摘要:為探討安化黑茶水提物對高脂高糖(HFHS)飲食誘導(dǎo)的非酒精性脂肪肝病(NAFLD)小鼠調(diào)控自噬改善脂肪變性的作用機制,將雄性C57BL/6J小鼠分為正常組、模型組、西藥組(10 mg·kg-1)、黑茶低劑量組(0.75 g·kg-1)、中劑量組(1.5 g·kg-1)、高劑量組(3.0 g·kg-1)。采用HFHS飲食誘導(dǎo)小鼠NAFLD模型,造模的同時灌胃給藥10周;試驗結(jié)束后檢測小鼠的肝指數(shù)、血脂、肝功能、肝臟病理指標(biāo)、自噬指標(biāo)及自噬相關(guān)信號通路表達水平。結(jié)果表明,與正常組相比,模型組小鼠肝指數(shù)和總膽固醇(CHO)、甘油三酯(TG)、低密度脂蛋白膽固醇(LDL-C)、谷草轉(zhuǎn)氨酶(AST)、谷丙轉(zhuǎn)氨酶(ALT)含量顯著升高,高密度脂蛋白膽固醇(HDL-C)含量明顯降低;小鼠肝臟出現(xiàn)了脂肪變性的跡象,伴有大量大小不一的脂滴;微管相關(guān)蛋白1輕鏈3B(LC3B)、Bcl-2相互作用蛋白1(Beclin1)、磷酸化腺苷酸活化蛋白激酶/腺苷酸活化蛋白激酶(p-AMPK/AMPK)表達明顯降低,隔離體蛋白1(p62)、磷酸化哺乳動物雷帕霉素靶蛋白/哺乳動物雷帕霉素靶蛋白(p-mTOR/mTOR)表達顯著上升。與模型組相比,灌胃黑茶水提物可降低NAFLD小鼠肝指數(shù)和血清CHO、TG、LDL-C、AST、ALT水平,以及p62、p-mTOR/mTOR蛋白表達水平,升高血清HDL-C含量,以及LC3B、Beclin1、p-AMPK/AMPK蛋白表達水平;組織染色結(jié)果和透射電鏡觀察均表明肝臟的病理狀態(tài)得到了改善。綜上所述,黑茶水提物可能通過激活A(yù)MPK/mTOR信號通路調(diào)控自噬,減輕小鼠肝臟脂肪變性,從而改善NAFLD。
關(guān)鍵詞:非酒精性脂肪肝??;黑茶;AMPK/mTOR;自噬
中圖分類號:S571.1;R972+.6 " " " " " " " 文獻標(biāo)識碼:A " " " " " " "文章編號:1000-369X(2024)02-329-12
Mechanism of Dark Tea Water Extract in Regulating Autophagy in Non-Alcoholic Fatty Liver via the AMPK/mTOR Signaling Pathway
LI Linli1, XIA Xuting1, SHI Min1, GE Jun1, MAO Caiwei1, YU Changhong2*, LIU Fulin1*
1. Hunan University of Traditional Chinese Medicine, Changsha 410208, China;
2. The First Chinese Medicine Hospital of Changde, Changde 415000, China
Abstract: This study aimed to investigate the intricate mechanisms underlying the modulatory effects of Anhua dark tea on autophagy to ameliorate steatosis induced by a high-fat and high-sucrose diet (HFHS) in mice with non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were divided into different groups, including a normal group, a model group, a Western medicine group (10 mg·kg-1), and various doses of dark tea groups (0.75, 1.5, 3.0 g·kg-1). The therapeutic regimen was administered concurrently with the modeling process for a duration of 10 weeks using the HFHS-induced NAFLD model. At the end of the experiment, liver indices, blood lipids, liver function, liver pathology indicators, autophagy markers, and expression levels of key genes in the autophagy-related signaling pathway were assessed. Comparative analyses with the normal group revealed significant increases in liver index and levels of serum cholesterol (CHO), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), as well as a substantial reduction in high-density lipoprotein cholesterol (HDL-C) levels in the model group. The liver of the mice exhibits signs of "steatosis, characterized by an abundance of lipid droplets of different sizes. Protein expression analysis reveals a marked decrease in the levels of microtubule-associated protein light-chain-3B (LC3B), Bcl-2-interacting coiled-coil protein 1 (Beclin1), and phosphorylated adenosine monophosphate-activated protein kinase/adenosine monophosphate-activated protein kinase (p-AMPK/AMPK). Conversely, there was a significant increase in the levels of sequestosome-1 (p62) and phosphorylated mammalian target of rapamycin/mammalian target of rapamycin (p-mTOR/mTOR). Compared to the model group, gavage with dark tea decreased the liver index, serum levels of CHO, TG, LDL-C, AST, ALT, p62, and p-mTOR/mTOR in NAFLD mice, and increased serum HDL-C, along with LC3B, Beclin1, and p-AMPK/AMPK protein levels. The improvements were confirmed by tissue staining results and observations using transmission electron microscopy. In summary, our findings suggest that dark tea, by activating the AMPK/mTOR signaling pathway, may regulate autophagy, thereby alleviating hepatic steatosis and improving non-alcoholic fatty liver disease (NAFLD).
