李想 石廣麗 耿佳麒 郭建輝 劉雨萌 孫丹 王振興 張?zhí)K蘇 唐倩 艾軍
收稿日期:2023-09-15 接受日期:2023-11-10
基金項目:吉林省科技發(fā)展計劃項目(20210202086NC)
作者簡介:李想,男,在讀碩士研究生,研究方向為果樹栽培生理。E-mail:lx18043696103@163.com
*通信作者 Author for correspondence. E-mail:aijun1005@163.com
DOI:10.13925/j.cnki.gsxb.20230365
摘? ? 要:【目的】探究溫室栽培條件對軟棗獼猴桃葉片光合特性及果實品質的影響,為軟棗獼猴桃溫室栽培提供理論依據。【方法】2021—2022年,以4年生軟棗獼猴桃品種佳綠、魁綠為試材,在溫室和露地兩種栽培環(huán)境下,比較兩種環(huán)境對兩個品種葉片的形態(tài)建成、光合特性及果實品質的影響?!窘Y果】溫室栽培的軟棗獼猴桃兩品種的凈光合速率(Pn)、氣孔導度(Gs)、蒸騰速率(Tr)等指標顯著低于露地條件。通過對快速葉綠素熒光誘導動力學曲線進行分析,溫室栽培條件下k、j、i點的相對可變熒光值顯著上升,其葉片結構具有陰生植物特性。溫室環(huán)境下對魁綠的單果質量與果形指數影響較大,對佳綠影響較小。溫室栽培中兩品種可滴定酸含量顯著上升,可溶性固形物含量、可溶性糖含量與維生素C含量無顯著變化?!窘Y論】在溫室栽培條件下,兩個軟棗獼猴桃品種對環(huán)境的適應性較為一致,首先體現為葉片形態(tài)建成趨向陰生葉,其次PSⅡ反應中心供體側及受體側活性較露地栽培降低,導致溫室內葉片利用強光和低濃度CO2的能力低于露地,最終果實外在品質及單果質量呈現一定程度的下降趨勢,但內在品質無顯著影響。
關鍵詞:軟棗獼猴桃;溫室栽培;光合特性;葉綠素熒光參數
中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2024)01-0089-12
Effects of greenhouse cultivation on the photosynthetic characteristics and fruit quality of Actinidia arguta
LI Xiang, SHI Guangli, GENG Jiaqi, GUO Jianhui, LIU Yumeng, SUN Dan, WANG Zhenxing, ZHANG Susu, TANG Qian, AI Jun*
(Horticulture College of Jilin Agricultural University, Changchun 130118, Jilin, China)
Abstract: 【Objective】The market supply window of fresh Actinidia arguta fruit is short due to the short storage life, and the leaves and branches are easily affected by natural disasters such as frost damage under open field cultivation conditions, which may lead to a decline in leaf damage, fruit yield, and poor fruit appearance quality. Therefore, attention should be paid on these problems in the cultivation of A. arguta. Greenhouse cultivation is a common method of promoting early cultivation, which has been widely used in the world. In this paper, two A. arguta varieties were cultivated in greenhouse, the effects of greenhouse cultivation on plant growth, photosynthetic characteristics and fruit quality of A. arguta were analyzed. 【Methods】 In this experiment, the four-year-old A. arguta varieties Jialü and Kuilü were placed in the solar greenhouse of the facility culture of Jilin Agricultural University, and the control was plants grown in the germplasm resource nursery of A. arguta of the University. Photosynthesis indexes and chlorophyll fluorescence indexes of leaves were measured, and the differences in leaf structure, leaf stomata and fruit quality were observed. 