• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation and characterization of nanobodies targeting GPCR

    2024-05-16 04:43:58ShenglanZhangZhiranFanJianfengLiu
    Biophysics Reports 2024年1期

    Shenglan Zhang,Zhiran Fan,Jianfeng Liu

    1 Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory),Guangzhou 510005,China

    2 Cellular Signaling laboratory,International Research Center for Sensory Biology and Technology of MOST,Key Laboratory of Molecular Biophysics of MOE,College of Life Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China

    Abstract G protein-coupled receptors (GPCRs) are a large family of cell membrane proteins that are important targets for drug discovery.Nanobodies,also known as VHH (variable domains of heavy chain-only antibodies,HcAbs) antibodies,are small antibody fragments derived from camelids that have gained significant attention as potential therapeutics for targeting GPCRs due to their advantages over conventional antibodies.However,there are challenges in developing nanobodies targeting GPCRs,among which epitope accessibility is the most significant because the cell membrane partially shields the GPCR surface.We developed a universal protocol for making nanobodies targeting GPCRs using the cell membrane extract of GPCR-overexpressing HEK293 cells as the llama/alpaca immunization antigen.We constructed an immune VHH library and identified nanobodies by phage display bio-panning.The monoclonal nanobodies were recombinantly expressed in Escherichia coli (E. coli) and purified to characterize their binding potency.

    Keywords Nanobody,Single domain antibody,Heavy chain-only antibody,GPCR,G protein-coupled receptor# Shenglan Zhang and Zhiran Fan contributed equally to this work.

    INTRODUCTION

    G Protein-Coupled Receptors (GPCRs) are a large family of cell membrane proteins that are involved in various physiological processes.Due to their involvement in numerous diseases,GPCRs have become important targets for drug discovery (Thalet al.2018).Nanobodies,also known as VHH antibodies,or singledomain antibodies,are small fragments derived from camelids such as llamas and alpacas.Nanobodies possess several advantages over conventional antibodies,including their small size,high stability,solubility,and the ability to bind with high affinity to specific target antigens (Hoeyet al.2019;Liuet al.2018;Morrison 2019).

    In recent years,nanobodies have gained significant attention as potential therapeutics,particularly in targeting GPCRs (Hutchings 2020;Jinet al.2023;Muyldermans 2021).Nanobodies have emerged as powerful tools for GPCR research owing to their unique attributes,enabling researchers to stabilize GPCR conformations and providing unprecedented insights into the architecture and dynamics of these receptors.The use of nanobodies for GPCR modulation offers several advantages,including improved tissue penetration,enhanced receptor selectivity,a prolonged half-life,reduced immunogenicity,and the ability to target challenging epitopes in GPCRs (Ayoubet al.2017;Jo and Jung 2016).Furthermore,nanobodies have facilitated the visualization of GPCRs through crystallography and cryo-electron microscopy,yielding high-resolution structural data that have substantially advanced our understanding of GPCR signalling mechanisms (Cheet al.2018,2021;Robertsonet al.2022;Zhanget al.2021).Due to their small size and flexibility,nanobodies can access orthosteric or allosteric sites on GPCRs,which may not be accessible to large antibodies or small molecules (De Groofet al.2019;Heukerset al.2019;Sheridan 2017).This property makes the nanobodies well-suited for modulating GPCR function and signalling.By targeting allosteric sites on GPCRs,nanobodies have unlocked new possibilities for modulating receptor signalling with exceptional precision,offering opportunities for the development of next-generation pharmacological agents.Moreover,engineered nanobodies have demonstrated efficacy in intracellular delivery,thereby enabling the selective manipulation of GPCR-mediated pathways and presenting prospects for innovative drug delivery modalities (Heukerset al.2019;Raynaudet al.2022).

    The challenges in developing nanobodies targeting GPCRs are as follows: (1) Epitope Accessibility.GPCR surfaces can be partially shielded by the cell membrane,limiting the availability of accessible epitopes for nanobody binding.Identifying and designing nanobodies that bind to exposed regions or induce conformational changes to reveal orthosteric or allosteric epitopes is a significant challenge (McMahonet al.2020).Typically,a purified protein is required as an antigen to generate antibodies.However,purifying GPCR in a homogeneous statein vitrois difficult.(2) Structural Complexity.GPCRs often adopt multiple conformational states,making it challenging to identify and optimize nanobodies to selectively target specific conformations relevant to desired therapeutic effects(Maet al.2020).(3) Conformational Flexibility.GPCRs undergo conformational changes upon ligand binding that can affect their interactions with nanobodies(Uchanskiet al.2020;Zimmermannet al.2018).Engineering nanobodies that recognize and stabilize the desired receptor conformation is essential while avoiding undesired interactions with other states.

    We focused in this protocol on the generation and characterization of nanobodies targeting GPCR,particularly the preparation of cell membrane extracts overexpressing GPCR as the appropriate antigen.We designed a universal protocol containing all procedures,from antigen preparation to nanobody characterization.

    PROTOCOL OVERVIEW

    As shown in Fig.1,the gene encoding the full-length GPCR was synthesized and cloned into the mammalian cell expression vector pcDNA3.1.HEK293 cells were transfected with the plasmid,and the target GPCR product was overexpressed 1-2 days after transfection.The HEK293 cells were harvested,pelleted,and disrupted.The cell membrane containing the overexpressed GPCR was used as an antigen.To obtain nanobodies targeting GPCR,a lama/alpacas was immunized 4-6 times at 7-15 days intervals with a solution of cell membrane extraction.Peripheral blood was collected during and after immunization.The peripheral blood mononuclear cells (PBMCs) were isolated and combined (Fig.1A).Total RNA was extracted from the PBMCs and reverse-transcribed into cDNA.VHH genes were amplified from cDNA by a twostep nested PCR,digested with restriction enzymes,and ligated into the pHEN1 phagemid vector,followed by a c-myc-tag,6 × His-tag,an amber codon (Ohet al.2007)and gene III protein (gIIIp) of the phage.The pelB signal sequence is located at the N-terminus of the VHH gene and leads to the periplasmic expression of nanobodies.The ligated phagemids were transformed intoE.coliTG1 competent cells.All transformants were collected and stored in an immune VHH library (Fig.1B).Dozens of colonies from the library were randomly chosen for colony PCR and Sanger sequencing analysis to evaluate the success rate of VHH gene insertion into the phagemid vector and the VHH sequence diversity of the immune library.