Keywords: nonalcoholic fatty liver disease, dark tea, AMPK/mTOR, autophagy
非酒精性脂肪肝病(Non-alcoholic fatty liver disease,NAFLD)是一種以肝細(xì)胞內(nèi)脂肪異常蓄積為主要特征的代謝性疾病,若不及時采取有效治療,不僅容易引發(fā)肝臟相關(guān)疾病,還可能會導(dǎo)致心血管問題和慢性腎臟疾病等嚴(yán)重并發(fā)癥[1-3]。NALFD與生活方式、遺傳易感性、脂肪組織功能障礙、胰島素抵抗、先天免疫調(diào)節(jié)異常,以及腸道微生物群紊亂等相關(guān)[4-6],但具體發(fā)作的機制尚不明確。自噬是一種由溶酶體介導(dǎo)的細(xì)胞分解代謝過程,對維持肝臟的細(xì)胞和代謝穩(wěn)態(tài)至關(guān)重要,因此調(diào)節(jié)自噬可能成為治療NAFLD和其他肝臟疾病的潛在策略[7]。腺苷酸活化蛋白激酶(Adenosine monophosphate-activated protein kinase,AMPK)作為自噬啟動因子,可通過激活自噬清除脂滴[8],還可通過抑制脂肪酸合成和促進脂肪酸氧化調(diào)節(jié)脂質(zhì)代謝。研究表明,哺乳動物雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)是治療NAFLD的潛在新靶點,在NAFLD的發(fā)生和發(fā)展中,mTOR通路由于過度活化導(dǎo)致自噬水平下降,使得脂質(zhì)在肝臟內(nèi)過度沉積,從而引發(fā)NAFLD[9-10]。因此,通過調(diào)節(jié)AMPK/mTOR信號通路,可以促進自噬降解脂質(zhì),提高能量利用效率,從而對抗NAFLD引起的代謝紊亂。
黑茶作為一種經(jīng)過特殊發(fā)酵處理的天然飲品,富含生物活性成分。現(xiàn)代研究表明,茶葉具有良好的降脂作用。Zhou等[11]研究發(fā)現(xiàn),茶葉中的表沒食子兒茶素-3-沒食子酸酯(EGCG)能夠通過促進自噬體的形成、增加溶酶體酸化,以及刺激肝細(xì)胞和體內(nèi)的自噬通量來提高肝自噬水平,減少肝脂肪變性。其作用機制可能是通過增加自噬的主要調(diào)節(jié)因子AMPK的磷酸化,刺激肝自噬,從而增加脂質(zhì)清除率,減少內(nèi)臟肥胖[12]。此外,EGCG還能通過ROS/MAPK通路減少細(xì)胞凋亡、增加自噬,緩解高脂飲食誘導(dǎo)的NAFLD[13]。然而,EGCG多存在于綠茶多酚中,黑茶中的含量較少。對于黑茶是否也能通過調(diào)節(jié)自噬機制改善高脂高糖(High-fat high-sucrose,HFHS)飲食誘發(fā)的NAFLD仍有待明晰。因此,本研究以AMPK/mTOR自噬通路為切入點,采用HFHS飼料喂養(yǎng)建立NAFLD小鼠模型,旨在探討黑茶對NAFLD小鼠的防治作用,為促進黑茶功效應(yīng)用提供理論依據(jù)和試驗基礎(chǔ)。
1 材料與方法
1.1 實驗動物
6~8周齡SPF級C57BL/6雄性小鼠60只,體質(zhì)量為(20±2) g,購自湖南斯萊克景達實驗動物有限公司,動物質(zhì)量合格證:430727231100273457。實驗通過了湖南中醫(yī)藥大學(xué)倫理委員會審查,動物倫理批準(zhǔn)號為LLBH-202210240005,實驗單位使用許可證號為SYXK(湘)2019-0009。
1.2 材料與試劑
供試茶葉為2015年天茯茶(湖南省白沙溪茶廠股份有限公司,規(guī)格為1 kg,生產(chǎn)許可證編號為SC11443092300115,原料為天尖茶一級嫩葉),茶磚磚面平整,色澤黑褐,金花茂盛。取適量茶葉在蒸餾水中浸泡30 min,大火煮開后改小火煮一段時間,冷卻后過濾,收集濾液,將濾渣加入蒸餾水再次煮沸過濾,合并兩次濾液,小火濃縮至所需體積后離心,取上清液濃縮為0.3 g·mL-1的茶液,用紗布過濾后存放于離心管中低溫保存,整個過程保持無菌操作。
