摘 要:針對(duì)智能反射面(IRS)輔助的寬帶正交頻分復(fù)用(OFDM)系統(tǒng)的信道估計(jì),當(dāng)前大多數(shù)研究都是基于單符號(hào)全導(dǎo)頻設(shè)置,且級(jí)聯(lián)信道系數(shù)過(guò)多會(huì)導(dǎo)致導(dǎo)頻開(kāi)銷較大。為此,提出了一種基于時(shí)域-角域塊稀疏的兩階段信道估計(jì)方案。首先,通過(guò)分析信道在時(shí)域和角域上存在的共同稀疏特性,將級(jí)聯(lián)信道矩陣轉(zhuǎn)換為時(shí)域-角域上的塊稀疏表示,并將信道估計(jì)問(wèn)題轉(zhuǎn)換為塊稀疏矩陣恢復(fù)問(wèn)題。其次,考慮傳輸導(dǎo)頻限制和時(shí)域-角域塊稀疏特性,提出了一種兩階段稀疏信道估計(jì)方案對(duì)級(jí)聯(lián)信道進(jìn)行稀疏恢復(fù)。仿真結(jié)果表明,相比另外三種基準(zhǔn)方案,該方案可以使用較少的導(dǎo)頻獲得更優(yōu)的信道估計(jì)性能,有效減少了導(dǎo)頻開(kāi)銷,且估計(jì)準(zhǔn)確度更高。
關(guān)鍵詞:智能反射面; 正交頻分復(fù)用; 信道估計(jì); 壓縮感知
中圖分類號(hào):TN928文獻(xiàn)標(biāo)志碼: A文章編號(hào):1001-3695(2024)04-029-1159-05
doi:10.19734/j.issn.1001-3695.2023.07.0359
Research on sparse channel estimation for intelligentreflecting surface aided OFDM system
Zhu Junjie, Peng Ling
Abstract:For the channel estimation of broadband OFDM system assisted by IRS, most of the current researches are based on the full pilot setting on a single symbol, and excessive cascaded channel coefficients will lead to large pilot overhead. This paper proposed a two-stage channel estimation scheme based on block sparse in time-angle domain. Firstly, by analyzing the common sparse characteristics of the channel in the time domain and the angular domain, this paper transformed the cascaded channel matrix into a block sparse representation in the time domain-angular domain, and converted the channel estimation problem into a block sparse matrix recovery problem. Secondly, this paper proposed a two-stage sparse channel estimation scheme to sparsely recover the cascaded channel considering the transmission pilot limitation and the time-angle domain block sparse characteristics. Simulation results show that compared to the other three benchmark schemes, the proposed scheme can achieve better channel estimation performance with fewer pilots, effectively reducing the pilot overhead and achieving higher estimation accuracy.