【Results】 The light response curves of the two varieties in greenhouse cultivation were significantly lower than those in open field cultivation. Except for Ci, the three photosynthetic indexes, Pn, Gs and Tr, were significantly lower than those in the open field cultivation. The order of Pn in each cultivation environment was Jialü open field cultivation>Kuilü open field cultivation>Jialü greenhouse cultivation>Kuilü greenhouse cultivation. Under greenhouse cultivation conditions, Jialü Pnmax decreased by 28.16% and Kuilü decreased by 24.28% compared with open field. In particular, the LCP of Jialü in greenhouse was 15.13% higher than that in open field, while Kuilü was the opposite. The Rd value of Jialü under greenhouse cultivation increased by 4.64% compared with that under open field, and Kuilü decreased by 12.47%. The apparent quantum efficiency (AQY) of Jialü in greenhouse decreased by 5.32%, and that of Kuilü increased by 24.7%. After linear regression analysis of CO2 response, the CE values of the two varieties decreased significantly in greenhouse cultivation, and the ability to use low concentration of CO2 was low, the performance of Jialü and Kuilü in greenhouse is relatively consistent. The analysis of chlorophyll fluorescence induction kinetics curve showed that the relative variable fluorescence of Vj point and Vi point increased significantly, and the values of Vk, Vj and Vi increased significantly in greenhouse cultivation compared with open field cultivation. The analysis of PSⅡ reaction center showed that there was no change in ETo/RC under greenhouse cultivation, but the ABS/RC and TRo/RC values of the two varieties cultivated in greenhouse were significantly higher than those in open field. Although the light energy absorbed and captured increased, the light energy finally used for electron transfer was the same as that in open field cultivation, most of which was used for heat dissipation and other ways to make energy loss, which showed that DIo/CSm was significantly higher than that in open field cultivation. The observation of leaf structure showed that the leaf thickness of A. arguta cultivated in greenhouse decreased significantly, which was in line with the characteristics of plants in greenhouse. The thickness of palisade tissue was smaller than that of open field cultivation, while the thickness of spongy tissue was greater than that of open field cultivation. The significant decrease in palisade/spongy ratio was the root cause of the decrease in photosynthetic capacity mentioned above. The thickness of upper and lower epidermis was smaller than that of open field