    An immune VHH library was used to select and screen nanobodies targeting GPCR.A representative fraction of the VHH library was cultured and rescued using the KM13 helper phage to display nanobodies at the tips of the M13 phage.Phages were extracted from theE.coliTG1 strain and used for phage display biopanning in HEK293 cells overexpressing the target GPCR.During the bio-panning process,negative phagedisplayed VHHs were removed by HEK293 cell depletion with mock transfection.The phage was enriched and eluted with a trypsin solution.After phage infection withE.coliTG1,a representative fraction of the bacteria was plated,and hundreds of colonies were randomly inoculated and cultured for positive clonal VHH screening.These gIIIp-fused VHHs were expressed by isopropyl-β-D-thio galactopyranoside (IPTG) induction,and the periplasmic extracts were screened for specific binding to GPCR using flow cytometry.The results of these selected clones were compared with those of negative and non-specific binding controls.Clones with a specific fluorescence intensity distribution of the anti-His-tag antibody were recognized as positive and subjected to Sanger sequencing (Fig.1C).The remaining phages were rescued and amplified if the next round of phage display was required.Usually,at least two rounds of phage display biopanning are required for generating specific nanobodies targeting GPCR.

    DNA sequencing results from the positive clones were translated into amino acids for analysis.All amino acid sequences were aligned,repeated or redundant sequences were removed,and only clones with unique amino acid sequences were retained for further analysis.The pHEN1 phagemids encoding unique VHH genes were extracted from the culturedE.coliTG1 and transformed intoE.coliBL21(DE3) competent cells,as the amber codon stops translation before thegIIIpgene(Ohet al.2007).High-purity soluble nanobodies were extracted from the periplasm and purified using a His-tagged protein purification protocol,followed by size-exclusion chromatography.The purified nanobodies were used in dose-response flow cytometry assays to characterize their binding potency to GPCR.Calibration curves were used to determine the affinity of the nanobodies for GPCR (Fig.1D).

    MATERIALS

    Reagents and materials

    ? Complete Freund’s adjuvant: ThermoFisher Scientific,Cat.#77140

    ? Incomplete Freund’s adjuvant: ThermoFisher Scientific,Cat.#77145

    ? Accutase solution: Merk,Cat.#A6964

    ? Reverse Transcriptase: Sigma-Aldrich,Cat.#3531287001

    ? RNase inhibitor: Sigma-Aldrich,Cat.#R2520

    ? dNTP mix: ThermoFisher Scientific,Cat.#18427013

    ? Amicon UltraCentrifugal Filter Units: Merk,Cat.#UFC8010

    ? Trypsin solution: Sigma-Aldrich,Cat.#T1426

    ? AzBTS tablets: Sigma-Aldrich,Cat.#A9941

    ? Polyethylene glycol-8000: Sigma-Aldrich,Cat.#89510

    ? Mammalian Total RNA Miniprep kit: Sigma-Aldrich,Cat.#RTN350

    ? Plasmid Miniprep kit: Sigma-Aldrich,Cat.#NA9604

    ? Bugbuster Master Mix: Merk,Cat.#71456

    ? Restriction enzymeNotI: New England Biolabds,Cat.#R0189L

    ? Restriction enzymeSfiI: New England Biolabds,Cat.#R0123L

    ? Antartic Phosphatase: New England Biolabds,Cat.#M0289S

    ? T4 DNA ligatase: New England Biolabds,Cat.#M0202S

    ? Phusion High-Fidelity DNA Polymerase: New England Biolabds,Cat.#M0530L

    ? DreamTaq DNA Polymerase: ThermoFisher Scientific,Cat.#EP0702

    ?E.ColiTG1 electroporation-competent cells: Lucigen,Cat.#60502-2

    ? Gel and PCR clean-up kit: Macherey-Nagel,Cat.#740609.250

    ? Trypton: Oxoid,Cat.#LP0042B

    ? Yeast extract: Oxoid,Cat.#LP0021B

    ? Agar power: Oxoid,Cat.#LP0011B

    ? Bovin serum albumin (BSA): BioFroxx,Cat.#4240GR100

    ? Ampicillin: BioFroxx,Cat.#1146GR001

    ? Kanamycin: BioFroxx,Cat.#1162GR025

    ? Isopropyl-β-D-thiogalactopyranoside (IPTG):BioFroxx,Cat.#1122GR1000

    ? 96-Well Polystyrene Conical Bottom MicroWell Plates (V-bottom): ThermoFisher Scientific,Cat.#249952

    ? His Tag Alexa Fluor 647-conjugated Antibody: R&D Systems,Cat.#IC0501R

    ? Ficoll-Paque PLUS density gradient medium: Cytiva,Cat.#17144003

    ? Cobalt-based His-tagged protein purification resin:Cytiva,Cat.# 28957502

    ? Superdex-75 increased size exclusion chromatography column: Cytiva,Cat.# 29148721

    ? NaCl: Macklin,Cat.#S805275

    ? Sucrose: Macklin,Cat.#S818046

    ? Tris: Macklin,Cat.#T818967

    ? EDTA: Macklin,Cat.#E809186

    ? EGTA solution: Macklin,Cat.#E885218

    ? Sucrose: Macklin,Cat.#S818049

    ? HEPES: Macklin,Cat.#H822240

    ? Imidazole: Macklin,Cat.#I6122

    ? Tween-20: Macklin,Cat.#T6335

    ? Phosphate buffered saline (PBS): ThermoFisher Scientific,Cat.#10010023

    Buffers and culture medium

    ? 2YT medium: 16 g Trypton,10 g Yeast extract and 5 g NaCl in 1 L ultrapure water

