摘要: 試驗(yàn)旨在研究杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯有氧穩(wěn)定性和體外發(fā)酵特性的影響。以玉米品種‘康農(nóng)玉999’為青貯材料,添加杏鮑菇菌糠和植物乳桿菌混合青貯。青貯60 d后取樣分析。對(duì)青貯前后發(fā)酵各組營(yíng)養(yǎng)品質(zhì)、發(fā)酵品質(zhì)、有氧穩(wěn)定性和體外消化效果進(jìn)行研究。結(jié)果表明:青貯后,混合青貯發(fā)酵營(yíng)養(yǎng)品質(zhì)、乙酸含量和有氧穩(wěn)定性時(shí)間優(yōu)于全株玉米單獨(dú)青貯;體外發(fā)酵試驗(yàn)中,添加10%杏鮑菇菌糠+植物乳桿菌0.02 g·kg-1組CP降解率顯著提高。由此可見(jiàn),在全株玉米青貯中添加杏鮑菇菌糠和植物乳桿菌提高了青貯品質(zhì)和有氧穩(wěn)定性,改善了體外發(fā)酵特性,提高了CP降解率。綜合考慮,以90%全株玉米+10%杏鮑菇菌糠+植物乳桿菌0.02 g·kg-1混合青貯時(shí)可獲得較好的效果。
關(guān)鍵詞: 杏鮑菇菌糠;植物乳桿菌;全株玉米;體外發(fā)酵;有氧穩(wěn)定性
中圖分類(lèi)號(hào):S816.5+3 """文獻(xiàn)標(biāo)識(shí)碼:A """"文章編號(hào): 1007-0435(2024)02-0646-08
Effects of the Addition of Pleurotus eryngii Mushroom Bran and Lactobacillus
Plantarum on the Aerobic Stability and In Vitro Fermentation Characteristics
of Whole Corn Silage
WU Wei-cheng1, XIAO Ding-fu1*, ZHANG Zhi-fei2, CHEN Dong1*, WEN Juan3,
HUANG Chun-yong4, CHEN Yan5, XU Zhi-xiong4, WEI Zhong-shan6, LIU Yi-ran7
(1. College of Animal Science and Technology,Hunan Agricultural University, Changsha, Hunan Province 410128, China;
2. Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, Hunan Province 410125, China; 3. Inner Mongolia General
Forestry and Grassland Protection Station, Hohhot, Inner Mongolia 010000, China; 4. Management Committee of Xiangxi
National Agricultural Science and Technology Park, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan Province 416499,
China; 5. Huayuan County Agricultural Specialty Industry Service Center, Xiangxi Tujia and Miao Autonomous Prefecture,
Hunan Province 416499, China; 6. Hunan Dren Grass Technology Development Co., Ltd, Changde, Hunan Province 415000,
China;7. Hunan Ma Ru Agricultural Products Sales Co., Xiangxi Tujia and Miao Autonomous Prefecture, Hunan
Province 416499, China)
Abstract: This experiment investigated the effects of pleurotus eryngii mushroom bran and plant lactobacillus on the aerobic stability and in vitro fermentation characteristics of whole-plant corn silage. The corn variety Kangnongyu 999 was used as silage material,and a mixture of mushroom bran and plant lactobacillus was added for silage. Sample were analyzed after 60 days of ensiling. The nutritional quality,fermentation quality,aerobic stability,and in vitro digestion effect of each fermentation group were studied before and after ensiling. The results showed that the fermentation nutritional quality,acetic acid content,and aerobic stability time of mixed silage were superior to those of the whole plant corn silage alone. In the in vitro fermentation experiment,the addition of 10% pleurotus eryngii mushroom bran and 0.02 g·kg-1 plant lactobacillus significantly increased the CP degradation rate. Thus,adding pleurotus eryngii mushroom bran and plant lactobacillus to the entire corn silage improved the silage quality and aerobic stability,improved in vitro fermentation characteristics,and increased CP degradation rate. Taking all factors into consideration,a mixed silage of 90% whole plant corn,10% pleurotus eryngii mushroom bran,and 0.02 g·kg-1 plant lactobacillus can achieve better results.