阿托伐他汀藥片購自福建東瑞制藥有限公司;谷丙轉(zhuǎn)氨酶(Alanine aminotransferase,ALT)、谷草轉(zhuǎn)氨酶(Aspartate aminotransferase,AST)、甘油三酯(Triglyceride,TG)、總膽固醇(Cholesterol,CHO)、高密度脂蛋白膽固醇(High-density lipoprotein cholesterol,HDL-C)、低密度脂蛋白膽固醇(Low-density lipoprotein cholesterol,LDL-C)測定試劑盒購自深圳雷杜生命科學(xué)股份有限公司;微管相關(guān)蛋白1輕鏈3B(Microtubule-associated-protein light-chain-3B,LC3B)抗體購自英國Abcam公司;磷酸化AMPK(Phosphorylated-AMPK,p-AMPK)抗體購自美國Affinity Biosciences公司;隔離體蛋白1(Sequestosome-1,p62)、Bcl-2相互作用蛋白1(Bcl-2 interacting coiled-coil protein-1,Beclin1)、磷酸化mTOR(Phosphorylated-mTOR,p-mTOR)、AMPK、mTOR抗體購自武漢三鷹生物技術(shù)有限公司;油紅O染色液購自武漢賽維爾生物科技有限公司;HE染色液購自珠海貝索生物技術(shù)有限公司;無蛋白快速封閉液、蛋白酶抑制劑、磷酸酶抑制劑、羊抗兔/羊抗鼠二抗均購自武漢博士德生物工程有限公司。高脂高糖飼料(基礎(chǔ)飼料+10%豬油+20%蔗糖+2.5%膽固醇+0.5%膽酸鈉)購自北京科澳協(xié)力飼料有限公司。
1.3 主要儀器
全自動生化分析儀,邁瑞醫(yī)療國際有限公司;透射電子顯微鏡,日本HITACHI公司;鉆石切片機,湖南遠(yuǎn)湘生物科技有限公司;金屬浴鍋,杭州米歐儀器有限公司;恒溫箱,日本三洋電機公司;高速冷凍離心機,大龍興創(chuàng)實驗儀器(北京)股份公司;電熱恒溫水槽,上海精宏實驗設(shè)備有限公司;超純水儀,美國ICON公司。
1.4 動物分組、造模與預(yù)防性給藥
經(jīng)過1周的適應(yīng)性飼養(yǎng),60只C57BL/6雄性小鼠隨機分配為正常組(普通飼料飼養(yǎng))、模型組(HFHS)、西藥組(HFHS+阿托伐他?。?,以及黑茶低、中、高劑量組(HFHS+黑茶濃縮液),每組10只。成功建立NAFLD模型的標(biāo)準(zhǔn)是觀察實驗小鼠肝臟組織中的多項病理學(xué)特征,包括大小不一的脂滴、氣球樣變、細(xì)胞腫脹及炎癥細(xì)胞浸潤[14]。根據(jù)標(biāo)準(zhǔn)體重動物換算系數(shù)法計算劑量[15],西藥組劑量為10 mg·kg-1·d-1,黑茶低、中、高劑量分別為0.75、1.5、3.0 g·kg-1·d-1。黑茶劑量分別相當(dāng)于人體推薦劑量的50%、1倍和2倍。為了確保試驗結(jié)果準(zhǔn)確,本研究采用灌胃方式,正常組和模型組則分別灌胃等體積的蒸餾水。每日灌胃體積為10 mL·kg-1,且根據(jù)定期測量的體重進行調(diào)整,連續(xù)灌胃10周。
1.5 標(biāo)本收集與處理
處理結(jié)束后,采用氯胺酮(80 mg·kg-1)聯(lián)和賽拉嗪(5 mg·kg-1)腹腔注射麻醉小鼠、取血、離心后置于﹣80 ℃保存,用于肝功能、血脂等檢測;再將小鼠脫頸處死,迅速取下肝臟稱重、漂洗,將一部分肝臟小葉置于4%多聚甲醛中固定,用于HE染色、油紅O染色和免疫組織化學(xué)染色(Immunohistochemical staining,IHC)檢測;用刀片切取1 mm×2 mm
×3 mm薄片狀肝組織放于電鏡液中室溫避光固定2 h后,置于4 ℃冰箱保存,用于電鏡檢測;其余肝組織放于凍存管中干冰冷凍后存于﹣80 ℃冰箱以備蛋白免疫印跡檢測。
由于課題經(jīng)費有限,在進行各項指標(biāo)檢測時,為確保試驗結(jié)果的科學(xué)性,根據(jù)體重參數(shù)對每組小鼠進行分層,以保持各組間的同質(zhì)性;使用Excel軟件生成的隨機數(shù)序列將小鼠分配到不同的試驗檢測中;為盡量減少偏差,不同研究人員執(zhí)行隨機化與數(shù)據(jù)檢測分析。
1.6 肝指數(shù)和血清生化檢測
精確稱量小鼠及其肝臟的濕質(zhì)量,計算肝指數(shù)(肝指數(shù)=肝濕質(zhì)量/體質(zhì)量×100%)。
血清生化檢測:將小鼠血液4 ℃靜置2 h,12 000 r·m-1離心15 min,取上層血清,用于測量轉(zhuǎn)氨酶及血脂各項指標(biāo)。根據(jù)各試劑盒說明書檢測血清CHO、TG、HDL-C、LDL-C、AST和ALT的含量。