    ? Dulbecco's Modifed Eagle Medium (DMEM):ThermoFisher Scientific,Cat.#C11995500CP

    ? Cell membrane buffer: 5 mmol/L EGTA,1 mmol/L EDTA,10% sucrose (w/v) and 50 mmol/L HEPES pH 7.5 in ultrapure water

    ? PEG-NaCl buffer: 800 g PEG-8000 and 146.1 g NaCl in 1 L ultrapure water

    ? Wash buffer: PBS containing 30 mmol/L imidazole

    ? Elute buffer: PBS containing 300 mmol/L imidazole

    Equipment

    ? Dounce tissue grinder set,Sigma-Aldrich D9188

    ? Refrigerated centrifuge,Eppendorf 5910R

    ? Refrigerated Microcentrifuge,Sorvall Legend Micro 21

    ? Untracentrifuge,ThermoFisher Scientific Sorvall WX 100+

    ? PCR,Bio-Gener RePure

    ? Microplate reader: TECAN,Infinite M nano

    ? ThermoCell MixingBlock: Bioer MB-102

    ? Gel electrophoresis system,Tanon HE220 and EPS200

    ? Gel imaging system,Tanon 1600

    ? MicroPulser Electroporator,Bio-Rad

    ? Shaking incubator,Minquan MQT-60R

    ? Biochemical incubator,Yiheng LRH-150

    ? Protein purification system,Cytiva AKTA pure 25L

    ? Flow cytometry,Angilent Novocyte Advanteon

    Software

    ? NovoExpress v1.5.0,Angilent Technologies,Inc.

    ? Graphpad Prism v8.0,GraphPad Software,LLC

    ? BioEdit v7.0.9 (RRID: SCR_007361)

    ? MAFFT v7.490 (Katohet al.2002)

    ? ProtParam (Wilkinset al.1999)

    PROCEDURES

    Step 1: Antigen preparation

    Step 1.1: The synthetic gene encoding the full-length target GPCR was cloned into a mammalian expression vector (pcDNA3.1) containing an HA or FLAG-tag at the C-terminus for the GPCR expression test.

    Step 1.2: Transfect HEK293 cells with the GPCR expression plasmid for 1-2 days.At least 2 × 108cells should be prepared.

    Step 1.3: Harvest all the transfected HEK293 cells with Accutase solution.

    Step 1.4: Pellet the HEK293 cells expressing the target GPCR by refrigerated centrifugation.In order to avoid internalization of the target GPCR and protein degradation by proteases,it is essential to keep the proteins at 4 °C throughout the protocol.

    Step 1.5: Resuspend the cell pellet in 10 mL of the cell membrane buffer and homogenize the cells with a Dounce tissue grinder for 5 min.

    Step 1.6: Centrifuge the cells for 10 min at 1000gto pellet the cell debris.

    Step 1.7: Keep the supernatant and repeat Steps 1.5 and 1.6 2-3 times.

    Step 1.8: Combine all the supernatants and ultracentrifuge for 30 min at 100,000g.

    Step 1.9: Resuspend the pellet in 5 mL of PBS and store at -80 °C.

    [CRITICAL]Using the anti-HA-or FLAG-tag antibody,it is important to check the expression level of target GPCR on the HEK293 cell surface by immunoassays (e.g.,flow cytometry or cell-based ELISA).

    Step 2: Llama/alpaca immunization

    Step 2.1: Thaw the HEK293 cell membrane suspension and divide it into 4-6 equal parts in the vials,indicating the immunization times (4-6).

    Step 2.2: Mix the cell membrane suspension in an equal volume of Freund’s complement (for the first immunization) or complement adjuvant as the immunogens.

    Step 2.3: Immunize a healthy young llama or alpaca subcutaneously 4-6 times at 7-15 days intervals.

    Step 2.4: On the day before and 14 days after the last immunization,collect approximately 200 mL of peripheral blood from the llama and alpaca.

    Step 2.5: Isolate the PBMCs using Ficoll-Paque PLUS density gradient medium and combine the PMBCs.

    Step 3: VHH library construction

    Step 3.1: Extract the total RNA from the PBMCs using the Mammalian Total RNA Miniprep kit.

    Step 3.2: Synthesize the cDNA using the total RNA as the template.Use RNAse inhibitors to avoid RNA degradation.

    Step 3.3: Use the forward primer CH2FORTA4(Arbabi Ghahroudiet al.1997),an equimolar mixture of the four reverse primers (Table 1) (Beharet al.2009),and the synthesized cDNA as the template to perform the first PCR using Phusion High-Fidelity DNA Polymerase.

    Table 1 Primers used for the VHH library construction

    Step 3.4: Identify the amplification of two bands corresponding to the VH-CH1 hinge and part of the CH2 gene fragment of traditional antibodies (approximately 1000 bp) or the VHH hinge and part of the CH2 gene fragment of HcAbs (approximately 800 bp) using agarose gel electrophoresis (1.5 % agarose,w/v).

    Step 3.5: Purify the lower band (VHH hinge and part of the CH2 gene) using a gel and PCR clean-up kit.

    Step 3.6: Use the forward primer 3′ VHH-Not (Table 1),and an equimolar mixture of the four backward primers containingSfiIandNotIrestriction enzyme sites and purified VHH-CH2 as the template to perform the second PCR via DreamTaq DNA Polymerase.

    Step 3.7: Identify the amplification of the VHH gene(approximately 400 bp) by agarose gel electrophoresis(1.5 % agarose,w/v).

    Step 3.8: Purify the VHH gene using a gel and PCR clean-up kit.

    Step 3.9: Digest the purified VHH gene withSfiIandNotIrestriction enzymes,then purify the digested VHH gene as the “Inserts” using a gel and PCR clean-up kit.