Key words: Pleurotus eryngii mushroom bran;Lactobacillus plantarum;Whole plant corn;In vitro fermentation;Aerobic stability
隨著畜牧業(yè)的快速發(fā)展,中國(guó)對(duì)優(yōu)質(zhì)青貯飼料的需求大幅增加。目前,全株玉米因其礦物質(zhì)和維生素含量高而成為反芻動(dòng)物的重要飼料[1]。玉米是季節(jié)性收獲的農(nóng)作物,全年飼喂反芻動(dòng)物新鮮飼料難以實(shí)現(xiàn)。青貯是保存青綠飼料的一種重要方法,不僅改善了粗飼料的營(yíng)養(yǎng)品質(zhì),還可以全年為牲畜提供飼料。隨著健康飲食日益增長(zhǎng)的趨勢(shì),食用菌深受廣大消費(fèi)者的喜愛(ài),并因其豐富的營(yíng)養(yǎng)成分而經(jīng)常出現(xiàn)在日常膳食中[2]。據(jù)統(tǒng)計(jì),我國(guó)食用菌生產(chǎn)居世界首位[3]。然而,隨著食用菌產(chǎn)業(yè)快速發(fā)展,經(jīng)過(guò)幾個(gè)周期的收獲后,產(chǎn)生大量的副產(chǎn)物,即廢棄菌糠。每生產(chǎn)1 kg新鮮食用菌,就會(huì)產(chǎn)生大約5 kg的副產(chǎn)物[4]。2019年,我國(guó)杏鮑菇產(chǎn)量203.45萬(wàn)t,預(yù)計(jì)會(huì)產(chǎn)生約1 017.25萬(wàn)t菌糠[5]。菌糠通常被當(dāng)做農(nóng)業(yè)廢棄物,通過(guò)填埋、糞便堆肥或焚燒處理,不當(dāng)?shù)奶幹梅椒赡軐?dǎo)致土壤、空氣和水體污染等環(huán)境安全問(wèn)題[6]。為了環(huán)境保護(hù)、廢棄物回收利用、提高養(yǎng)殖場(chǎng)經(jīng)濟(jì)和食用菌產(chǎn)業(yè)的可持續(xù)發(fā)展,將菌糠制作成青貯飼料飼喂反芻動(dòng)物被視為一種高效的利用方式[7]。黃麗琴等[8]研究發(fā)現(xiàn),全株水稻與平菇菌糠共同發(fā)酵飼料可提高瀏陽(yáng)黑山羊肌纖維密度。發(fā)酵金針菇菌糠替代白酒糟顯著提高了TM7、假丁酸弧菌屬和脫硫弧菌屬的相對(duì)豐度,降低了脂類(lèi)代謝、脂肪酸合成、脂肪酸代謝和遺傳信息處理代謝通路等相關(guān)功能基因豐度,提高了氨基糖和核苷酸糖代謝、光合作用和氰氨基酸代謝通路等相關(guān)功能基因豐度[9]。此外,有研究發(fā)現(xiàn),植物乳桿菌可提高全株玉米青貯的營(yíng)養(yǎng)價(jià)值[10]。鑒于此,我們提出了將全株玉米、杏鮑菇菌糠和植物乳桿菌混合青貯,為農(nóng)業(yè)副產(chǎn)物高值化利用及環(huán)境保護(hù)提供研究思路和解決方案。
本試驗(yàn)旨在通過(guò)有氧穩(wěn)定性試驗(yàn)和體外產(chǎn)氣法探究杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯有氧穩(wěn)定性、產(chǎn)氣量、體外發(fā)酵特性和營(yíng)養(yǎng)物質(zhì)降解率的影響,為合理利用杏鮑菇菌糠提供理論依據(jù)和數(shù)據(jù)支撐。
1 材料與方法
1.1 試驗(yàn)材料
選用玉米品種‘康農(nóng)玉999’為青貯試驗(yàn)材料,乳熟后期收獲,10 cm留茬高度收割,粉碎成3~5 cm長(zhǎng)度備用。試驗(yàn)用杏鮑菇菌糠由湖南永州果秀食品有限公司提供,植物乳桿菌(活菌數(shù)為4×109 CFU·g-1)購(gòu)自善恩康生物科技有限公司。青貯前原料營(yíng)養(yǎng)成分見(jiàn)表1 。
1.2 試驗(yàn)設(shè)計(jì)
采用單因素試驗(yàn)設(shè)計(jì),共分為7組:對(duì)照組(CON)無(wú)添加,各試驗(yàn)組以全株玉米(鮮重)與杏鮑菇菌糠(鮮重)混合青貯,比例分別為90∶10(CS10組)、80∶20(CS20組)、70∶30(CS30組)、CS10+植物乳桿菌0.02 g·kg-1(CSL10組)、CS20+植物乳桿菌0.02 g·kg-1(CSL20組)和CS30+植物乳桿菌0.02 g·kg-1(CSL30組),每組4個(gè)重復(fù)。將杏鮑菇菌糠與全株玉米混合均勻,植物乳桿菌充分溶解在10 mL蒸餾水中,隨后使用噴霧器均勻噴灑在青貯原料上,再次混勻,取3 kg裝入聚氯乙烯袋中(晨光實(shí)業(yè),35 cm×45 cm),室溫密閉保存,青貯60 d后開(kāi)封,取樣分析。