1.7 組織病理分析肝臟脂質(zhì)蓄積
HE染色:將保存于4%多聚甲醛中的肝臟組織取出,進行脫水、包埋、切片、染色、封片,觀察結(jié)果。
油紅O染色:將肝臟組織于4%多聚甲醛中固定24 h后,配制油紅O工作液,將肝組織于冷凍切片機上切成8 μm左右的薄片后進行染色、分化、洗滌、封片,觀察結(jié)果。
1.8 IHC觀測自噬指標(biāo)
將預(yù)制好的石蠟切片脫蠟、滅活、抗原修復(fù)、封閉、孵育一抗(LC3B、Beclin1、p62抗體),4 ℃過夜,二抗孵育,二氨基聯(lián)苯胺顯色,顯微鏡下觀察顯色情況。組織上出現(xiàn)棕黃色即為陽性。
1.9 透射電鏡(TEM)觀察肝臟自噬體和自噬溶酶體
肝臟組織先用電鏡固定液4 ℃固定,再用OsO4·PB室溫固定、漂洗、脫水、滲透、包埋、切片、染色、TEM成像分析。
1.10 蛋白免疫印跡法(Western blot)檢測
取﹣80 ℃保存的肝臟組織,每組隨機選4只,分別用眼科剪取0.1 g組織用PBS洗滌3次后研磨、裂解、離心、金屬浴、測定蛋白濃度;將提取的蛋白在5%與12% SDS-PAGE凝膠上分離,并電轉(zhuǎn)移至PVDF膜,快速封閉液封閉,4 ℃孵育一抗過夜,37 ℃孵育對應(yīng)二抗,再使用ECL化學(xué)發(fā)光試劑進行顯影;用同一張膜上Beta-actin灰度值將不同蛋白表達水平標(biāo)準(zhǔn)化,Image J軟件灰度值分析。試驗重復(fù)4次。
1.11 統(tǒng)計學(xué)處理
應(yīng)用軟件GraphPad prism 9.0軟件進行數(shù)據(jù)統(tǒng)計分析,通過單因素方差分析(One-way ANOVA),數(shù)據(jù)以平均數(shù)±標(biāo)準(zhǔn)差( ±SD)表示,以P<0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)果與分析
2.1 小鼠指數(shù)變化
與正常組相比,模型組小鼠肝指數(shù)顯著增加(Plt;0.05);與模型組相比,西藥組、黑茶低、中、高劑量組小鼠肝指數(shù)均顯著降低(Plt;0.05),其中高劑量組降低最多(圖1A)。
2.2 小鼠血液中轉(zhuǎn)氨酶和脂質(zhì)水平變化
由圖1可知,與正常組相比,模型組小鼠血清中肝功能(ALT、AST)和血脂(CHO、TG、LDL-C)含量顯著升高(Plt;0.01),HDL-C含量顯著降低(Plt;0.01);與模型組相比,各用藥組ALT、AST、CHO、TG、LDL-C均顯著降低(Plt;0.05),其中高劑量組降低最為顯著(Plt;0.01);西藥組ALT、AST、TG、CHO、LDL-C水平均高于高劑量組;各用藥組HDL-C含量較模型組均顯著升高(Plt;0.01),其中高劑量組HDL-C水平最高。
2.3 小鼠肝臟的病理學(xué)改變
HE染色結(jié)果顯示(圖2),在正常組的小鼠肝臟組織中,鏡下結(jié)構(gòu)呈正常狀態(tài),肝細(xì)胞大小均勻,形態(tài)結(jié)構(gòu)清晰。而在模型組小鼠肝臟中,肝細(xì)胞結(jié)構(gòu)混亂,存在大量大小不一
的脂肪空泡,肝索排列無序,肝血竇狹窄或完全消失。然而,在高劑量處理的小鼠肝臟中,脂肪空泡顯著減少,細(xì)胞排列更加有序,形態(tài)結(jié)構(gòu)更加清晰。
2.4 小鼠肝臟中脂質(zhì)沉積水平變化
油紅O染色顯示(圖3),正常組小鼠肝臟中未見明顯紅色的脂滴,可見清晰的藍(lán)色細(xì)胞核;而模型組小鼠肝臟可見大量的紅色脂滴,細(xì)胞核不明顯。黑茶干預(yù)后脂滴數(shù)減少,其中黑茶高劑量組較模型組相比,紅色脂滴明顯減少,細(xì)胞核較為清晰。
2.5 小鼠肝臟LC3B、p62、Beclin1蛋白表達情況
由圖4可知,正常組小鼠肝組織p62、LC3B、Beclin1表達較低;與正常組相比,模型組小鼠肝組織LC3B、Beclin1無明顯陽性表達,p62表達顯著增加(P<0.05);與模型組
相比,各用藥組小鼠肝組織LC3B、Beclin1表達增加,p62表達顯著降低(P<0.05),其中高劑量組小鼠改變最為明顯(P<0.01)。
2.6 小鼠自噬體和自噬溶酶體的變化