    Step 3.10: Digest the pHEN1 phagemid vector withSfiIandNotIrestriction enzymes,then purify the digested vector as the “Vectors” using a gel and PCR clean-up kit.

    Step 3.11: Ligate the “Inserts” into “Vectors” using T4 DNA ligase.At least 5 μg of “Inserts” should be used to prepare a large VHH library;the amount of “Vectors”used for ligation must be tested.

    Step 3.12 Transform all the ligated materials into TG1E.colielectroporation-competent cells and coat the bacteria in the 2YT agar medium with ampicillin(0.1 mg/mL) and 2 % glucose (m/v) at 37 °C to grow.

    Step 3.13 Harvest all the grown colonies and centrifuge for 15 min at 3000g.

    Step 3.14 Resuspend the bacteria pellet in 3-5 mL of PBS containing 20 % glycerol (v/v) as the immune VHH library and store it at -80 °C.

    [CRITICAL]The quality of the library is reflected in both the capacity and transformation quality,where the capacity is assessed by counting the number of colonies grown on agar plates,and the positive rate of colony PCR identifies the transformation quality.

    Step 4: Phage display selection and bio-panning

    Step 4.1: Grow 50 μL of the VHH library in 50 mL of 2YT medium with ampicillin (0.1 mg/mL) and 2 % glucose(m/v) at 37 °C with shaking to an OD600around 0.6.

    Step 4.2: Infect the bacteria using the KM13 helper phage and incubate at 37 °C for 30 min.

    Step 4.3: Centrifuge for 15 min at 3000gto pellet the bacteria.

    Step 4.4: Resuspend the pellet in 250 mL of 2YT medium with ampicillin (0.1 mg/mL) and kanamycin(0.05 mg/mL) overnight at 30 °C with shaking.

    Step 4.5: Culture the bacteria overnight,split into ten vials,and centrifuge for 30 min at 3000g.

    Step 4.6: Add 5 mL (1/5 volume of bacteria in each vial) of PEG-NaCl buffer to the supernatant in a new vial and incubate on ice for 1 h.

    Step 4.7: Centrifuge for 30 min at 3000g,and resuspend the phage pellet in 1 mL of PBS.

    Step 4.8: Centrifuge for 5 min at 16,000gto remove the bacterial contaminants.

    Step 4.9: Add 0.2 mL of PEG-NaCl buffer to the supernatants in a new vial and incubate on ice for 30 min.

    Step 4.10: Centrifuge for 5 min at 16,000gto pellet the phage.

    Step 4.11: Resuspend the pellet in 1 mL of PBS as the phage library.

    Step 4.12: Before phage display and biopanning,transfect HEK293 cells for 1-2 days with the plasmid encoding the target GPCR.Prepare HEK293 cells using mock transfection.

    Step 4.13: Harvest the HEK293 cells with GPCR or mock transfection using the Accutase solution.

    Step 4.14: Saturate the phage library and HEK293 cells with PBS-2% BSA (w/v) at 4 °C for 1 h.

    Step 4.15: Combine the phage and HEK293 cells with mock transfection,incubating at 4 °C for 1 h with shaking as the depletion for non-specific binders.

    Step 4.16: Centrifuge for 5 min at 1000gto pellet the cells.

    Step 4.17: Transfer the supernatant (depleted phage)into HEK293 cells overexpressing target GPCR and incubate at 4 °C for 2 h with shaking.

    Step 4.18: Wash the cells three times with 1 mL of PBS containing 0.1% tween-20 (v/v) and three times with PBS to remove non-specific binding.

    Step 4.19: Elute the bound phages using a 1-mg/mL trypsin solution for 20 min at room temperature with shaking.

    Step 4.20: Rescue the phage in theE.coliTG1 strain;plate a part of the infected bacteria on 2YT agar medium with ampicillin (0.1 mg/mL) and 2% glucose(m/v) and keep at 37 °C overnight.

    Step 5: Screening for GPCR-specific nanobodies

    Screen individualE.coliTG1 colonies from the phage display selection using flow cytometry.

    Step 5.1: Place the colonies randomly into different 96-deep-well plates in 400 μL of 2YT medium with ampicillin (0.1 mg/mL) and 2% glucose (m/v) at 37 °C for 4 h with shaking.(NOTE: Each plate contained a negative control (no colonies) and a non-specific control preserved in our laboratory (a colony encoding a VHH gene that binds to a non-specific target on the surface of HEK293 cells)).

    Step 5.2: Induce the grown bacteria to produce nanobodies by IPTG at 30 °C overnight.

    Step 5.3: Before phage display and bio-panning,transfect HEK293 cells for 1-2 days with the plasmid encoding the target GPCR.

    Step 5.4: Harvest the HEK293 cells using accutase solution and split them into 96-well Polystyrene Conical Bottom MicroWell Plates (V-bottom) -at least 105cells/well.

    Step 5.5: Saturate the cells with PBS-2% BSA (w/v) at room temperature for 1 h.

    Step 5.6: Centrifuge for 30 min at 3000gto pellet the bacteria in the 96-deep-well plate and lyse by freezethawing with Bugbuster Master Mix solution(0.1 mL/well).

    Step 5.7: Add 50 μL of the bacterial supernatant from different 96-deep-well plates into the 96-well Polystyrene Conical Bottom MicroWell Plates and incubate at room temperature for 2 h with shaking.

    Step 5.8: Wash the cells three times with 1 mL of PBS containing 0.1% tween-20 (v/v) and three times with PBS to remove non-specific binding.

    Step 5.9: Add 10 μL of His Tag Alexa Fluor 647-conjugated antibody (1:5000 dilution in PBS) to the 96-well Polystyrene Conical Bottom MicroWell Plates,0.05 mL/well,and shake for 2 h at room temperature.

    Step 5.10: Wash the cells three times with 1 mL of PBS containing 0.1% tween-20 (v/v) and three times with PBS to remove non-specific binding.

    Step 5.11: Resuspend the cells in PBS (100 μL/well)and carry out flow cytometry assays.