1.3 青貯品質(zhì)分析
根據(jù)AOAC[11]中的方法測(cè)定全株玉米、杏鮑菇菌糠和青貯飼料樣品中DM,CP,WSC含量;根據(jù)Van Soest等[12]的方法使用全自動(dòng)纖維分析儀(ANKOM2000i,美國(guó))測(cè)定全株玉米、杏鮑菇菌糠和青貯飼料樣品中NDF、ADF含量。
1.4 有氧穩(wěn)定性分析
青貯拆包后,把飼料樣品混勻放入無(wú)菌的聚乙烯小桶中,插入MDL-1048A多通道溫度記錄儀探頭,測(cè)定飼料樣品和環(huán)境溫度變化。用雙層脫脂紗布將桶口覆蓋,以避免污染和減少水分流失。分別于有氧暴露后第0,2,4和6天取樣,測(cè)定pH、NH3-N和VFA。本研究中,有氧穩(wěn)定性被定義為超過(guò)環(huán)境溫度2℃之前維持穩(wěn)定的小時(shí)數(shù)[13]。
1.5 體外發(fā)酵
選擇3頭體況良好、體重為(357.0±23.0)kg、安裝有永久性瘤胃瘺管的湘西黃牛作為瘤胃液供體動(dòng)物。參考我國(guó)《肉牛飼養(yǎng)標(biāo)準(zhǔn)》(NY/T815-2004)配制基礎(chǔ)飼糧,每日定時(shí)飼喂2次(08:00和16:00),自由飲水。
青貯拆包后,按照四分法取樣,經(jīng)烘箱65℃干燥48 h至恒重后粉碎過(guò)40目分析篩,用分析天平稱取各組1.0 g(0.000 1 g)左右的樣品于200 mL的產(chǎn)氣瓶中。按照Menke等[14]方法配制人工瘤胃緩沖液,向配制好的人工瘤胃緩沖液中持續(xù)通入二氧化碳(CO2)氣體,直至緩沖液由藍(lán)色變?yōu)榉奂t色,最終接近無(wú)色即可。試驗(yàn)當(dāng)天按照鄒詩(shī)雨等[15]方法采集和保存瘤胃液,將人工瘤胃緩沖液和采集的瘤胃液以體積比1∶2的比例混合均勻制成培養(yǎng)液。
在提前置入39.5℃恒溫培養(yǎng)箱內(nèi)預(yù)熱的發(fā)酵瓶中,注入50 mL配制好的培養(yǎng)液(邊操作邊通CO2),用橡膠塞蓋緊瓶口后,在(39.5±0.5)℃的水浴搖床中體外發(fā)酵24 h,每組樣品設(shè)置6個(gè)重復(fù),同時(shí)做空白試驗(yàn)。發(fā)酵過(guò)程中用具有1 mL分度的100 mL玻璃注射器量取并記錄培養(yǎng)3,6,9,12和24 h的產(chǎn)氣體積。24 h后置于冰水中終止發(fā)酵并測(cè)定降解率和發(fā)酵參數(shù)。
1.6 指標(biāo)測(cè)定及方法
1.6.1 產(chǎn)氣量及產(chǎn)氣參數(shù) ""產(chǎn)氣量按照鄒詩(shī)雨等[15]的方法計(jì)算。將試驗(yàn)組各時(shí)間點(diǎn)累積產(chǎn)氣量代入SPSS 22軟件中使用非線性模型計(jì)算產(chǎn)氣參數(shù)。
公式:GPt=a+b(1-e-ct)
式中,GPt為t時(shí)刻累積產(chǎn)氣量(mL),a為快速產(chǎn)氣參數(shù)(mL),b為慢速產(chǎn)氣參數(shù)(mL),c為產(chǎn)氣速率(mL·h-1),a+b為理論總產(chǎn)氣量(mL),t為發(fā)酵時(shí)間。
1.6.2 發(fā)酵參數(shù) ""使用pH計(jì)測(cè)定每個(gè)發(fā)酵瓶中發(fā)酵液的pH,VFA根據(jù)Muetzel等[16]的方法測(cè)定,氨態(tài)氮采用T/CAAA003-2018中的苯酚-次氯酸鈉比色法測(cè)定。參照Makkar等[17]提出的考馬斯亮藍(lán)比色法測(cè)定微生物蛋白(MCP)含量。
1.6.3 體外降解特性 ""DM、CP、NDF和ADF體外降解率按照鄒詩(shī)雨等[15]的方法計(jì)算。
1.7 數(shù)據(jù)統(tǒng)計(jì)
數(shù)據(jù)經(jīng)Excel軟件整理后,使用SPSS 22.0軟件進(jìn)行單因素方差分析(one-way AVOVA),采用Duncan氏法進(jìn)行多重比較,結(jié)果以平均值和標(biāo)準(zhǔn)誤表示,Plt;0.05為差異顯著,Plt;0.001為差異極顯著。
2 結(jié)果
2.1 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯品質(zhì)的影響
由表2可知,CS20、CS30和CSL30組DM含量顯著高于CON組(Plt;0.05),CS30和CSL30組CP含量高于CON、CS10和CSL10組(Plt;0.05),CS10和CSL10組ADF含量顯著低于CON和CS30組(Plt;0.05)。各組WSC和NDF含量無(wú)顯著差異。