cultivation, which made leaves vulnerable to external environment damage with adaptability to adversity. The stomatal density of A. arguta leaves cultivated in greenhouse was significantly lower than that in open field. Stomatal opening ratio, stomatal length and stomatal area were lower than those in open field cultivation, which led to the decrease in leaf gas exchange efficiency in greenhouse. This was the secondary reason for the decrease in CE value and Pn value. The fruit quality results show that the fruit size and weight in the greenhouse were lower than those in the open field. The transverse and longitudinal diameters of Jialü fruit under greenhouse cultivation were 4.29% and 8.79% lower than those in the open field, respectively. The longitudinal diameter, lateral diameter and single fruit weight of Kuilü were 8.36%, 2.41% and 14.07% lower than those of the open field, respectively. Although the fruit size decreased, there was no significant difference in contents of soluble solids, soluble sugars and vitamin C but a significant increase in titratable acid content. Greenhouse cultivation advanced the maturity of the fruit by 70 days, advanced the sales time of A. arguta market, extended the supply period of fresh fruit market, and brought considerable economic benefits. 【Conclusion】 Under greenhouse cultivation conditions, the adaptability of the two A. arguta varieties to the environment was relatively consistent. Firstly, the leaf morphogenesis tended to shade leaves. Secondly, the activity of the donor side and the receptor side of the PSⅡ reaction center was lower than that of the open field cultivation, resulting in weaker ability of the leaves in the greenhouse to use strong light and low concentration of CO2 than that of the open field. Finally, the external quality of the fruit decreased to a certain extent, but the internal quality had no significant change.
Key words: Actinidia arguta; Greenhouse cultivation; Photosynthetic characteristics; Chlorophyll fluorescence parameters
軟棗獼猴桃[Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq],為獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia)大型落葉木質藤本植物[1]。果實表皮光滑無毛,品質風味獨特[2]。其果實營養(yǎng)豐富,可鮮食,亦可加工成果醬、果酒等,同時具有抗氧化、降血糖和通便潤腸等功效[3]。雖然中國軟棗獼猴桃人工栽培發(fā)展較晚[4],但軟棗獼猴桃是很有開發(fā)利用前景的野生漿果類果樹[5],中國軟棗獼猴桃人工栽培以露地為主,溫室栽培起步相對較晚[6]。溫室栽培作為保護地栽培的一種,可以較好地控制病蟲害的發(fā)生及傳播,避免因雨水不均導致澇害或果實糖度降低。研究表明,近年來,溫室栽培適用于多種果樹[7-9],獼猴桃屬植物研究較晚,但設施栽培對獼猴桃的意義重大,可以有效控制獼猴桃潰瘍病的發(fā)病率[10]。溫室栽培需提前打破休眠,對果樹本身需冷量有一定要求,由于軟棗獼猴桃自身的需冷量要求不高,大部分品種在1000 h以內,其中魁綠與佳綠只需840 h、672 h左右即可[11],較低的需冷量可使軟棗獼猴桃在溫室栽培時提前升溫不影響其結果性能,故進行溫室栽培具有一定的可行性。在溫室栽培條件下,整體物候期會提前2~3個月,在吉林長春地區(qū)約在當年6月份果實成熟,較露天栽培提早上市3個月左右,能夠填補軟棗獼猴桃鮮果市場的空窗期,提高經濟效益。