    Step 5.12: Compare the results with the negative and non-specific controls.

    Step 5.13: Keep the positive colonies and send them for Sanger sequencing.

    Step 5.14: Translate the DNA sequences into amino acids and align all nanobody sequences using MAFFT software.Perform sequence alignment,remove the repeated sequences,and retain unique VHH colonies for further analysis.

    Step 6: Expression and purification of nanobodies

    Step 6.1: Prepare the phagemids of positive colonies from the screening step using the Plasmid Miniprep kit.

    Step 6.2: Transform phagemids intoE.coliBL21(DE3) competent cells for large-scale nanobody production.Grow transformed bacteria in 200 mL of 2YT medium with ampicillin (0.1 mg/mL) at 37 °C with shaking until OD600=0.8;then,induce bacteria with 0.1 mmol/L IPTG for overnight growth at 30 °C with shaking.

    Step 6.3: Centrifuge for 30 min at 3000gto pellet the bacteria.

    Step 6.4: Resuspend the bacteria in 10 mL of Bugbuster mix solution and incubate for 30 min with shaking.

    Step 6.5: Centrifuge for 30 min at 20,000gto pellet the debris.

    Step 6.6: Transfer the supernatant into a new vial with PBS-washed cobalt-based His-tagged protein purification resin and incubate for 1 h with shaking.

    Step 6.7: Wash the resin three times with a wash buffer.

    Step 6.9: Elute the resin five times with elute buffer.

    Step 6.10: Concentrate the eluted proteins containing nanobody to 0.5-1 mL using Amicon UltraCentrifugal Filter Units.

    Step 6.11: Perform size exclusion chromatography in PBS using Superdex 75 increased column supplemented with an AKTA pure 25L protein purification system.

    Step 6.12: Concentrate the purified nanobody using Amicon UltraCentrifugal Filter Units.Determine the protein concentration of the nanobody with a microplate reader using the molar extinction coefficient calculated by the online program ProtParam (Wilkinset al.1999).

    Step 7: Affinity measurement of GPCR-specific nanobodies

    The binding potency of purified nanobodies is measured by their affinity using flow cytometry.

    Step 7.1: Before affinity measurement,transfect HEK293 cells for 1-2 days with the plasmid encoding the target GPCR.

    Step 7.2: Harvest the HEK293 cells using Accutase solution and split them into 96-well Polystyrene Conical Bottom MicroWell plates -at least 105cells/well.

    Step 7.3: Saturate the cells with PBS-2% BSA (w/v) at room temperature for 1 h.

    Step 7.4: Centrifuge for 10 min at 1000gto pellet cells.

    Step 7.5: Prepare nanobody solutions at concentrations of 5000,1000,200,40,8,1.6,0.32,and 0.064 nmol/L.Add the nanobody solutions to cells in 96-well Polystyrene Conical Bottom MicroWell Plates and incubate for 2 h with shaking.

    Step 7.6: Centrifuge for 10 min at 1000gto obtain a pellet.Wash the cells three times with 0.15 mL/well PBS containing 0.1% tween-20 (v/v) and three times with PBS to remove non-specific binding.

    Step 7.7: Add 10 μL of His Tag Alexa Fluor 647-conjugated antibody (1:5000 dilution in PBS) to 96-Well Polystyrene Conical Bottom MicroWell Plates,0.05 mL/well,and keep for 2 h at room temperature with shaking.

    Step 7.8: Centrifuge for 10 min at 1000gto obtain a pellet.Wash the cells three times with 0.15 mL/well PBS containing 0.1% tween-20 (v/v) and three times with PBS to remove non-specific binding.

    Step 7.9: Resuspend the cells in PBS (100 μL/well)and carry out flow cytometry assays.

    Step 7.10: Analyze the results using the median or mean fluorescence intensity as the statistical value to characterize the binding capacity.Fit the curves (thex-axis indicating concentrations of nanobodies and they-axis the statistical values) using GraphPad Prism software by the nonlinear dose-response method to determine the affinity of the nanobodies,which was represented by the equilibrium dissociation constant(KD) between the nanobody and GPCR,using a one-site specific binding equation:

    whereXis the concentration of nanobodies,Yis the response to the specific binding,Bmaxis the maximum specific binding in the same units asY,andKDis the equilibrium dissociation constant in the same units asX.

    CONCLUSION AND DISCUSSION

    We describe this protocol as a universal and unbiased workflow for generating and characterizing nanobodies targeting GPCR.Using membrane extraction of HEK293 cells expressing GPCR instead of purified proteins,which is the traditional protocol of antibody development,greatly improves the success rate of nanobody generation,leading to nanobodies that recognize the native epitopes of GPCR.Further,more focused strategies could be optimized based on our universal protocol,such as adding a GPCR ligand to stabilize the conformation during phage display biopanning and using genetic mutants during antigen preparation.We hope this protocol will contribute to the research and development of nanobodies.

    Abbreviations

    BSA Bovin serum albumin

    DMEM Dulbecco's Modifed Eagle Medium

    E.coliEscherichia coli

    gIIIp Gene III protein

    GPCRs G protein-coupled receptors

    HcABs Heavy chain-only antibodies

    IPTG Isopropyl-β-D-thio galactopyranoside

    PBMCs Peripheral blood mononuclear cells

    PBS Phosphate buffered saline

    VHH Variable domains of heavy chain-only antibodies

    AcknowledgementsThis work is financially supported by the Key Technologies R&D Program of Guangdong Province(2010A080813001) and GuangZhou Basic and Applied Basic Research Foundation (SL2022A04J00399).We would like to thank Professor Patrick Chames (Marseille Cancer Research Center,France) for shared technologies and material support.

    Compliance with Ethical Standards

    Conflict of interestShenglan Zhang,Zhiran Fan and Jianfeng Liu declare that they have no conflict of insterest.

    Human and animal rights and informed consentAll institutional and national guidelines for the care and use of laboratory animals were followed.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creativecommons.org/licenses/by/4.0/.