2.2 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯有氧暴露pH、NH3-N和乙酸含量的影響
由表3可知,有氧暴露時(shí)間顯著影響各組pH、NH3-N和乙酸含量(Plt;0.001)。有氧暴露第2天,CON組的NH3-N含量顯著高于其他組(Plt;0.05),有氧暴露第4天,CS10和CSL10組的NH3-N含量顯著低于其他組(Plt;0.05)。有氧暴露4天后,處理組pH顯著低于CON組(Plt;0.05),乙酸含量顯著高于CON組(Plt;0.05)。
2.3 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯有氧暴露時(shí)間的影響
如圖1所示,各處理組有氧穩(wěn)定性時(shí)間顯著高于CON組(Plt;0.05),分別提高了61.6%,54.4%,57.2%,52.4%,59.6%和54.4%。
2.4 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯體外發(fā)酵產(chǎn)氣量和產(chǎn)氣參數(shù)的影響
由表4可知,在產(chǎn)氣過(guò)程中,CON、CS10和CS20組3 h產(chǎn)氣量顯著高于其他組,CON和CS10組6 h和9 h產(chǎn)氣量顯著高于其他組,CON組快速降解產(chǎn)氣量、產(chǎn)氣速率和理論總產(chǎn)量顯著高于其他組。
2.5 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯體外發(fā)酵參數(shù)的影響
由表5可知,CS10組pH顯著低于其他組(Plt;0.05)。CS10和CSL10組NH3-N含量顯著高于其他組(Plt;0.05),其他指標(biāo)無(wú)顯著影響。
2.6 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯體外降解率的影響
由表6可知,CSL10組干物質(zhì)和酸性洗滌纖維降解率顯著高于其他組(Plt;0.05),CSL10和CSL20組粗蛋白降解率顯著高于其他組(Plt;0.05)。
3 討論
3.1 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯品質(zhì)的影響
干物質(zhì)含量是影響青貯發(fā)酵品質(zhì)的關(guān)鍵因素。青貯飼料干物質(zhì)含量不當(dāng)會(huì)導(dǎo)致滲漏和不良發(fā)酵(干物質(zhì)含量lt;28%),或者包裝困難[18](干物質(zhì)含量gt; 40%)。本試驗(yàn)中,各組干物質(zhì)含量均在正常范圍內(nèi),說(shuō)明青貯品質(zhì)良好,且CS20、CS30和CSL30組干物質(zhì)含量顯著高于CON組,提高了青貯營(yíng)養(yǎng)價(jià)值。粗蛋白質(zhì)含量是衡量青貯飼料營(yíng)養(yǎng)品質(zhì)的重要指標(biāo)之一[19]。本試驗(yàn)中,CS30和CSL30組粗蛋白質(zhì)含量顯著高于CON、CS10和CSL10組,說(shuō)明在全株玉米中添加杏鮑菇菌糠可以提高青貯粗蛋白質(zhì)含量,這與李成艦等[20]的研究結(jié)果類(lèi)似。CS10和CSL10組酸性洗滌纖維含量顯著低于CON組,其原因可能是杏鮑菇菌糠中的菌絲體含有豐富的微生物,在發(fā)酵過(guò)程中迅速增殖,分解了纖維素[7]。
3.2 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯有氧穩(wěn)定性的影響
酵母菌、梭菌和霉菌等好氧微生物在青貯飼料開(kāi)封后,與氧氣充分接觸,這些好氧微生物將會(huì)分解碳水化合物和乳酸,導(dǎo)致溫度和pH升高,造成青貯飼料發(fā)生有氧腐敗[21]。有氧穩(wěn)定性是評(píng)估青貯飼料質(zhì)量的重要指標(biāo),動(dòng)物攝入有氧腐敗的飼料將對(duì)機(jī)體產(chǎn)生不利影響。在青貯過(guò)程中,酸性環(huán)境有助于抑制不良微生物的活性,延長(zhǎng)有氧穩(wěn)定時(shí)間。本研究中,有氧暴露4天后,處理組pH值均顯著低于CON組,與有氧穩(wěn)定時(shí)間的結(jié)果相一致。Driehuis等[22]研究發(fā)現(xiàn)乙酸具有抗真菌的作用,能夠有效抑制有氧暴露期間青貯飼料好氧微生物的生長(zhǎng),提高有氧穩(wěn)定性。本研究中,有氧暴露4天后,處理組乙酸含量均顯著高于CON組,這可能是處理組有氧穩(wěn)定性優(yōu)于CON組的原因。