正常組小鼠肝細(xì)胞組織結(jié)構(gòu)完好,胞內(nèi)脂滴數(shù)量較少,可見自噬泡、自噬小體、自噬溶酶體;模型組胞質(zhì)稀疏、腫脹,周圍的自噬空泡數(shù)量顯著減少,脂滴數(shù)量明顯增多,并出現(xiàn)脂滴融合;各用藥組較模型組呈現(xiàn)自噬空泡增多,脂滴數(shù)量減少等不同程度的好轉(zhuǎn),并可見少量自噬小體和自噬溶酶體(圖5)。
2.7 小鼠肝臟自噬水平的變化
Western blot結(jié)果顯示(圖6),與正常組小鼠相比,模型組小鼠肝臟組織中LC3B和Beclin1等自噬相關(guān)蛋白表達水平顯著降低(P<0.05),p62表達水平顯著升高(Plt;0.01)。各用藥組與模型組相比較LC3B和Beclin1蛋白表達水平明顯升高(Plt;0.01),p62表達水平明顯降低(P<0.05),其中黑茶高劑量組降低最為明顯(Plt;0.01)。
2.8 小鼠肝臟AMPK、p-AMPK、mTOR、p-mTOR水平的變化
Western blot結(jié)果顯示(圖7),與正常組小鼠相比,模型組小鼠肝臟中p-AMPK蛋白表達水平降低(Plt;0.05),p-mTOR蛋白表達水平升高(Plt;0.05)。各用藥組與模型組相比p-AMPK蛋白表達水平增加,p-mTOR蛋白表達水平降低,其中高劑量組變化最為明顯(Plt;0.01)。
3 討論
NAFLD是全球最常見的肝臟疾病之一,近十億人受其影響,且患病率持續(xù)上升[16]。迄今為止,尚無獲得美國食品和藥物管理局(FDA)批準(zhǔn)的有效藥物或治療方法用于NAFLD[17]。一些常見的替代藥物包括維生素E、利拉魯肽、吡格列酮和己酮可可堿等目前被用于NAFLD治療。然而,這些化學(xué)藥物具有潛在的毒副作用,患者長期使用會導(dǎo)致嚴(yán)重的毒性,甚至可能加重病情[18]。因此,從天然產(chǎn)品中尋找高效、低毒的緩解NAFLD的有效候選藥物已迫在眉睫。
黑茶作為中國傳統(tǒng)茶類之一,加工工藝復(fù)雜。在加工過程中,通過微生物的發(fā)酵作用,茶葉中的兒茶素及其沒食子酸酯衍生物被氧化成復(fù)雜的酚類茶色素,包括茶黃素(TF)、茶紅素(TR)和茶褐素(TB)[19]。其中,TB是黑茶的特征成分,具有調(diào)節(jié)脂質(zhì)代謝、減緩體重增加、減輕糖尿病、減輕NAFLD和預(yù)防腫瘤等多種健康促進作用[20]。Huang等[21]研究發(fā)現(xiàn),TB可以增加回腸結(jié)合膽汁酸的水平,進而抑制腸道FXR-FGF1信號通路,加速肝臟膽固醇的排泄,并減少脂肪生成;亦或通過抑制胰脂肪酶和膽固醇酯酶的活性降低脂質(zhì)水平,同時抑制腸道脂質(zhì)消化和吸收[22]。研究發(fā)現(xiàn),從各類黑茶中提取的TB可降低高脂飲食(HFD)誘導(dǎo)的肥胖小鼠的體重增加,使脂質(zhì)紊亂正常化,并改善葡萄糖耐量和胰島素敏感性[23-24]。此外,黑茶中的優(yōu)勢菌冠突散囊菌可以增加小鼠腸道中產(chǎn)生乙酸和丁酸的細(xì)菌總量,從而緩解肥胖[25]。黑茶黃烷醇、黃酮?;占捌溲苌镆部梢云鸬筋A(yù)防高脂血癥的作用[19]。
研究發(fā)現(xiàn),黑茶中TB和多糖含量高于其他五大茶類,在HFD誘導(dǎo)的NAFLD小鼠中,TB和多糖組合在降低肝脂質(zhì)水平和減輕NAFLD表型方面比單獨使用TB或多糖顯示出更強的作用,表明它們對減輕NAFLD具有協(xié)同作用[26]。因此,針對黑茶在防治NAFLD方面發(fā)揮的作用,黑茶TB和多糖的復(fù)合作用可能優(yōu)于各自單獨的效果。張文將等[27-28]研究發(fā)現(xiàn),黑茶可能通過抑制TLR4/MyD88/NF-kB通路,同時抑制肝脂合成和減少肝臟氧化應(yīng)激損傷,實現(xiàn)逆轉(zhuǎn)早期NAFLD的效果。此外,黑茶還通過抑制HMGCR、SCD-1和PPAR-γ的mRNA表達來減少脂類物質(zhì)合成,并通過抗氧化作用減少氧化損傷和保護肝細(xì)胞,從而達到防治NAFLD的效果[29]。與上述結(jié)果相似,本研究結(jié)果表明,黑茶的應(yīng)用能有效恢復(fù)NAFLD小鼠的血脂調(diào)節(jié)能力,降低小鼠肝臟脂肪組織質(zhì)量增加量,改善肝索紊亂和肝細(xì)胞腫脹等病理變化,并通過調(diào)節(jié)AST和ALT水平來改善肝臟損傷。但是,目前黑茶對NAFLD預(yù)防作用的研究主要集中在抗炎、抗氧化、改善腸道菌群進而抑制肝脂合成等方面,缺乏對自噬相關(guān)機制的探討與分析。