    国产成人91sexporn| 少妇熟女欧美另类| 久久久国产成人免费| 国产精品久久久久久精品电影小说 | 日韩av在线免费看完整版不卡| 亚洲乱码一区二区免费版| 日本色播在线视频| 七月丁香在线播放| 97在线视频观看| 综合色丁香网| 国产精品久久久久久精品电影小说 | 成人av在线播放网站| 国产精品国产三级国产专区5o | 午夜日本视频在线| 激情 狠狠 欧美| 亚洲av免费高清在线观看| 欧美成人免费av一区二区三区| 午夜精品一区二区三区免费看| 国产一区有黄有色的免费视频 | 国产精品久久久久久久久免| 少妇熟女欧美另类| 久久精品国产99精品国产亚洲性色| 最近2019中文字幕mv第一页| 秋霞在线观看毛片| 亚洲在线观看片| 人体艺术视频欧美日本| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 精品久久久噜噜| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 久久精品久久精品一区二区三区| 欧美成人免费av一区二区三区| 国产成人freesex在线| 国产精品福利在线免费观看| 成人漫画全彩无遮挡| 51国产日韩欧美| 99热精品在线国产| 亚洲精品日韩在线中文字幕| 免费观看人在逋| 久久精品久久久久久久性| 人人妻人人看人人澡| 欧美日韩一区二区视频在线观看视频在线 | 亚洲高清免费不卡视频| 两个人视频免费观看高清| 一二三四中文在线观看免费高清| 69av精品久久久久久| 日本一二三区视频观看| 欧美成人一区二区免费高清观看| 午夜福利在线观看吧| 亚洲高清免费不卡视频| 男女视频在线观看网站免费| 嫩草影院入口| 最近手机中文字幕大全| 日韩高清综合在线| 男插女下体视频免费在线播放| 99久久精品国产国产毛片| 亚洲精品影视一区二区三区av| 国产高清国产精品国产三级 | 美女xxoo啪啪120秒动态图| 成人特级av手机在线观看| 久久综合国产亚洲精品| 美女内射精品一级片tv| 男人的好看免费观看在线视频| 国产精品久久久久久精品电影小说 | 国产在线一区二区三区精 | www.av在线官网国产| 久久精品人妻少妇| 久久精品久久精品一区二区三区| 亚洲国产精品国产精品| 精品一区二区三区人妻视频| 日韩强制内射视频| 麻豆乱淫一区二区| 国产精品.久久久| 日本wwww免费看| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 欧美最新免费一区二区三区| 亚洲国产欧洲综合997久久,| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验| 国产 一区精品| av在线播放精品| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 国产精品国产三级国产av玫瑰| 午夜免费激情av| 国产精品麻豆人妻色哟哟久久 | 麻豆国产97在线/欧美| 免费黄色在线免费观看| 伦理电影大哥的女人| 亚洲欧洲国产日韩| 麻豆成人午夜福利视频| 亚洲国产日韩欧美精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 美女内射精品一级片tv| 天堂av国产一区二区熟女人妻| 亚洲精品日韩在线中文字幕| 我要搜黄色片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲最大成人中文| 在线免费观看的www视频| 日本一二三区视频观看| 中国美白少妇内射xxxbb| 少妇人妻一区二区三区视频| 一级毛片我不卡| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 超碰av人人做人人爽久久| 99久国产av精品| 黄色一级大片看看| 97超视频在线观看视频| 少妇熟女欧美另类| 国产高清不卡午夜福利| 日韩欧美三级三区| 麻豆乱淫一区二区| 亚洲成人av在线免费| 亚洲国产欧洲综合997久久,| 国产单亲对白刺激| 老司机影院毛片| 亚洲18禁久久av| 成人av在线播放网站| 91精品一卡2卡3卡4卡| 日韩中字成人| 国产真实乱freesex| 久久亚洲国产成人精品v| 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品| 国产淫语在线视频| 91av网一区二区| av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 精华霜和精华液先用哪个| 精品久久久久久久末码| 少妇的逼水好多| 久久国产乱子免费精品| 男插女下体视频免费在线播放| 秋霞伦理黄片| 色噜噜av男人的天堂激情| 能在线免费看毛片的网站| 大又大粗又爽又黄少妇毛片口| 亚洲av中文av极速乱| 国产黄色小视频在线观看| 精品久久久久久久久久久久久| 寂寞人妻少妇视频99o| 日韩强制内射视频| 级片在线观看| 91aial.com中文字幕在线观看| 91久久精品国产一区二区成人| 日本一本二区三区精品| 免费观看a级毛片全部| videossex国产| 国产精品电影一区二区三区| 2021天堂中文幕一二区在线观| 一区二区三区四区激情视频| 亚洲三级黄色毛片| 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 久久久久国产网址| 少妇的逼好多水| 欧美丝袜亚洲另类| 欧美区成人在线视频| АⅤ资源中文在线天堂| 欧美3d第一页| 亚洲av日韩在线播放| 18禁在线播放成人免费| 一级爰片在线观看| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 黄色日韩在线| 久久久久久国产a免费观看| 又爽又黄无遮挡网站| 波野结衣二区三区在线| 偷拍熟女少妇极品色| 亚洲国产精品国产精品| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 91精品一卡2卡3卡4卡| 草草在线视频免费看| 国产亚洲av嫩草精品影院| 精品久久久久久久久久久久久| 成人美女网站在线观看视频| 久久久国产成人免费| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 精品人妻视频免费看| 97超视频在线观看视频| 国国产精品蜜臀av免费| 午夜精品在线福利| 99热这里只有精品一区| 看片在线看免费视频| av.