3.3 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯體外發(fā)酵產(chǎn)氣量和產(chǎn)氣參數(shù)的影響
體外發(fā)酵產(chǎn)氣量的多少能夠有效反映出瘤胃微生物的活性以及青貯的發(fā)酵程度[23]。青貯中含有較多的非結(jié)構(gòu)性碳水化合物,在瘤胃中被微生物降解時(shí),其降解速率較快,將產(chǎn)生更多氣體[24]。Laresen等[25]研究表明,玉米青貯中易于發(fā)酵的非結(jié)構(gòu)性碳水化合物含量豐富,這將直接導(dǎo)致青貯降解速率升高,并且在短時(shí)間內(nèi)產(chǎn)生較多氣體[26],這可能會(huì)導(dǎo)致反芻動(dòng)物瘤胃迅速膨脹,壓迫瘤胃壁血管,從而降低機(jī)體對(duì)氣體的吸收能力,造成能量損失,嚴(yán)重時(shí)可能引起瘤胃脹氣,影響動(dòng)物健康[27]。本試驗(yàn)中,提高杏鮑菇菌糠的添加比例顯著降低了產(chǎn)氣速率,這可能是杏鮑菇菌糠中中性和酸性洗滌纖維含量相對(duì)較高[20],因而降低了青貯的發(fā)酵速率。
3.4 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯體外發(fā)酵參數(shù)的影響
瘤胃VFA和MCP由微生物產(chǎn)生[28],與pH和NH3-N含量等指標(biāo)共同維持瘤胃功能和瘤胃微生態(tài)系統(tǒng)的穩(wěn)定[29-30]。本試驗(yàn)中,體外發(fā)酵瘤胃液pH值范圍為6.15~6.55,屬于5.5~7.0的正常范圍[31]。瘤胃微生物發(fā)酵產(chǎn)生的VFA是反芻動(dòng)物重要的能量來(lái)源,為動(dòng)物機(jī)體提供主要的代謝能[32-33]。MCP由瘤胃微生物與NH3-N、肽和氨基酸合成,提供過(guò)瘤胃蛋白[34]。適宜的NH3-N含量有助于MCP合成和微生物生長(zhǎng)[35]。本試驗(yàn)中,CS10和CSL10組NH3-N含量顯著高于其他組,與Kljak等[36]研究結(jié)果相似,這可能是其粗蛋白質(zhì)降解率較高。
3.5 杏鮑菇菌糠和植物乳桿菌對(duì)全株玉米青貯體外降解率的影響
降解率能夠反映青貯飼料在反芻動(dòng)物瘤胃中降解的難易程度[37],干物質(zhì)降解率越高說(shuō)明微生物活性越高,青貯發(fā)酵效果越好[38]。植物乳桿菌的應(yīng)用促進(jìn)了酶促糖化反應(yīng),糖類(lèi)和蛋白質(zhì)在酶作用下生成糖蛋白,增加了青貯料的瘤胃可發(fā)酵率[39]。因此,植物乳桿菌被認(rèn)為是提高青貯料消化率的有效添加劑。本試驗(yàn)中,較CS10、CS20組,CSL10、CSL20粗蛋白質(zhì)降解率顯著提高,而CSL30較CS30組沒(méi)有顯著性,這可能與杏鮑菇菌糠添加量和特性有關(guān),具體機(jī)制還需進(jìn)一步研究。
4 結(jié)論
在全株玉米中添加杏鮑菇菌糠和植物乳桿菌混合青貯,提高了干物質(zhì)和粗蛋白質(zhì)含量,改善了全株玉米青貯品質(zhì)。提高了有氧穩(wěn)定性,有氧穩(wěn)定時(shí)間最高提高61.6%;以90%全株玉米+10%杏鮑菇菌糠+混合青貯改善了體外瘤胃發(fā)酵特性,提高了干物質(zhì)、酸性洗滌纖維和粗蛋白降解率。綜合考慮,以90%全株玉米+10%杏鮑菇菌糠+植物乳桿菌0.02 g·kg-1混合青貯提高了青貯品質(zhì)和營(yíng)養(yǎng)物質(zhì)降解率,以此比例生產(chǎn)青貯飼料可獲得較好的效果。
參考文獻(xiàn)
[1] "崔大為.青貯玉米的發(fā)展前景與種植技術(shù)[J].現(xiàn)代畜牧科技,2020,4:44-45
[2] VALVERDE M E,HERNANDEZ-PEREZ T,PAREDES-LOPEZ O.Edible mushrooms:improving human health and promoting quality life[J]. International Journal of Microbiology,2015:376-387
[3] 霍永紅,蔣沙沙,盧衛(wèi)紅,等.食用菌污染因素分析及風(fēng)險(xiǎn)評(píng)估研究進(jìn)展[J].食品安全質(zhì)量檢測(cè)學(xué)報(bào),2022,13(10):3156-3163