Key words:intelligent reflecting surface(IRS); orthogonal frequency division multiplexing(OFDM); channel estimation; compressive sensing
0 引言
智能反射面(IRS)作為一種可重構(gòu)無(wú)線通信環(huán)境技術(shù),改變了以往無(wú)線信道不可控制的特性,引起學(xué)術(shù)界的廣泛關(guān)注[1~3]。由大量低成本的無(wú)源元件組成的IRS能夠根據(jù)無(wú)線信道的動(dòng)態(tài)變化調(diào)整每個(gè)IRS元件的反射信號(hào)振幅和相移,在發(fā)射機(jī)和接收機(jī)之間創(chuàng)建有利的信號(hào)路徑來(lái)主動(dòng)改變無(wú)線傳播環(huán)境,具有擴(kuò)大無(wú)線通信覆蓋范圍、改善通信質(zhì)量等優(yōu)點(diǎn)[4,5]。與傳統(tǒng)的有源中繼和波束賦形技術(shù)相比,IRS因?yàn)闊o(wú)源反射的特點(diǎn)具有更低的硬件成本和能源消耗,能夠很好地適應(yīng)未來(lái)6G蜂窩網(wǎng)絡(luò)的綠色發(fā)展需求[6]。
一般來(lái)說(shuō),IRS可以被部署到基站和用戶之間來(lái)建立額外的鏈路。通過(guò)周圍環(huán)境對(duì)反射系數(shù)進(jìn)行重新優(yōu)化設(shè)計(jì),IRS能夠提供最佳的波束賦形增益,從根源上解決信道衰落損害和其他干擾問(wèn)題[7~10]。通常情況下,反射系數(shù)的優(yōu)化設(shè)計(jì)依賴精確的信道狀態(tài)信息(channel state information, CSI),因此信道估計(jì)是IRS提供最佳波束賦形增益的關(guān)鍵技術(shù)之一[11]。然而,由于缺乏處理基帶信號(hào)的有源元件,IRS不能直接獲取與基站和用戶之間的CSI,只能反射或折射入射電磁波信號(hào);其次,由大量低成本無(wú)源元件組成的IRS的每一個(gè)元件都對(duì)應(yīng)不同的信道系數(shù),這使得IRS輔助的無(wú)線通信系統(tǒng)信道估計(jì)面臨極大的挑戰(zhàn)[12]。
近年來(lái),已有大量文獻(xiàn)研究了IRS在窄帶無(wú)線通信系統(tǒng)中的應(yīng)用[13~15],而針對(duì)寬帶正交頻分復(fù)用(OFDM)通信系統(tǒng)的研究較少。IRS輔助的寬帶OFDM系統(tǒng)相比窄帶系統(tǒng)有更多的信道系數(shù),因此信道估計(jì)的導(dǎo)頻開(kāi)銷更高。文獻(xiàn)[16]提出一種基于開(kāi)關(guān)元件的反射模式,即通過(guò)控制IRS反射元件的開(kāi)關(guān)狀態(tài)對(duì)級(jí)聯(lián)信道進(jìn)行最小二乘(least squares,LS)估計(jì),但至少需要大于反射數(shù)目的導(dǎo)頻符號(hào)數(shù)才能恢復(fù)信號(hào)。文獻(xiàn)[17]采用基于離散傅里葉變換插值的信道估計(jì)方法降低導(dǎo)頻開(kāi)銷,然而估計(jì)性能會(huì)變差。此外,文獻(xiàn)[18]通過(guò)逐步估計(jì)連續(xù)子幀上的離散CSI,提出了一種漸進(jìn)式的信道估計(jì)方案,使得信道估計(jì)和被動(dòng)波束賦形能夠同時(shí)進(jìn)行,但將IRS元件進(jìn)行分組會(huì)降低信號(hào)估計(jì)的準(zhǔn)確度。