自噬是一種通過溶酶體介導(dǎo),吞噬并降解細(xì)胞內(nèi)受損的或衰老的細(xì)胞器的再循環(huán)過程,是細(xì)胞加速新陳代謝的重要手段,在真核細(xì)胞中普遍存在,在維持肝臟代謝穩(wěn)態(tài)中具有至關(guān)重要的作用,自噬流的恢復(fù)可以延緩NAFLD進展[30-32]。研究表明,激活自噬可以降低HFD小鼠肝臟中脂質(zhì)的變性和炎癥程度;相反,如果自噬受到抑制,將導(dǎo)致肝細(xì)胞內(nèi)脂質(zhì)的積累增加[33-34]。因此,通過激活細(xì)胞內(nèi)的自噬機制,對于緩解和預(yù)防肝臟脂質(zhì)變性具有重要的生物學(xué)作用。
AMPK/mTOR信號通路是自噬的關(guān)鍵調(diào)控途徑。在這個信號通路中,AMPK充當(dāng)細(xì)胞能量傳感器和肝臟脂質(zhì)代謝的重要調(diào)控因子,通過抑制脂肪酸合成和促進脂肪酸氧化來調(diào)節(jié)脂質(zhì)代謝[35]。此外,AMPK的活化還能減少在肝臟中導(dǎo)致脂質(zhì)沉積和甘油三酯積累的酶活性,從而減輕NAFLD的病情[35]。AMPK是與肝臟中的正性脂質(zhì)調(diào)節(jié)相關(guān)的主要能量代謝開關(guān),同時也是NAFLD的治療靶標(biāo),在自噬調(diào)控中起到正調(diào)節(jié)作用[36-37]。另一方面,mTOR是調(diào)節(jié)細(xì)胞生長、存活、代謝和免疫的蛋白激酶,主要以mTORC1和mTORC2的2種復(fù)合物形式存在[10]。其中,mTORC1在脂質(zhì)代謝過程中發(fā)揮重要作用,它介導(dǎo)的信號通路有助于肝臟脂肪生成,同時抑制脂肪吞噬,因此在自噬調(diào)控中起到負(fù)調(diào)節(jié)作用[38]。故而,研究AMPK/mTOR信號通路對自噬的調(diào)節(jié)機制對深入了解代謝性疾病具有重要意義。在自噬過程中,LC3B-Ⅰ轉(zhuǎn)化為LC3B-Ⅱ標(biāo)志著自噬體的形成[39];同時,p62作為自噬的降解底物,在自噬障礙時會在細(xì)胞質(zhì)中積累,因此其表達水平與自噬活性呈負(fù)相關(guān)[40]。此外,Beclin1作為自噬啟動的核心蛋白,在自噬體形成初始階段起到了重要作用,增加Beclin1表達水平的化合物有望增加細(xì)胞自噬,故其表達水平與自噬活性呈正相關(guān)[41-42]。本研究發(fā)現(xiàn),模型組小鼠的肝臟中LC3B、Beclin1和p-AMPK蛋白的表達水平相較于正常組顯著下降,而p62和p-mTOR蛋白的表達水平顯著上升,自噬泡明顯減少,這表明模型組小鼠的自噬水平受到抑制。與模型組相比,黑茶干預(yù)能夠上調(diào)LC3B、Beclin1和p-AMPK蛋白的表達水平,同時下調(diào)p62和p-mTOR蛋白的表達水平,這表明黑茶可能通過調(diào)節(jié)AMPK/mTOR信號通路在體內(nèi)誘導(dǎo)自噬,從而減輕肝臟脂肪變性。
綜上所述,黑茶可能通過調(diào)節(jié)AMPK/mTOR途徑,促進自噬標(biāo)志物L(fēng)C3B和Beclin1蛋白的表達,抑制p62蛋白的表達,增強NAFLD模型小鼠肝臟的自噬水平,減輕肝臟損傷,改善脂肪變性,從而起到保護肝臟的作用。
此外,本研究仍存在一些局限性和不足之處。例如,關(guān)于自噬再激活與肝脂質(zhì)變性減少之間的關(guān)聯(lián),數(shù)據(jù)支持尚不充分;未使用AMPK和mTOR的特異性抑制劑進行干預(yù);未能排除黑茶在炎癥細(xì)胞等其他非肝細(xì)胞中的直接作用等。今后將繼續(xù)開展深入研究,探究黑茶治療NAFLD的有效性及其作用機理。
參考文獻
[1] Chalasani N, Younossi Z, Lavine J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the study of liver diseases [J]. Hepatology, 2018, 67(1): 328-357.