[4] GAO X,TANG X,ZHU Q,et al. Biogas production from anaerobic co-digestion of spent mushroom substrate with different livestock manure[J]. Energies,2021,14(3):570-578
[5] 趙靜,王延鋒,孟祥海,等.我國(guó)食用菌工廠化生產(chǎn)現(xiàn)狀與發(fā)展趨勢(shì)[J].中國(guó)林副特產(chǎn),2021(5):68-71,74
[6] LAM S S,LEE X Y,ROSLI M,et al. Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation[J]. Journal of Chemical Technology and Biotechnology,2019.94(5):1406-1415
[7] LEONG Y K,MA T W,YANG F C. Recent advances and future directions on the valorization of spent mushroom substrate (SMS):a review[J]. Bioresource Technology,2022,344:126-157
[8] 黃麗琴,李松橋,唐啟源,等.全株水稻與平菇菌糠共發(fā)酵料對(duì)瀏陽(yáng)黑山羊屠宰性能、肉品質(zhì)和器官指數(shù)的影響[J].草業(yè)學(xué)報(bào),2021,30(6):133-140
[9] 鐘港,陳東,田科雄,等.發(fā)酵菌糠替代白酒糟對(duì)育肥牛瘤胃發(fā)酵參數(shù)、微生物菌群結(jié)構(gòu)和功能的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2022,34(1):381-394
[10] HU W,SCHMIDT R J,MECIONELL E E,et al. The effect of Lactobacillus buchneri 4078 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents[J]. Journal Dairy Science,2009,92(8):3907-3914
[11] "AOAC.AOAC official methods of analysis[M]. 15th ed.Arlington:Association of Official Analytical Chemists,1990:70-83
[12] VAN SOEST P J,ROBERTSON J B,LEWIS B A. Methods for dietary fiber,neutral detergent fiber,and non starch polysaccharides in relation to animal nutrition[J]. Journal Dairy Science,1991,74:3583-3597
[13] 董文成,林語(yǔ)梵,朱鴻福,等.不同品種葡萄渣對(duì)苜蓿青貯品質(zhì)和有氧穩(wěn)定性的影響[J].草業(yè)學(xué)報(bào),2020,29(4):129-137
[14] MENKE K H,RAAB L,SALEWSLI A,et al. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro[J]. Journal of Agricultural Science,1979,93(1):217-222
[15] 鄒詩(shī)雨,陳東,唐啟源,等.青貯時(shí)間對(duì)再生稻頭季全株青貯品質(zhì)和體外瘤胃發(fā)酵特性的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2020,32(07):3282-3290
[16] MUETZEL S,HUNT C L,TAVENDALE M H. Brief communication:evaluating rumen fluid from sheep and cattle as inoculum in a newly developed automated in vitro rumen batch culture system[J]. Proceeding of the New Zealand Society of Animal Production,2011,71:240-242