目前軟棗獼猴桃葉片的光合特性研究多在露地栽培條件下,溫室條件下少見報道[12],因此深入研究溫室栽培對軟棗獼猴桃葉片光合特性及果實品質的影響,對建立科學、規(guī)范的溫室栽培模式具有重要的理論指導意義。
1 材料和方法
1.1 試驗地概況
試驗于2021年12月至2022年9月在吉林農業(yè)大學軟棗獼猴桃資源圃與設施農業(yè)基地內進行。試驗采用日光溫室栽培模式,傳統(tǒng)的露地栽培為對照。日光溫室跨度9.51 m,脊高4.50 m,長65.30 m。供水方式為滴灌,通過內、外遮陰簾調控溫度,排風扇與濕簾控制溫、濕度。種植土壤均為園土、沙子、草炭土體積比為3∶1∶1配置而成。長春地區(qū)年平均日照時數2259~3016 h,年平均降水量568.5 mm,無霜期140~150 d,霜期156 d[13]。長春地區(qū)2020年每月氣溫詳見表1。
1.2 試驗材料
供試軟棗獼猴桃品種為4年生佳綠和魁綠,以雄株品種綠王為授粉樹。溫室及露地栽培均為單龍干整形。溫室栽培于2021年12月20日進行升溫處理(揭被升溫),露地栽培隨氣候變化自然進行,試驗期間兩種栽培模式的整形修剪、肥水管理與病蟲害管理等措施保持一致。
1.3 試驗方法
試驗共設兩種栽培環(huán)境,標記結果枝基部第一花序前第3枚葉片,于盛花期(溫室為4月1日,露地為6月5日)分別在兩種栽培環(huán)境下進行光合指標及快速葉綠素熒光的測定,每個品種設20個重復;選取功能葉片,通過石蠟切片法觀察葉片結構[14];監(jiān)測溫室內兩個品種果實的可溶性固形物含量(TSS),當其達到7%時進行采收,測量果形指數及單果質量,每個品種設30個重復;待果實充分后熟后進行可溶性固形物含量、可溶性糖含量、可滴定酸含量以及維生素C含量的測定,每個品種設3次重復。露地栽培佳綠、溫室栽培佳綠、露地栽培魁綠以及溫室栽培魁綠分別用J1、J2、K1、K2代表。
1.3.1 光響應曲線的測定 光響應曲線測定參考王振興等[15]的方法。于晴天上午使用CIRAS-3便攜式光合測定系統(tǒng)(PP-SYSTEM,美國)對選取的植株葉片進行測定。分別以凈光合速率(Pn)、胞間二氧化碳濃度(Ci)、氣孔導度(Gs)、蒸騰速率(Tr)為縱軸,繪制響應曲線。利用雙曲線修正模型進行計算,得出光合作用的最大凈光合速率(Pnmax)、光飽和點(LSP)、光補償點(LCP)、暗呼吸速率(Rd)以及表觀量子效率(AQY)。
1.3.2 二氧化碳響應曲線的測定 CO2響應參考王振興等[15]的方法測定,光合有效輻射(PAR)設1400 μmol·m-2·s-1,CO2濃度設為0、100、150、200 μmol·mol-1。Pn-CO2曲線初始斜率即為羧化效率(CE)。
1.3.3 快速葉綠素熒光誘導動力學曲線的測定 該試驗參考郭建輝等[16]的方法,將葉片在黑暗條件下處理1 h,使用Pocket-PEA非調制式熒光儀(Hansatech,英國)測定軟棗獼猴桃葉片快速葉綠素熒光誘導動力學曲線(O-J-I-P曲線),參考Strasser等[17]的方法進行分析,并根據公式(Ft-Fo)/(Fm-Fo)進行標準化處理,每個品種均測20枚葉片。
1.3.4 葉片結構及氣孔的觀察 在盛花期(溫室為4月1日,露地為6月5日)選取葉幕上層照光均勻一致的功能葉片進行石蠟切片的制作以及觀察氣孔形態(tài),石蠟切片制作參考王振興等[18]的方法,氣孔形態(tài)觀察參考徐清華[19]的方法。
1.3.5 果形指數的測定 在果實采收后,使用游標卡尺對軟棗獼猴桃果實的縱徑、橫徑、側徑進行測量,由于軟棗獼猴桃為二歧聚傘花序,同一花序上著生3個果實的選擇位于中間的果實進行測量,以此保證數據的一致性。
1.3.6 果實品質的測定 在果實成熟期,每份資源采收30個典型果實,放入4 ℃冰箱中進行果實后熟,待7 d后果實完全成熟時進行果實品質的測定。TSS含量采用電子糖量儀(PAL-101,杭州齊威儀器有限公司,中國)測定;果實的可溶性糖含量采用試劑盒法進行檢測(BC0030,Solarbio,中國);可滴定酸含量參考張治安等[20]的方法采用酸堿滴定法測定;維生素C含量參考師愷豐[21]的方法采取鉬藍比色法測定。
1.4 數據分析
利用SPSS 20統(tǒng)計軟件進行方差分析,使用Microsoft Office 2021進行數據處理與作圖。
2 結果與分析
2.1 軟棗獼猴桃溫室栽培對葉片光響應的影響
由圖1-A可知,不同條件下各品種的Pn與PAR均呈正相關,在露地栽培條件下品種的Pn值顯著高于溫室栽培。PAR在200~1600 μmol·m-2·s-1內露地栽培條件的Pn值與溫室栽培間的差異逐漸增大,各栽培環(huán)境下的Pn排序為:佳綠露地栽培>魁綠露地栽培>佳綠溫室栽培>魁綠溫室栽培。溫室栽培條件下佳綠Pnmax下降28.16%、魁綠Pnmax下降24.28%;如圖1-B所示,溫室與露地條件下各處理Ci無顯著差異;從圖1-C可以看出,露地栽培軟棗獼猴桃Gs隨PAR的增加呈波動性變化,溫室內趨于平緩;在溫室栽培條件下的兩個品種,其Gs的光響應曲線與Tr的光響應曲線變化趨于一致,Gs是影響Tr變化的主要因子之一(圖1-C、D)。
不同栽培條件下的軟棗獼猴桃品種光響應特征參數存在差異(表2),溫室栽培條件下兩個品種Pnmax、LSP顯著低于露地栽培,溫室栽培佳綠LCP高于露地15.13%,而魁綠則表現相反;溫室栽培下的佳綠Rd值與露地相比上升4.64%,魁綠下降12.47%;溫室中佳綠的AQY相對下降5.32%,魁綠上升24.7%。