[2] Liu H Y, Niu Q H, Wang T, et al. Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages [J]. International Journal of Biological Sciences, 2021, 17(14): 3745-3759.
[3] 樊亞東, 賈建偉, 張曉雨, 等. 非酒精性脂肪性肝病發(fā)病機制和臨床治療研究進展[J]. 中西醫(yī)結(jié)合肝病雜志, 2020, 30(1): 93-96.
Fan Y D, Jia J W, Zhang X Y, et al. Advances in the pathogenesis and clinical treatment of non-alcoholic fatty liver disease [J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2020, 30(1): 93-96.
[4] Tilg H, Moschen A R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis [J]. Hepatology, 2010, 52(5): 1836-1846.
[5] Haas J T, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease [J]. Annual Review of Physiology, 2016, 78: 181-205.
[6] Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH) [J]. International Journal of Molecular Sciences, 2013, 14(10): 20704-20728.
[7] Qian H, Chao X J, Williams J, et al. Autophagy in liver diseases: a review [J]. Molecular Aspects of Medicine, 2021, 82: 100973. doi: 10.1016/j.mam.2021.100973.
[8] Chen C L, Lin Y C. Autophagy dysregulation in metabolic associated fatty liver disease: a new therapeutic target [J]. International Journal of Molecular Sciences, 2022, 23(17): 10055. doi: 10.3390/ijms231710055.
[9] Feng J Y, Qiu S T, Zhou S P, et al. mTOR: a potential new target in nonalcoholic fatty liver disease [J]. International Journal of Molecular Sciences, 2022, 23(16): 9196. doi: 10.3390/ijms23169196.
[10] Marcondes-de-Castro I A, Reis-Barbosa P H, Marinho T S, et al. AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression [J]. Journal of Gastroenterol and Hepatol, 2023, 38(11): 1868-1876.
[11] Zhou J, Farah B L, Sinha R A, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance [J]. Plos One, 2014, 9(1): e87161. doi: 10.1371/journal.pone.0087161.
[12] Choi C, Song H D, Son Y, et al. Epigallocatechin-3-gallate reduces visceral adiposity partly through the regulation of Beclin1-dependent autophagy in white adipose tissues [J]. Nutrients, 2020, 12(10): 3072. doi: 10.3390/nu12103072.
[13] Wu D D, Liu Z G, Wang Y Z, et al. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway [J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 5599997. doi: 10.1155/2021/5599997.
[14] 趙維良, 王治霞, 喇登海, 等. 血管生成抑制劑ZM 306416對高脂飲食誘導(dǎo)的非酒精性脂肪性肝病小鼠的保護作用[J]. 中國肝臟病雜志(電子版), 2023, 15(2): 36-46.
Zhao W L, Wang Z X, La D H, et al. Protective effects of angiogenesis inhibitor ZM 306416 on non-alcoholicfatty liver disease induced by high-fat diet in mice[J]. Chinese Journal of Liver Diseases (ElectronicVersion), 2023, 15(2): 36-46.
[15] 趙偉, 孫國志. 不同種實驗動物間用藥量換算[J]. 畜牧獸醫(yī)科技信息, 2010(5): 52-53.
Zhao W, Sun G Z. Conversion of medication dosage among different experimental animals [J]. Animal Husbandry and Veterinary Science and Technology Information, 2010(5): 52-53.
[16] Zeigerer A. NAFLD: a rising metabolic disease [J]. Molecular Metabolism, 2021, 50: 101274. doi: 10.1016/j.molmet.2021.101274.
[17] Suk F M, Hsu F Y, Hsu M H, et al. Treatment with a new barbituric acid derivative suppresses diet-induced metabolic dysfunction and non-alcoholic fatty liver disease in mice [J]. Life Sciences, 2024, 336: 122327. doi: 10.1016/j.lfs.2023.122327.
[18] Trevi?o L S, Katz T A. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease [J]. Endocrinology, 2018, 159(1): 20-31. doi: 10.1210/en.2017-
00887.
[19] Chen G, Peng Y, Xie M, et al. A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk [J]. Critical Reviews in Food Science and Nutrition, 2023, 63(22): 5447-5464.
[20] Cheng L Z, Wei Y, Peng L L, et al. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits [J]. Critical Reviews in Food Science and Nutrition, 2023: 1-20. doi: 10.1080/10408398.2023.2236701.
[21] Huang F J, Zheng X J, Ma X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism [J]. Nature Communications, 2019, 10(1): 4971. doi: 10.1038/s41467-019-12896-x.