在线天堂| 成人国产麻豆网| 免费看美女性在线毛片视频| 99在线视频只有这里精品首页| 久久久a久久爽久久v久久| 国产免费男女视频| 中文天堂在线官网| 99久久精品热视频| 免费搜索国产男女视频| 成人鲁丝片一二三区免费| 天天一区二区日本电影三级| 久久久精品94久久精品| 99热这里只有是精品50| 日本wwww免费看| 看非洲黑人一级黄片| 亚洲aⅴ乱码一区二区在线播放| 亚洲在线自拍视频| 26uuu在线亚洲综合色| 一本一本综合久久| 国产精品1区2区在线观看.| 国产精品三级大全| 国产色爽女视频免费观看| 亚洲真实伦在线观看| 97热精品久久久久久| 日韩欧美在线乱码| 精品久久久久久电影网 | 精品国产露脸久久av麻豆 | av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 日韩欧美在线乱码| 国产黄a三级三级三级人| 国产精品久久电影中文字幕| 免费看a级黄色片| 禁无遮挡网站| 免费看光身美女| 亚洲国产欧洲综合997久久,| 亚洲天堂国产精品一区在线| av国产免费在线观看| 国产精品一区www在线观看| 黄色一级大片看看| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看| 午夜激情福利司机影院| 两个人的视频大全免费| 国语对白做爰xxxⅹ性视频网站| 日韩成人伦理影院| 最近最新中文字幕免费大全7| a级毛色黄片| 日本黄大片高清| 日韩成人av中文字幕在线观看| 国产探花在线观看一区二区| 我的女老师完整版在线观看| 亚洲国产精品久久男人天堂| 黄片wwwwww| 欧美xxxx性猛交bbbb| 一级黄色大片毛片| 少妇猛男粗大的猛烈进出视频 | 成人美女网站在线观看视频| 久久久久久伊人网av| 成人二区视频| 亚洲精品,欧美精品| 大香蕉97超碰在线| 99视频精品全部免费 在线| 视频中文字幕在线观看| 亚洲欧美成人精品一区二区| 国产亚洲91精品色在线| av在线老鸭窝| 久久久成人免费电影| 欧美3d第一页| 国产高清不卡午夜福利| 欧美bdsm另类| 天天一区二区日本电影三级| 亚洲精品亚洲一区二区| 欧美性猛交黑人性爽| 99热这里只有是精品在线观看| 国产成人freesex在线| 97超视频在线观看视频| 亚洲av免费高清在线观看| 看黄色毛片网站| 3wmmmm亚洲av在线观看| 久久久国产成人免费| 可以在线观看毛片的网站| 久久热精品热| 国产一区二区在线av高清观看| 欧美色视频一区免费| 中文字幕av在线有码专区| 久久热精品热| 中文字幕熟女人妻在线| 亚洲国产色片| 国产成人午夜福利电影在线观看| 国产av在哪里看| 欧美性感艳星| 久久精品国产99精品国产亚洲性色| 搞女人的毛片| 国产不卡一卡二| 69av精品久久久久久| 亚洲精品一区蜜桃| 亚洲国产高清在线一区二区三| 一夜夜www| 久久久久久久久中文| 亚洲熟妇中文字幕五十中出| 国产一区有黄有色的免费视频 | 亚洲精品成人久久久久久| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 久久久国产成人免费| 亚洲中文字幕日韩| 春色校园在线视频观看| 九九在线视频观看精品| 亚洲国产最新在线播放| 国语自产精品视频在线第100页| 久久99热这里只频精品6学生 | АⅤ资源中文在线天堂| 青春草视频在线免费观看| 免费av毛片视频| 老司机福利观看| 午夜日本视频在线| 少妇熟女欧美另类| 亚洲精品乱码久久久久久按摩| 久久久色成人| 国产精品一区二区性色av| 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 国产黄片视频在线免费观看| 亚洲最大成人中文| 国产精品女同一区二区软件| av在线亚洲专区| 一级毛片电影观看 | 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 高清日韩中文字幕在线| 国产大屁股一区二区在线视频| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 哪个播放器可以免费观看大片| a级毛色黄片| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 国产精品福利在线免费观看| 超碰97精品在线观看| 欧美又色又爽又黄视频| 国产乱来视频区| 婷婷色麻豆天堂久久 | 26uuu在线亚洲综合色| 久久草成人影院| 中文欧美无线码| 国产精品一二三区在线看| 久久久午夜欧美精品| 麻豆成人午夜福利视频| 日韩人妻高清精品专区| 国产麻豆成人av免费视频| 国产高潮美女av| 亚洲欧美日韩高清专用| 久久久久久九九精品二区国产| 中文乱码字字幕精品一区二区三区 | 久久久久久九九精品二区国产| 1024手机看黄色片| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 国产一区二区三区av在线| 亚洲一区高清亚洲精品| 久久国产乱子免费精品| 国产91av在线免费观看| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| 亚洲av成人精品一二三区| 中文字幕制服av| 精华霜和精华液先用哪个| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 国产成人aa在线观看| 永久免费av网站大全| 精品欧美国产一区二区三| 国产极品精品免费视频能看的| 国产亚洲av嫩草精品影院| 国产极品精品免费视频能看的| 日本欧美国产在线视频| 亚洲精品aⅴ在线观看| 精品欧美国产一区二区三| 1000部很黄的大片| 国产美女午夜福利| 亚洲精品久久久久久婷婷小说 | 寂寞人妻少妇视频99o| 在现免费观看毛片| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 成人av在线播放网站| 久久久亚洲精品成人影院| 国产美女午夜福利| av播播在线观看一区| 成人二区视频| 亚洲美女视频黄频| 国产精品麻豆人妻色哟哟久久 | 国产人妻一区二区三区在| 国产精品综合久久久久久久免费| 狂野欧美白嫩少妇大欣赏| 久久久午夜欧美精品| 麻豆av噜噜一区二区三区| 美女大奶头视频| 欧美极品一区二区三区四区| 国产成人免费观看mmmm| 亚洲在线观看片| 国产成人福利小说| 午夜免费男女啪啪视频观看| 搡老妇女老女人老熟妇| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 亚洲中文字幕一区二区三区有码在线看| 