[17] MAKKAR H P S,SHARMA O P,DAWRA R K,et al. Simple determination of microbial protein in rumen liquor[J]. Journal Dairy Science,1982,65(11):2170-2173
[18] GUYADER J,BARON V S,BEAUCHEMIN K A. Corn forage yield and quality for silage in short growing season areas of the Canadian prairies[J]. Agronomy-basel,2018,8(9):164-189
[19] 郭江,孫穎琦,甕巧云,等.青貯玉米和青貯谷子營(yíng)養(yǎng)物質(zhì)比較分析[J].飼料研究,2022,45(19):97-103
[20] 李成艦,蔣雪,楊大盛,等.混菌發(fā)酵對(duì)杏鮑菇菌糠營(yíng)養(yǎng)成分及其體外瘤胃發(fā)酵的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,46(4):443-448
[21] TENNANT R K,SAMBLES C M,DIFFEY G E,et al. Metagenomic analysis of silage[J]. Jove-Journal of Visualized Experiments,2017,119:54936
[22] DRIEHUIS F,ELFER S J W H,SPOELSTRA S F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability[J]. Journal of Applied Microbiology,2010,87(4):583-594
[23] 王志敬,吳征敏,莊桂鋒,等.不同精粗比日糧對(duì)雷州山羊體外瘤胃發(fā)酵的影響.中國(guó)畜牧獸醫(yī),2017,44(8):2303-2310
[24] HATEW B,CONE J W,PELLIKAAN W F,et al. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle[J]. Animal Feed Science and Technology,2015,202:20-31
[25] LARSEN M L P,WEISBJERG M R,et al. Digestion site of starch from cereals and legumes in lactating dairy cows[J]. Animal Feed Science and Technology,2009,153:236-248
[26] 鄭立鑫.日糧瘤胃可降解淀粉對(duì)奶山羊乳成分合成的影響及機(jī)制[D].楊凌:西北農(nóng)林科技大學(xué),2020:3
[27] 王鐵.羊瘤胃脹氣的診斷與治療.農(nóng)技服務(wù),2017,34(23):124
[28] KIM M,MORRISON M,YU Z T. Status of the phylogenetic diversity census of ruminal microbiomes[J]. Fems Microbiology Ecology.2011,76(1):49-63
[29] LI F,WANG Z,WENG X,et al. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk[J]. Fronters in Microbiology,2017,8:2506-2516
[30] LI Y,HU X,CHA M,et al. Comparative analysis of the gut microbiota composition between captive and wild forest musk deer[J]. Fronters in Microbiology,2017,8:1705-1716
[31] CHEN L,DONG Z,SHAO T,et al. Ensiling characteristics,in vitro rumen fermentation,microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures[J]. Journal of the Science of Food and Agriculture,2019,99:2140-2151