[22] Xiao Y, Huang Y N, Long F W, et al. Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models [J]. Food Chemistry, 2023, 404: 134382. doi: 10.1016/j.foodchem.2022.134382.
[23] Wang Y, Zhao A Q, Du H P, et al. Theabrownin from Fu brick tea exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity [J]. Journal of Agricultural and Food Chemistry, 2021, 69(40): 11900-11911.
[24] Deng X J, Zhang N, Wang Q, et al. Theabrownin of raw and ripened pu-erh tea varies in the alleviation of HFD-induced obesity via the regulation of gut microbiota [J]. European Journal of Nutrition, 2023, 62(5): 2177-2194.
[25] Lin F J, Wei X L, Liu H Y, et al. State-of-the-art review of dark tea: from chemistry to health benefits [J]. Trends in Food Science amp; Technology, 2021, 109: 126-138. doi: 10.1016/j.tifs.2021.01.030.
[26] Wang J Y, Zheng D, Huang F J, et al. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism [J]. Frontiers in Pharmacology, 2022, 13: 875549. doi: 10.3389/fphar.2022.875549.
[27] 張文將, 段麗芳, 孟濤, 等. 基于TLR4/MyD88/NF-κB通路探討茯磚茶改善ApoE-/-小鼠非酒精性脂肪肝的作用[J]. 中成藥, 2023, 45(10): 3429-3432.
Zhang W J, Duan L F, Meng T, et al. Exploring the effect of Fuzhuan tea on improving non-alcoholic fatty liver disease in ApoE-/- mice based on TLR4/MyD88/NF-κB pathway [J]. Chinese Traditional Patent Medicine, 2023, 45(10): 3429-3432.
[28] 張文將, 劉圓月, 范文濤, 等. 茯磚茶對APOE-/-小鼠肝脂合成和氧化應(yīng)激影響[J]. 食品與生物技術(shù)學(xué)報, 2021, 40(3): 103-111.
Zhang W J, Liu Y Y, Fan W T, et al. Effect of fu brick tea on hepatic lipid synthesis and oxidative stress in APOE-/- mice with non-alcoholic fatty liver [J]. Journal of Food and Biotechnology, 2021, 40(3): 103-111.
[29] 張文將, 劉圓月, 易健, 等. 安化黑茶減輕高脂誘導(dǎo)的ApoE-/-小鼠非酒精性脂肪肝[J]. 中國病理生理雜志, 2020, 36(7): 1274-1280.
Zhang W J, Liu Y Y, Yi J, et al. Effects of Anhua dark tea on ApoE-/- mice with non-alcoholic fatty liver induced by high-fat diet [J]. Chinese Journal of Pathophysiology, 2020, 36(7): 1274-1280.
[30] Frietze K K, Brown A M, Das D, et al. Lipotoxicity reduces DDX58/Rig-1 expression and activity leading to impaired autophagy and cell death [J]. Autophagy, 2022, 18(1): 142-160.
[31] Moore M P, Cunningham R P, Meers G M, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD [J]. Hepatology, 2022, 76(5): 1452-1465.
[32] Park H S, Song J W, Park J H, et al. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation [J]. Autophagy, 2021, 17(9): 2549-2564.
[33] Chen R, Wang Q X, Song S H, et al. Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice [J]. European Journal of Pharmacology, 2016, 770: 126-133. doi: 10.1016/j.ejphar.2015.11.012.
[34] Lin C W, Zhang H, Li M, et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice [J]. Journal of Hepatology, 2013, 58(5): 993-999.
[35] Naito Y, Ushiroda C, Mizushima K, et al. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids [J]. Journal of Clinical Biochemistry and Nutrition, 2020, 67(1): 2-9.
[36] Chyau C C, Wang H F, Zhang W J, et al. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway [J]. International Journal of Molecular Sciences, 2020, 21(1): 360. doi: 10.3390/ijms21010360.
[37] Qin G H, Ma J, Huang Q S, et al. Isoquercetin Improves Hepatic Lipid Accumulation by Activating AMPK pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model [J]. International Journal of Molecular Sciences, 2018, 19(12): 4126. doi: 10.3390/ijms19124126.
[38] Li T, Weng J, Zhang Y, et al. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma [J]. Cell Death and Disease, 2019, 10(8): 619. doi: 10.1038/s41419-019-1828-2.
[39] Vuji? N, Bradi? I, Goeritzer M, et al. ATG7 is dispensable for LC3-PE conjugation in thioglycolate-elicited mouse peritoneal macrophages [J]. Autophagy, 2021, 17(11): 3402-3407.
[40] Klionsky D J, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) [J]. Autophagy, 2016, 12(1): 1-222. doi: 10.1080/15548627.2015.1100356.
[41] Levine B, Liu R, Dong X, et al. Beclin orthologs: integrative hubs of cell signaling, membranetrafficking,and physiology [J]. Trends in Cell Biology, 2015, 25(9): 533-544.
[42] Fernández á F, Sebti S, Wei Y, et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice [J]. Nature, 2018, 558(7708): 136-140.