2.2 軟棗獼猴桃溫室栽培對葉片CO2響應的影響
將CO2濃度<200 μmol·mol-1的Pn值進行線性回歸后計算CE值,如圖2-A、B所示,兩個品種在不同栽培環(huán)境下CE值具顯著性差異,但在相同栽培環(huán)境下兩個品種之間并無顯著性差異,回歸曲線趨于一致。在溫室栽培中兩個品種CE值顯著下降,表明在溫室環(huán)境下兩個軟棗獼猴桃品種利用低濃度CO2的能力降低,并且溫室內部CO2濃度與露地相比較低,是Pnmax低于露地栽培的原因之一。
2.3 軟棗獼猴桃溫室栽培對葉片葉綠素熒光特性的影響
如圖3和圖4所示,溫室栽培增加了軟棗獼猴桃兩個品種葉片葉綠素熒光誘導動力學曲線中j點和i點的相對可變熒光,其Vk、Vj、Vi值與露地相比顯著升高。以上結果表明,在溫室環(huán)境下軟棗獼猴桃葉片的放氧復合體及電子傳遞鏈的活性發(fā)生了一定的變化,但對葉綠素熒光誘導動力學曲線進行分析,溫室栽培仍與露地栽培趨于一致。
如圖5所示,對于單位活性的PSⅡ反應中心而言,不同栽培環(huán)境對軟棗獼猴桃葉片的ETo/RC無影響,但溫室栽培兩個品種的ABS/RC、TRo/RC值顯著高于露地;溫室栽培使兩個品種反應中心吸收、耗散、捕獲的光能增加,但用于電子傳遞的能量無顯著變化。在溫室內兩個品種的DIo/CSm均顯著升高,說明溫室內的高溫使軟棗獼猴桃葉片單位面積的熱耗散增加。
2.4 栽培環(huán)境對軟棗獼猴桃葉片結構的影響
如圖6所示,通過對不同環(huán)境下的葉片結構進行觀察,兩個品種在溫室和露地栽培條件下均可見明顯的柵欄組織與海綿組織,上下表皮為不規(guī)則單層細胞,柵欄組織多為長柱狀,海綿組織多為不規(guī)則卵圓形,結構上無較大差異。
由表3可知,兩個品種在溫室中葉片的葉肉組織均受影響,表現在葉片厚度、柵欄組織、海綿組織及上下表皮厚度顯著低于露地,葉片變薄,呈陰生植物特性。在溫室中,佳綠的柵欄組織、海綿組織較魁綠發(fā)達,同時柵海比顯著高于魁綠,表明佳綠的葉片較魁綠更為適應溫室環(huán)境。
如圖7所示,2個品種在不同的栽培環(huán)境下,表皮氣孔的大小、形狀及開閉狀態(tài)存在差異,露地環(huán)境下氣孔明顯較溫室下密集。由表4可知,溫室條件下的2個品種的氣孔密度、氣孔開張比、氣孔開度、氣孔面積、氣孔長、氣孔寬及氣孔指數均呈顯著低于露地栽培。
2.5 軟棗獼猴桃溫室栽培對果實品質的影響
對兩個品種的果實進行單果質量與果形指數的調查(表5),發(fā)現在溫室環(huán)境下,兩個品種除魁綠果實橫徑外,其余指標均顯著低于露地。溫室栽培條件下佳綠果實的橫、縱徑分別比露地栽培低4.29%、8.79%;魁綠的縱徑、側徑、單果質量分別比露地栽培低8.36%、2.41%、14.07%。綜上所述,溫室栽培對果實大小及單果質量影響較大。
對果實進行生理指標的測定,結果見表6,溫室栽培使兩個品種成熟期提前70 d,佳綠與魁綠在溫室栽培中,除可滴定酸含量顯著上升外,可溶性固形物含量、可溶性糖含量以及維生素C含量均無顯著性差異,溫室栽培對果實內在品質的影響較小。
3 討 論
溫室栽培區(qū)別于露地栽培,其中光質差、日照時長短、高溫高濕、CO2濃度低是溫室環(huán)境的特點。果樹在溫室中栽培勢必會受到環(huán)境因子的影響,首先改變葉片的形態(tài)建成,進而影響光合特性,最后導致果實品質發(fā)生變化。
不同植物對光照的需求有差異,研究表明,葡萄等其他樹種對設施及弱光環(huán)境的適應性較為一致[22-25],導致葉片Pnmax與LSP顯著下降,與本研究中溫室栽培的軟棗獼猴桃葉片對環(huán)境適應的光響應模式相同。葉片的光適應性變化與葉片形態(tài)建成密不可分,其中溫室內較低的Gs與Tr直接影響著氣體交換,馬微[26]對溫室栽培葡萄的研究也表明其葉片的光合特性與之相似。
利用葉綠素熒光動力學方法可以快速、靈敏、無損傷地研究和探測各種逆境對植物光合生理的影響[27]。植物光合電子傳遞鏈中包括兩個連續(xù)作用的光系統(tǒng),光系統(tǒng)Ⅰ與光系統(tǒng)Ⅱ[28]。過高的溫度與較弱的光照度通常會影響植物PSⅡ供體側與受體側的電子傳遞體活性,使其受到可逆或不可逆的損傷[29],吳久赟等[30]發(fā)現高溫影響了PSⅡ中心捕獲電子和電子傳遞,這與本研究中佳綠、魁綠在溫室內的表現一致。由于本研究中的溫室為玻璃溫室,在冬春季時,于上午8:00—9:00逐步打開頂、側通風,維持溫度在30 ℃以內,在夏季時,頂、側通風則保持全天開放(陰雨天另作調整),溫度過高時打開排風扇,但仍時有不可控因素導致30 ℃以上的溫度,影響葉片,較高的Vj值證明在溫室內軟棗獼猴桃佳綠、魁綠葉片的PSⅡ的確受到了較高溫度的影響,可能導致葉綠素類囊體膜的活性發(fā)生改變[31]。王振興等[32]研究指出PSⅡ供體側放氧復合體(OEC)的活性與受體側電子傳遞鏈均易受到高溫影響,明顯的k點隨之出現,本研究表明溫室中軟棗獼猴桃葉片的Vk、Vj等值顯著高于露地,這與多種熱處理影響OEC敏感性的研究結果一致[33-35]。隨著葉齡的增加,過剩光能和活性氧的不斷積累可能會導致葉片出現日灼、早衰等現象[36-37]。
葉片的形態(tài)建成主要影響因素之一是光照,而形態(tài)建成后又會影響光合作用,所以葉片的形態(tài)建成對適應環(huán)境有重要作用[38]。由于溫室中光照較差、溫度和濕度較高等,兩個品種葉片結構均為葉片大而薄、柵欄組織不發(fā)達,并且柵海比較低,氣孔數較少,呈現出陰生葉的性質[39],且上下表皮細胞變薄,對逆境的適應性較差,符合溫室中的植物特點。Chen等[40]研究指出,補光的馬鈴薯葉片的厚度顯著高于對照,光照對葉片的形態(tài)建成具有決定作用。故有必要定期對溫室表面玻璃進行清洗,以保證光照充足。此外,應根據物候期變化,通過排風或灌水方式調控濕度。適度補光可以促進植物生長[41-43],在光形態(tài)建成時期,夜間對軟棗獼猴桃采用補光燈補光可以有效緩解短日照時長的影響。