国产老妇伦熟女老妇高清| 中文字幕av成人在线电影| 免费在线观看成人毛片| 日韩中字成人| 国产大屁股一区二区在线视频| 五月玫瑰六月丁香| 国产激情偷乱视频一区二区| 免费观看人在逋| 色综合色国产| 国产亚洲精品久久久com| 成人毛片60女人毛片免费| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 99热这里只有精品一区| 爱豆传媒免费全集在线观看| 波多野结衣巨乳人妻| 嫩草影院精品99| 伦精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 一级黄色大片毛片| 亚洲欧美中文字幕日韩二区| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 在线免费观看的www视频| 成人一区二区视频在线观看| 中国国产av一级| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 网址你懂的国产日韩在线| 97热精品久久久久久| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 欧美bdsm另类| 国产日韩欧美在线精品| 我要看日韩黄色一级片| 国产白丝娇喘喷水9色精品| 男人的好看免费观看在线视频| 日本黄大片高清| 99热6这里只有精品| 少妇人妻一区二区三区视频| av黄色大香蕉| 久久精品综合一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美xxxx黑人xx丫x性爽| 青青草视频在线视频观看| 波多野结衣高清无吗| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| 好男人在线观看高清免费视频| 欧美日韩一区二区视频在线观看视频在线 | 长腿黑丝高跟| 亚洲国产精品久久男人天堂| av免费观看日本| 青春草国产在线视频| 国产极品天堂在线| 99久国产av精品国产电影| 在线观看66精品国产| 狠狠狠狠99中文字幕| 久久久久久久久中文| 欧美性感艳星| 国产成人午夜福利电影在线观看| 日韩三级伦理在线观看| 亚洲在线自拍视频| 床上黄色一级片| 99久久精品一区二区三区| 一边亲一边摸免费视频| 国产淫语在线视频| 国产高清视频在线观看网站| 内地一区二区视频在线| 久久亚洲精品不卡| 中文字幕制服av| 男人舔女人下体高潮全视频| 国产精品永久免费网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 国产久久久一区二区三区| 精品久久久久久久久亚洲| 亚洲国产精品久久男人天堂| 美女黄网站色视频| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 成人午夜精彩视频在线观看| a级毛片免费高清观看在线播放| 尾随美女入室| 久久6这里有精品| 黄色一级大片看看| 亚洲精品乱久久久久久| 国产成人精品一,二区| 色综合亚洲欧美另类图片| 级片在线观看| 国产国拍精品亚洲av在线观看| 精品久久久久久久人妻蜜臀av| 国产男人的电影天堂91| 国产免费又黄又爽又色| 在线免费观看的www视频| 高清毛片免费看| 久久久久久久久久黄片| 国产在视频线在精品| 国产男人的电影天堂91| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| 看片在线看免费视频| 九九热线精品视视频播放| 中文资源天堂在线| 成人漫画全彩无遮挡| 免费看光身美女| videossex国产| 大话2 男鬼变身卡| 国产黄色视频一区二区在线观看 | 日韩亚洲欧美综合| 午夜日本视频在线| 晚上一个人看的免费电影| 国产精品久久久久久精品电影| 国产一区有黄有色的免费视频 | 麻豆国产97在线/欧美| 久久久久免费精品人妻一区二区| 日日干狠狠操夜夜爽| 黄色一级大片看看| 午夜福利在线观看吧| 国内精品美女久久久久久| 国产精品国产三级国产专区5o | 一卡2卡三卡四卡精品乱码亚洲| 七月丁香在线播放| 可以在线观看毛片的网站| 欧美性感艳星| 国产精品1区2区在线观看.| 国内精品宾馆在线| 亚洲精品久久久久久婷婷小说 | 久99久视频精品免费| 亚洲真实伦在线观看| 女的被弄到高潮叫床怎么办| 国产私拍福利视频在线观看| 亚洲在线自拍视频| 国产精品一区二区三区四区久久| 99热精品在线国产| 久久久精品94久久精品| 成人高潮视频无遮挡免费网站| 亚洲va在线va天堂va国产| 精品熟女少妇av免费看| 欧美激情在线99| 天天一区二区日本电影三级| 亚洲精品影视一区二区三区av| 国产极品精品免费视频能看的| 韩国av在线不卡| www日本黄色视频网| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| av专区在线播放| 久久99热这里只频精品6学生 | 狂野欧美激情性xxxx在线观看| 大香蕉久久网| 禁无遮挡网站| 国产极品天堂在线| 国产精品久久电影中文字幕| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 久久久久久久久久黄片| 成人一区二区视频在线观看| 亚洲最大成人av| 亚洲欧美日韩东京热| 99国产精品一区二区蜜桃av| 精品国产露脸久久av麻豆 | 美女大奶头视频| 午夜激情福利司机影院| 深夜a级毛片| 高清在线视频一区二区三区 | 99热6这里只有精品| 日本与韩国留学比较| 国产精品久久电影中文字幕| 久久久久久久久久黄片| av专区在线播放| 青青草视频在线视频观看| 久久久久久久久久久免费av| 国产在视频线精品| 日韩欧美 国产精品| 国产单亲对白刺激| 爱豆传媒免费全集在线观看| 国产又色又爽无遮挡免| 狠狠狠狠99中文字幕| 亚洲中文字幕日韩| 亚洲欧美精品综合久久99| 97在线视频观看| 中文亚洲av片在线观看爽| 如何舔出高潮| 欧美性猛交黑人性爽| 久久精品91蜜桃| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 秋霞伦理黄片| 91在线精品国自产拍蜜月| 久久精品91蜜桃| 婷婷色综合大香蕉| 99热6这里只有精品| 久久国产乱子免费精品| 蜜桃久久精品国产亚洲av| 长腿黑丝高跟| 看黄色毛片网站| 两个人视频免费观看高清| 亚洲国产高清在线一区二区三| 99热这里只有是精品在线观看| 婷婷六月久久综合丁香| 久久精品国产鲁丝片午夜精品| 又粗又硬又长又爽又黄的视频|