在毫米波無(wú)線通信系統(tǒng)中,由于其衰落特性,無(wú)線信道的能量大部分集中在少數(shù)信道路徑上,信道在時(shí)域和角域上都體現(xiàn)出稀疏特性[19,20]。文獻(xiàn)[21]通過(guò)向量化操作降低信號(hào)維度來(lái)進(jìn)行稀疏信道估計(jì),但計(jì)算量龐大。文獻(xiàn)[22,23]通過(guò)分析級(jí)聯(lián)信道在角域上的稀疏性,利用稀疏恢復(fù)算法對(duì)級(jí)聯(lián)信道進(jìn)行估計(jì)。然而,文獻(xiàn)[22,23]在角域稀疏估計(jì)之前,單個(gè)符號(hào)上需要設(shè)置全導(dǎo)頻獲取信道頻域響應(yīng),導(dǎo)頻開(kāi)銷仍然很高。因此,本文針對(duì)IRS輔助的毫米波寬帶OFDM系統(tǒng),通過(guò)分析級(jí)聯(lián)信道在時(shí)域和角域上共同存在的稀疏特性,推導(dǎo)了一種基于時(shí)域-角域的塊稀疏信道模型。在此基礎(chǔ)上,提出了一種兩階段稀疏信道估計(jì)方案對(duì)級(jí)聯(lián)信道進(jìn)行聯(lián)合估計(jì)。仿真結(jié)果表明,相比于傳統(tǒng)方案,本文提出的基于時(shí)域-角域塊稀疏的兩階段信道估計(jì)方案導(dǎo)頻開(kāi)銷更少,且估計(jì)精度更高。
1 系統(tǒng)模型
1.1 系統(tǒng)模型
本文考慮IRS輔助的SISO毫米波寬帶系統(tǒng)模型,由一個(gè)單天線基站、一個(gè)IRS和一個(gè)單天線用戶組成。其中,基站和用戶之間不存在直射路徑。系統(tǒng)采用K個(gè)子載波,如圖1所示。
2 信道估計(jì)算法設(shè)計(jì)
2.1 問(wèn)題描述
基站信息傳輸分為兩個(gè)部分,如圖2所示。第一部分用Q個(gè)OFDM符號(hào)進(jìn)行信道訓(xùn)練,附加上一個(gè)小的反饋間隔τf,用于反射系數(shù)優(yōu)化,第二部分進(jìn)行數(shù)據(jù)傳輸。本文主要討論第一部分的信道估計(jì)問(wèn)題。
3 仿真分析
3.1 參數(shù)設(shè)計(jì)
本文考慮一個(gè)IRS輔助的SISO毫米波寬帶系統(tǒng)。假設(shè)基站、IRS和用戶的位置坐標(biāo)分別為(0,0)、(0,50)和(75,50)。路徑損耗計(jì)算為β=1/dα,其中d為距離,α為路徑損耗指數(shù)。此外,所有路徑的延遲和角度都假設(shè)量化在網(wǎng)格上。其他仿真參數(shù)如表1所示。
3.2 對(duì)比方案
將本文方案與基準(zhǔn)方案進(jìn)行歸一化均方誤差(normalized mean square error,NMSE)對(duì)比如下:
a)CE-LS?;陂_(kāi)/關(guān)反射模式的LS方案[16],通過(guò)控制每個(gè)OFDM符號(hào)上IRS反射元件的開(kāi)關(guān)狀態(tài)(每個(gè)OFDM符號(hào)上只有一個(gè)IRS元件被打開(kāi),即反射系數(shù)為1,其他元件保持關(guān)閉,即反射系數(shù)為0)對(duì)級(jí)聯(lián)信道進(jìn)行LS估計(jì)。
b) CE-OMP。基于角域稀疏的OMP方案[22],在本文方案中,不討論級(jí)聯(lián)信道在時(shí)域上的稀疏特性,只基于角域稀疏,利用傳統(tǒng)的OMP算法對(duì)級(jí)聯(lián)信道進(jìn)行角域稀疏信道估計(jì)。
c)CE-SOMP?;诮怯蛳∈璧腟OMP方案[23],聯(lián)合所有子載波對(duì)級(jí)聯(lián)信道進(jìn)行角域稀疏估計(jì)。
d)CE-oracle LS。預(yù)知最小二乘(oracle least squares,oracle LS)方案[28],基于已知的時(shí)域和角域的稀疏位置進(jìn)行稀疏信道估計(jì)。
圖3比較了CE-LS、CE-OMP、CE-SOMP、CE-oracle LS和本文方案在不同OFDM符號(hào)數(shù)下的NMSE曲線。從圖中可以看出,當(dāng)信噪比為10 dB時(shí),本文方案的估計(jì)性能明顯優(yōu)于CE-LS、CE-OMP和CE-SOMP。其中,CE-LS方案只有在OFDM符號(hào)數(shù)達(dá)到IRS元件數(shù)時(shí)才能恢復(fù)出信道系數(shù)。CE-OMP和CE-SOMP方案雖然能恢復(fù)信道信息,但是并不能準(zhǔn)確找出時(shí)域稀疏位置,因此信道估計(jì)性能較差。而本文方案信道估計(jì)的準(zhǔn)確度是最好的,其NMSE曲線在Qgt;100之后逐漸和CE-oracle LS方案的NMSE曲線重合,說(shuō)明本文方案能夠?qū)崿F(xiàn)壓縮感知類算法的最理想性能。