由于溫室栽培的軟棗獼猴桃葉片光合能力低于露地,積累的同化物較少,因此果個小于露地。范盼盼[44]研究發(fā)現設施栽培的冬棗單果質量及果實縱橫徑顯著低于露地栽培,與本研究結果一致。但陳海豹等[45]對楊梅的研究結果相反,產生這種差異的原因可能是不同種果樹對溫室栽培的適應性有差異。與露地栽培相比,溫室中兩個品種的可溶性固形物含量、可溶性糖含量及維生素C含量與露地相比無顯著差異,說明溫室栽培對軟棗獼猴桃的糖分及維生素C積累無明顯影響,但可滴定酸含量在溫室條件下顯著高于露地栽培,表明軟棗獼猴桃的酸含量極易受溫室條件影響,最終導致糖酸比下降。一方面由于溫室內日照時長短于露地,有機物的積累較少,酸的分解能力降低;另一方面溫室內的晝夜溫差較小,夜間呼吸作用強于露地,營養(yǎng)消耗加劇,導致積累的有機物進一步流失。最終使糖含量下降,酸含量上升,糖酸比下降。
溫室環(huán)境下兩個品種間葉片結構及光能利用范圍具有差異,具有較低LCP及較高柵海比等特征的軟棗獼猴桃品種更適宜進行溫室栽培,佳綠與魁綠在溫室環(huán)境下的表現較為一致,但佳綠具有更高的柵海比,而魁綠葉片的LCP較低,品種間的栽培特性差異應作為選擇溫室栽培品種的理論依據。后續(xù)計劃對資源圃中其余品種進行溫室栽培試驗,比較需冷量、成熟期與溫室栽培適應性的關系。對現有結果推測可知,大部分軟棗獼猴桃品種進行溫室栽培具有一定的可行性。
4 結 論
在溫室栽培條件下,兩個軟棗獼猴桃品種對環(huán)境的適應性較為一致,首先體現為葉片形態(tài)建成趨向陰生葉,其次PSⅡ反應中心供體側及受體側活性較露地栽培降低,導致溫室內葉片利用強光和低濃度CO2的能力低于露地,最終單果質量出現一定程度的下降,但內在品質無顯著影響。
溫室栽培中,不同品種對環(huán)境的適應性具有一定差異,在后續(xù)工作中,應根據品種的栽培特性,篩選適宜進行溫室栽培的品種,這對建立科學、規(guī)范的軟棗獼猴桃溫室栽培具有重要的理論指導意義。
參考文獻 References:
[1] 艾軍. 中國軟棗獼猴桃種質資源[M]. 北京:中國農業(yè)出版社,2023.
AI Jun. Chinese Actinidia arguta germplasm resources[M]. Beijing:China Agriculture Press,2023.
[2] 艾軍. 軟棗獼猴桃栽培與加工技術[M]. 北京:中國農業(yè)出版社,2014.
AI Jun. Cultivation and processing technology of Actinidia arguta[M]. Beijing:China Agriculture Press,2014.
[3] 許麗文,秦紅艷,王衍莉,李嘉琪,張寶香,劉方圓. 軟棗獼猴桃成分分析及潤腸通便功效的研究[J]. 特產研究,2023,45(3):18-23.
XU Liwen,QIN Hongyan,WANG Yanli,LI Jiaqi,ZHANG Bao
xiang,LIU Fangyuan. Component analysis of Actinidia arguta and study on its effect of moistening intestines and defecating[J]. Special Wild Economic Animal and Plant Research,2023,45(3):18-23.
[4] 齊秀娟,郭丹丹,王然,鐘云鵬,方金豹. 我國獼猴桃產業(yè)發(fā)展現狀及對策建議[J]. 果樹學報,2020,37(5):754-763.
QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,FANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.
[5] 方金豹,鐘彩虹. 新中國果樹科學研究70年:獼猴桃[J]. 果樹學報,2019,36(10):1352-1359.
FANG Jinbao,ZHONG Caihong. Fruit scientific research in New China in the past 70 years:Kiwifruit[J]. Journal of Fruit Science,2019,36(10):1352-1359.
[6] 趙鳳軍. 軟棗獼猴桃溫室栽培技術[J]. 北方果樹,2020(6):24-26.
ZHAO Fengjun. Cultivation techniques of Actinidia arguta in greenhouse[J]. Northern Fruits,2020(6):24-26.
[7] 李玉婷,任利慧,王媛,周愛英,楊維,黃建. 設施栽培模式下‘冬棗光合效率限制因子研究[J]. 園藝學報,2023,50(3):647-656.
LI Yuting,REN Lihui,WANG Yuan,ZHOU Aiying,YANG Wei,HUANG Jian. Photosynthetic characteristics of Ziziphus jujuba ‘Dongzao under protected cultivation[J]. Acta Horticulturae Sinica,2023,50(3):647-656.
[8] 戚行江,梁森苗,陳海豹,俞浙萍,孫鸝,鄭錫良,張淑文.促早栽培對楊梅葉片形態(tài)及果實成熟與品質的影響[J].果樹學報,2023,40(11):2403-2412.
