,陳亮之,等.玉/豆間作產(chǎn)量優(yōu)勢中補償效應(yīng)和選擇效應(yīng)的角色[J].作物學(xué)報,2022,48(10):2588-2596.
ZHAO J H,SUN J H,CHEN L ZH,et al.Role of complementarity and select effect for yield advantage of maize/legumes intercropping systems[J].Acta Agronomica Sinica,2022,48(10):2588-2596.
[28] WANG R,SUN Z,ZHANG L,et al.Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping[J].Field Crops Research,2020,253:1-10.https://doi.org/10.1016/j.fcr.2020.107819
[29] 權(quán)寶全,白冬梅,田躍霞,等.不同施氮量對核桃林間作花生生長發(fā)育及產(chǎn)量的影響[J].花生學(xué)報,2019,48(2):52-56.
QUAN B Q,BAI D M,TIAN Y X,et al.Effects of different nitrogen application rates on growth and yield of intercropping? peanut in walnut? orchard[J].Journal of Peanut Science,2019,48(2):52-56.
[30] 牛建彪,陳光榮,樊廷錄,等.玉米/大豆帶狀復(fù)合種植模式下減量施氮對系統(tǒng)產(chǎn)量的影響[J].甘肅農(nóng)業(yè)科技,2017,499(7):37-42.
NIU J B,CHEN G R,F(xiàn)AN T L,et al.Effect of reduced N application on yield in corn/soybean intercropping system in strip planting model[J].Gansu Agricultural Science and Technology,2017,499(7):37-42.
[31] FUSUO Z,LONG L.Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J].Plant and Soil,2003,248(8):305-312.
[32] 李志賢,王建武,楊文亭,等.廣東省甜玉米/大豆間作模式的效益分析[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2010,18(3):627-631.
LI ZH X,WANG J W,YANG W T,et al.Benefit of sweet corn/soybean intercropping in Guangdong? province[J].Chinese Journal of Eco-Agriculture,2010,18(3):627-631.
[33] 魏正業(yè),張海星,石 薇,等.種植方式與施氮對西北旱區(qū)飼草作物產(chǎn)量、品質(zhì)和水分利用的影響[J].作物學(xué)報,2022,48(10):2638-2653.
WEI ZH Y,ZHANG H X,SHI W,et al.Effects of planting methods and nitrogen application on forage crop yield,quality and water use in arid area of northwest China[J].Acta Agronomica Sinica,2022,48(10):2638-2653.
[34] 張作為,史海濱,李 禎,等.不同生育時期非充分灌溉對間作作物產(chǎn)量構(gòu)成因子及收獲指數(shù)的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2016,34(4):31-37,61.
ZHANG Z W,SHI H B,LI ZH,et al.The Influence of deficit irrigation during different growth periods on the yield components and harvest index of intercropped crops[J].Agricultural Research in the Arid Areas,2016,34(4):31-37,61.
Effect of Reduced Nitrogen Fertilization on Interspecific Relationship and
Yield Performance of Maize-vetch Intercropping
WANG Chao1,2,DU Chanchan1,2,YANG Hongwei3,WANG Qiming1,2,
FAN Zhilong1,2,YIN Wen1,2,HU Falong1,2 and CHAI Qiang1,2
(1.Gansu Provincial Key Laboratory of Arid Land Crop Science,Lanzhou 730070,China; 2.Agronomy College,
Gansu Agricultural University,Lanzhou 730070,China; 3.College of Agriculture and Forestry Science
and Technology,Longdong University,Qingyang Gansu 745000,China)
Abstract The interspecific relationship between Vicia sativa (common vetch)in maize intercropping was revealed,providing a theoretical foundation for further exploiting the advantages of intercropping with cereals and legume.This study was conducted in 2017 at the Oasis Agriculture Comprehensive Experimental Station of Gansu Agricultural University in Wuwei city,Gansu? province. Maize and Vicia sativa? were selected as the experimental subjects.Three planting patterns were set up:monocropping of Vicia sativa (V),monocropping of maize (M),and intercropping of maize and Vicia sativa (M/V).Three nitrogen application levels were considered:no nitrogen application (N0,0?? kg·hm-2),reduced nitrogen application (N1,240 kg·hm-2),and traditional nitrogen application (N2,300?? kg·hm-2).The objective was to explore the effect of reduced nitrogen application in the Hexi Oasis irrigation area on the interspecific relationship and yield of maize intercropped with Vicia sativa.The results showed that the dry matter accumulation of Vicia sativa increased by 43.0% compared with monocropping,and by 10.9% under reduced nitrogen fertilization compared with conventional nitrogen fertilization.The dry matter accumulation of maize increased by 26.7% compared with monoculture and by 8.5% under reduced nitrogen application compared with conventional nitrogen application.Through the symbiotic period,the competition ratio between Vicia sativa and maize consistently remained greater than 1.The growth ratios of intercropped and monocultured maize were greater than 1 following the harvest of Vicia sativa under various nitrogen application levels,indicating that intercropped maize exhibited a significant recovery effect.The yield of Vicia sativa intercropping was?? 37.7%? higher than that of monocropping,and there was no significant difference under the N application level.The intercropping maize yield increased by 3.4% compared with the monoculture and by?? 4.0% under reduced nitrogen application compared with conventional nitrogen application.There was no significant difference in the land equivalent ratio of each intercropping treatment; all were greater than 1,indicating an advantage of increasing production.Therefore,a 20% reduction in nitrogen fertilization of Vicia sativa can further explore the potential of intercropping by regulating the inter-specific relationship,which is a feasible measure for maize production in the Oasis irrigated area.
Key words Cereal-legume intercropping; Reduced nitrogen application; Dry matter accumulation; Interspecific relations; Yield
Received ?2022-12-01??? Returned 2023-03-06
Foundation item National Key R&D Program (No.2021YFD1700204); National Industry Technology System (No.CARS-22-G-12); Science and Technology Program of Gansu Province (No.21JR7RA836).
First author WANG Chao,male,master student.Research area:crop cultivation.E-mail:393357782@qq.com
Corresponding?? author HU Falong,male,associate professor.Research area:multi-cropping,nutrient-efficient utilization and farmland greenhouse gas emission reduction.E-mail:hufl@gsau.edu.cn
CHAI Qiang,male,Ph.D,professor.Research area:dryland green manure cultivation,multi-cropping,water-saving agriculture and circular agriculture.E-mail:chaiq@gsau.edu.cn
(責(zé)任編輯:史亞歌 Responsible editor:SHI Yage)