圖4比較了不同導(dǎo)頻設(shè)置下的NMSE曲線。由圖可知,單個(gè)OFDM符號(hào)上的導(dǎo)頻個(gè)數(shù)越多,本文方案的信道估計(jì)性能越好。當(dāng)Np=4時(shí),本文方案的NMSE曲線最接近CE-OMP和CE-SOMP方案。說(shuō)明本文方案導(dǎo)頻開(kāi)銷能大大減少。
圖5比較了不同信噪比(signal-to-noise ratio,SNR)下的五種信道估計(jì)方案的NMSE曲線。其中,SNR為0~25 dB。仿真結(jié)果表明,CE-LS方案幾乎不能恢復(fù)出信道系數(shù)。在OFDM符號(hào)數(shù)Q=36時(shí),隨著SNR的增大,CE-OMP、CE-SOMP和本文方案的NMSE隨之減小。但因?yàn)榉?hào)間信息的限制,SNR的增大帶來(lái)的性能增益有限。而Q=120時(shí),CE-OMP、CE-SOMP和本文方案的估計(jì)性能都能隨著SNR的增大線性提升。本文方案的估計(jì)性能是幾種方案里最好的,且與CE-oracle LS方案的NMSE曲線幾乎重合,進(jìn)一步說(shuō)明本文方案具有魯棒性。
圖6給出了不同反射元件個(gè)數(shù)的NMSE性能關(guān)系曲線。仿真結(jié)果表明,在稀疏位置已知的情況下,反射元件個(gè)數(shù)的增加并不影響CE-oracle LS方案的估計(jì)性能,其NMSE不變。隨著IRS反射元件個(gè)數(shù)的增加,CE-LS方案恢復(fù)信道系數(shù)需要的OFDM符號(hào)數(shù)增加,其NMSE逐漸增大。由于收到時(shí)延估計(jì)誤差的干擾,反射元件數(shù)量的增加給CE-OMP和CE-SOMP方案的信道估計(jì)性能帶來(lái)的提升有限。而本文方案能在找到時(shí)域稀疏位置的前提下,利用更多的角度信息進(jìn)行角域稀疏信道估計(jì),因此NMSE隨之減小,逐漸接近最佳估計(jì)性能曲線。
圖7給出了時(shí)域稀疏度與NMSE的性能關(guān)系曲線??梢钥闯?,CE-LS和CE-OMP方案在單個(gè)符號(hào)上設(shè)置全導(dǎo)頻,稀疏度的變化并不會(huì)影響其獲取信道頻域響應(yīng)信息,所以其NMSE并不隨之改變。由于不同時(shí)延路徑上角度方向不同,不同子載波上的角度稀疏位置不同,隨著S增大,CE-SOMP算法估計(jì)性能變差。而本文方案相比其他三種方案估計(jì)性能最好,說(shuō)明了本文方案的性能在稀疏環(huán)境中的優(yōu)越性。
4 結(jié)束語(yǔ)
與現(xiàn)有研究相比,針對(duì)IRS輔助的OFDM毫米波無(wú)線通信系統(tǒng)信道估計(jì)導(dǎo)頻開(kāi)銷過(guò)高的問(wèn)題,本文通過(guò)分析級(jí)聯(lián)信道在時(shí)域和角域上存在的共同稀疏特性,建立了一種基于時(shí)域-角域的塊稀疏信道模型,并在此基礎(chǔ)上提出了一種兩階段稀疏信道估計(jì)方案對(duì)級(jí)聯(lián)信道進(jìn)行估計(jì)。然后通過(guò)仿真實(shí)驗(yàn)驗(yàn)證了本文提出的基于時(shí)域-角域兩階段稀疏信道估計(jì)方案的優(yōu)越性。該方案在實(shí)際實(shí)施時(shí)仍有困難,未來(lái)將進(jìn)一步研究當(dāng)角度和時(shí)延不落在網(wǎng)格的情況下,IRS輔助的毫米波寬帶無(wú)線通信系統(tǒng)信道估計(jì)問(wèn)題。
參考文獻(xiàn):
[1]Wei Xiuhong, Shen Decai, Dai Linglong. Channel estimation for RIS assisted wireless communications—part I: fundamentals, solutions, and future opportunities[J].IEEE Communications Letters , 202 25 (5): 1398-1402.