QI Xingjiang,LIANG Senmiao,CHEN Haibao,YU Zheping,SUN Li,ZHENG Xiliang,ZHANG Shuwen. Effects of forcing cultivation on the leaf morphology,fruit ripening and quality of Myrica rubra[J]. Journal of Fruit Science,2023,40(11):2403-2412.
[9] 孫曉華,葉麗紅,劉杰才,李曉靜,張之為,崔世茂,宋陽. 日光溫室不同結果枝類型對柑橘果實有機酸含量的影響[J]. 果樹學報,2018,35(5):565-573.
SUN Xiaohua,YE Lihong,LIU Jiecai,LI Xiaojing,ZHANG Zhiwei,CUI Shimao,SONG Yang. Effect of different types of fruiting shoots on organic acid content in citrus fruit grown in a solar greenhouse[J]. Journal of Fruit Science,2018,35(5):565-573.
[10] 饒菁. 避雨栽培下微環(huán)境對獼猴桃潰瘍病防控和品質的影響研究[D]. 重慶:重慶三峽學院,2023.
RAO Qing. Study on the effect of microenvironment on the prevention and control of Actinidia chinensis Planch. canker and quality under rain-shelter cultivation[D]. Chongqing:Chongqing three gorges university,2023.
[11] 石廣麗,艾軍,秦紅艷,趙瀅,劉海雙. 不同軟棗獼猴桃資源的需冷量[J]. 北方園藝,2018(16):81-84.
SHI Guangli,AI Jun,QIN Hongyan,ZHAO Ying,LIU Haishuang. Chilling requirement of different Actinidia argute[J]. Northern Horticulture,2018(16):81-84.
[12] PINTO D,SUT S,DALL'ACQUA S,DELERUE-MATOS C,RODRIGUES F. Actinidia arguta pulp:Phytochemical composition,radical scavenging activity,and in vitro cells effects[J]. Chemistry & Biodiversity,2021,18(3):e2000925.
[13] 莊艷婷. 長春地區(qū)10種牡丹的引種栽培試驗[D]. 長春:長春大學,2022.
ZHUANG Yanting. Introduction and cultivation of 10 resistant peonies in Changchun[D]. Changchun:Changchun University,2022.
[14] 艾軍,王英平,李昌禹,沈育杰. 五味子花芽分化的形態(tài)學研究[J]. 特產研究,2009,31(4):22-24.
AI Jun,WANG Yingping,LI Changyu,SHEN Yujie. A study on morphogenesis of flower bud differentiation in Schisandra chinensis (Tnrcz) Baill.[J]. Special Wild Economic Animal and Plant Research,2009,31(4):22-24.
[15] 王振興,呂海燕,秦紅艷,趙瀅,劉迎雪,艾軍,曹建冉,楊義明,沈育杰. 鹽堿脅迫對山葡萄光合特性及生長發(fā)育的影響[J]. 西北植物學報,2017,37(2):339-345.
WANG Zhenxing,L? Haiyan,QIN Hongyan,ZHAO Ying,LIU Yingxue,AI Jun,CAO Jianran,YANG Yiming,SHEN Yujie. Photosynthetic characteristics and growth development of Amur grape (Vitis amurensis Rupr.) under saline-alkali stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):339-345.
[16] 郭建輝,王振興,孫丹,石廣麗,張?zhí)K蘇,艾軍,于淼,劉雨萌,吳姝逸. 不同光照強度對兩份五味子資源PSⅡ活性的影響[J]. 西南農業(yè)學報,2022,35(12):2788-2793.
GUO Jianhui,WANG Zhenxing,SUN Dan,SHI Guangli,ZHANG Susu,AI Jun,YU Miao,LIU Yumeng,WU Shuyi. Effect of different light intensity on PSⅡ activity of two resources of Schisandra chinensis[J]. Southwest China Journal of Agricultural Sciences,2022,35(12):2788-2793.
[17] STRASSER R J,TSIMILLI-MICHAEL M,SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient[M]//PAPAGEORGIOU G C,GOVINDJEE. Chlorophyll a fluorescence,advances in photosynthesis and respiration. Dordrecht:Springer,2004,19:321-362.
[18] 王振興,秦紅艷,李昌禹,艾軍,張慶田. 刺五加不同葉位葉片光合特性及顯微結構研究[J]. 特產研究,2011,33(3):30-33.
WANG Zhenxing,QIN Hongyan,LI Changyu,AI Jun,ZHANG Qingtian. Studies on the photosynthetic characteristics and microstructure of Acanthopanax senticosus (Rupr. et Maxim.) Harms. leaves at different position[J]. Special Wild Economic Animal and Plant Research,2011,33(3):30-33.
[19] 徐清華. 兩種不同類型植物葉片形態(tài)解剖學指標觀測方法的研究[D]. 哈爾濱:東北農業(yè)大學,2016.