[32] SUN P,LI J N,DU H,et al. Effects of bacillus subtilis natto and different components in culture on rumen fermentation and rumen functional bacteria in vitro[J]. Current Microbiology,2016,72:589-595
[33] SUN P,WANG J Q,DENG L F. Effects of bacillus subtilis natto on milk production,rumen fermentation,and tumimal microbiome of dairy cows[J]. Animal,2012,7:216-222
[34] XIE Y Y,WU Z Z,LIU J X,et al. Nitrogen partitioning and microbial protein synthesis in lactating dairy cows with different phenotypic residual feed intake[J]. Journal of Animal Science and Biotechnology,2019,10:356-364
[35] WANG C,HUANG Y X,YUE W B,et al. A study on the regulation of 2-methylbutyrate on the rumen fermentation in simmental steer[J]. Acta Laser Biology Sinica,2007,16(6):707-712
[36] KJAK K,PINO F,HEINRICHS A J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation,N balance,and purine derivative excretion in limit-fed dairy heifers[J]. Journal Dairy Science,2017,100(1):213-223
[37] KAMRA D N,SAHA S,BHATT N,et al. Effect of diet on enzyme profile,biochemical changes and in sacco degradability of feeds in the rumen of buffalo[J]. Asian-australasian Journal of Animal Science,2003,16(3):374-379
[38] ZHANG S,CHAUDHRY A S,RAMDANI D,et al.Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin,China[J]. Journal of Integrative Agriculture,2016,15(1):175-182
[39] ZHAO S,YANG F,WANG Y,et al. Dynamics of fermentation parameters and bacterial community in high-moisture alfalfa silage with or without lactic acid bacteria[J]. Microorganisms,2021,9:1225
(責(zé)任編輯 彭露茜)
收稿日期:2023-08-24;修回時(shí)間:2023-11-29
基金項(xiàng)目: "中央引導(dǎo)地方科技發(fā)展專項(xiàng)資金項(xiàng)目(2023ZYC017,2021QZY037);2021年湖湘英才(2021RC3139);湖南省草食動(dòng)物產(chǎn)業(yè)技術(shù)體系資助;湖南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022NK2025,2023NK2023);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023TZXD046);山東省中央引導(dǎo)地方科技發(fā)展專項(xiàng)資金項(xiàng)目(YDZX2022122);國(guó)家肉牛牦牛產(chǎn)業(yè)技術(shù)體系(CARS-37)資助
作者簡(jiǎn)介:
武偉成(1997-),男,漢族,河南鄭州人,碩士研究生,主要從事反芻動(dòng)物營(yíng)養(yǎng)與飼料研究,E-mail:15737169546@163.com;*通信作者Author for correspondence,E-mail:chendong_326@126.com;xiaodingfu2001@163.com