[2]Mutlu U, Kabalci Y. Channel estimation in intelligent reflecting surfaces for 5G and beyond[C]//Proc of the 4th Global Power, Energy and Communication Conference. Piscataway, NJ: IEEE Press, 2022: 586-590.
[3]Demir "T, Bjrnson E. Is channel estimation necessary to select phase-shifts for RIS-assisted massive MIMO?[J].IEEE Trans on Wireless Communications , 2022, 21 (11): 9537-9552.
[4]Cao Yashuai, Lyu Tiejun, Wei Ni. Intelligent reflecting surface aided multi-user mmWave communications for coverage enhancement[C]//Proc of the 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway, NJ: IEEE Press, 2020: 1-6.
[5]Xiu Yue, Zhao Yang, Liu Yanget al.IRS-assisted millimeter wave communications:joint power allocation and beamforming design[C]//Proc of IEEE Wireless Communications and Networking Conference. Piscataway, NJ: IEEE Press, 2021: 1-6.
[6]Yang Bo, Cao Xuelin, Huang Chongwen,et al.Spectrum-learning-aided reconfigurable intelligent surfaces for “Green” 6G networks[J].IEEE Network , 202 35 (6): 20-26.
[7]Niu Hehao, Lin Zhi, Chu Zheng,et al.Joint beamforming design for secure RIS-assisted IoT networks[J].IEEE Internet of Things Journal,2022, 10 (2): 1628-1641.
[8]He Zhenyao, Shen Hong, Xu Wei,et al.Low-cost passive beamfor-ming for RIS-aided wideband OFDM systems[J].IEEE Wireless Communications Letters , 202 11 (2): 318-322.
[9]An Jiancheng, Xu Chao, Gan Lu,et al.Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems re-lying on discrete phase shifts[J].IEEE Trans on Communications,2021,70(2): 1245-1260.
[10]Yang Yifei, Zhang Shuowen, Zhang Rui. IRS-enhanced OFDM: power allocation and passive array optimization[C]//Proc of IEEE Global Communications Conference. Piscataway, NJ: IEEE Press, 2019: 1-6.
[11]Pan Cunhu Zhou Gui, Zhi Kangda,et al.An overview of signal processing techniques for RIS/IRS-aided wireless systems[J].IEEE Journal of Selected Topics in Signal Processing , 2022,16 (5): 883-917.
[12]李南希, 朱劍馳, 郭婧, 等. 可重構(gòu)智能表面技術(shù): 研究進(jìn)展, 原型機(jī)及挑戰(zhàn)[J]. 無(wú)線電通信技術(shù), 2022,48 (2): 305-310. (Li Nanxi, Zhu Jianchi, Guo Jing,et al.Reconfigurable intelligent surface: research progress, prototypes and challenges[J].Radio Communications Technology , 2022,48 (2): 305-310.) [13]Wei Xiuhong, Shen Decai, Dai Linglong. Channel estimation for RIS assisted wireless communications—part II: an improved solution based on double-structured sparsity[J].IEEE Communications Letters , 2021,25 (5): 1403-1407.
[14]黨建, 李業(yè)偉, 朱永東, 等. 可重構(gòu)智能表面通信系統(tǒng)的漸進(jìn)信道估計(jì)方法[J]. 系統(tǒng)工程與電子技術(shù), 2022,44 (3): 998-1006. (Dang Jian, Li Yewei, Zhu Yongdong,et al.Progressive channel estimation method for RIS-assisted communication system[J].Systems Engineering and Electronics , 2022, 44 (3): 998-1006.)
[15]zdogan , Bjrnson E, Larsson E G. Intelligent reflecting surfaces:physics, propagation, and pathloss modeling[J].IEEE Wireless Communications Letters , 2019, 9 (5): 581-585.
[16]Yang Yifei, Zheng Beixiong, Zhang Shuowen,et al.Intelligent reflecting surface meets OFDM: protocol design and rate maximization[J].IEEE Trans on Communications , 2020, 68 (7): 4522-4535.
[17]Zheng Beixiong, Zhang Rui. Intelligent reflecting surface-enhanced OFDM: channel estimation and reflection optimization[J].IEEE Wireless Communications Letters,2019, 9 (4): 518-522.
[18]Lin Shao’e, Zheng Beixiong, Alexandropoulos G C,et al.Adaptive transmission for reconfigurable intelligent surface-assisted OFDM wireless communications[J].IEEE Journal on Selected Areas in Communications , 2020, 38 (11): 2653-2665.
[19]Wan Ziwei, Gao Zhen, Gao Feifei,et al.Terahertz massive MIMO with holographic reconfigurable intelligent surfaces[J].IEEE Trans on Communications , 202 69 (7):4732-4750.
[20]Wan Lei, Qiang Xizhu, Ma Lu,et al.Accurate and efficient path delay estimation in OMP based sparse channel estimation for OFDM with equispaced pilots[J].IEEE Wireless Communications Letters , 2018, 8 (1):117-120.
[21]程方旭, 李方偉. 智能反射面輔助MU-MISO系統(tǒng)寬帶信道估計(jì)算法[J]. 電訊技術(shù), 2023, 63 (11):1757-1764. (Cheng Fangxu, Li Fangwei. Wideband channel estimation algorithm for intelligent reflective surface-assisted MU-MISO systems[J].Telecommunication Engineering , 2023, 63 (11):1757-1764.)
[22]Wan Ziwei, Gao Zhen, Alouini M S. Broadband channel estimation for intelligent reflecting surface aided mmWave massive MIMO systems[C]//Proc of IEEE International Conference on Communications. Piscataway, NJ: IEEE Press, 2020: 1-6.
[23]Yashvanth L, Murthy C R, Battu D. Binary intelligent reflecting surfaces assisted OFDM systems[C]//Proc of IEEE International Conference on Signal Processing and Communications. Piscataway, NJ: IEEE Press, 2022: 1-5.
[24]Bjrnson E, Wymeersch H, Matthiesen B,et al.Reconfigurable intelligent surfaces: a signal processing perspective with wireless applications[J].IEEE Signal Processing Magazine , 2022, 39 (2): 135-158.
[25]Chen J C, Wen Chaokai, Ting Pangan. An efficient pilot design scheme for sparse channel estimation in OFDM systems[J].IEEE Communications Letters,2013,17 (7):1352-1355.
[26]Qi Chenhao, Wu Lenan, Huang Yongming,et al.Joint design of pilot power and pilot pattern for sparse cognitive radio systems[J].IEEE Trans on Vehicular Technology , 2014, 64 (11):5384-5390.
[27]Qi Chenhao, Wu Lenan. A study of deterministic pilot allocation for sparse channel estimation in OFDM systems[J].IEEE Communications Letters , 2012, 16 (5): 742-744.
[28]Wang Peilan, Fang Jun, Duan Huiping,et al.Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J].IEEE Signal Processing Letters , 2020, 27 : 905-909.
收稿日期:2023-07-10;修回日期:2023-09-07基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(62276276)
作者簡(jiǎn)介:朱俊杰(1972—),男,湖南湘潭人,教授,碩導(dǎo),博士,主要研究方向?yàn)闊o(wú)線通信、現(xiàn)代信號(hào)處理及智能控制等;彭玲(1998—),女(通信作者),湖南衡陽(yáng)人,碩士研究生,主要研究方向?yàn)橹悄芊瓷涿婕夹g(shù)(remapping@qq.com).