XU Qinghua. Research about observation methods of morphological and anatomical indicators in two different kinds of qlant leaves[D]. Harbin:Northeast Agricultural University,2016.
[20] 張治安,陳展宇. 植物生理學實驗技術[M]. 長春:吉林大學出版社,2008.
ZHANG Zhian,CHEN Zhanyu. Experimental techniques of plant physiology[M]. Changchun:Jilin University Press,2008.
[21] 師愷豐. 軟棗獼猴桃種質資源在長春地區(qū)的生物學特性評價研究[D]. 長春:吉林農業(yè)大學,2022.
SHI Kaifeng. Study of the evaluation for biological characteristics of the Actinidia arguta germplasm resources in Changchun area[D]. Changchun:Jilin Agricultural University,2022.
[22] 張銀鳳,蔡洪月,彭金根,劉學軍,謝利娟,張華,王艷梅. 深圳城市公園不同栽植環(huán)境對毛棉杜鵑生長的影響[J]. 南京林業(yè)大學學報(自然科學版),2023,47(2):197-204.
ZHANG Yinfeng,CAI Hongyue,PENG Jingen,LIU Xuejun,XIE Lijuan,ZHANG Hua,WANG Yanmei. Effects of different planting environments on the growth of Rhododendron moulmainense in Shenzhen urban parks[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023,47(2):197-204.
[23] 王海波,王孝娣,史祥賓,王寶亮,鄭曉翠,劉鳳之. 葡萄不同品種對設施環(huán)境的適應性[J]. 中國農業(yè)科學,2013,46(6):1213-1220.
WANG Haibo,WANG Xiaodi,SHI Xiangbin,WANG Baoliang,ZHENG Xiaocui,LIU Fengzhi. Environmental adaptability of different grape cultivars in greenhouse[J]. Scientia Agricultura Sinica,2013,46(6):1213-1220.
[24] 唐銀,楊培蓉,呂寧寧,劉子晗,鐘淑芳,黃金華,沈子宇,鄭雪燕,許珊珊,曹光球,葉義全. 遮陰對杉木幼苗生長及光合特性的影響[J]. 應用與環(huán)境生物學報,2023,29(5):1084-1092.
TANG Yin,YANG Peirong,L? Ningning,LIU Zihan,ZHONG Shufang,HUANG Jinhua,SHEN Ziyu,ZHENG Xueyan,XU Shanshan,CAO Guangqiu,YE Yiquan. Effects of shading on growth and photosynthetic characteristics of Cunninghamia lanceolata seedlings[J]. Chinese Journal of Applied and Environmental Biology,2023,29(5):1084-1092.
[25] 王志強,何方,牛良,劉淑娥. 設施栽培油桃光合特性研究[J]. 園藝學報,2000,27(4):245-250.
WANG Zhiqiang,HE Fang,NIU Liang,LIU Shue. A comparative research on photosynthesis of nectarine grown inside and outside greenhouses[J]. Acta Horticulturae Sinica,2000,27(4):245-250.
[26] 馬微. 吐魯番設施與露地栽培葡萄的生長發(fā)育差異分析[D]. 烏魯木齊:新疆農業(yè)大學,2016.
MA Wei. Analysis on difference of growth and development of grape in protected and open field cultivation in Turpan[D]. Urumqi:Xinjiang Agricultural University,2016.
[27] 陳建明,俞曉平,程家安. 葉綠素熒光動力學及其在植物抗逆生理研究中的應用[J]. 浙江農業(yè)學報,2006,18(1):51-55.
CHEN Jianming,YU Xiaoping,CHENG Jiaan. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses[J]. Acta Agriculturae Zhejiangensis,2006,18(1):51-55.
[28] APPENROTH K J,ST?CKEL J,SRIVASTAVA A,STRASSER R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution,2001,115(1):49-64.
[29] 王振興,艾軍,李曉紅,陳麗,沈育杰. 不同脅迫對軟棗獼猴桃葉片光系統(tǒng)活性的影響[J]. 華北農學報,2011,26(S1):69-73.
WANG Zhenxing,AI Jun,LI Xiaohong,CHEN Li,SHEN Yujie. Effects of different stress on activity of photosystems in leaves of Actinidia arguta (Seib. et Zucc.) Plangch. ex Miq.[J]. Acta Agriculturae Boreali-Sinica,2011,26(S1):69-73.
[30] 吳久赟,徐桂香,李海峰,曾曉燕,姜建福,劉勇翔,魏亦農,任紅松. 高溫脅迫對葡萄葉綠素熒光和光合特性參數的影響[J]. 新疆農業(yè)科學,2021,58(12):2274-2281.
WU Jiuyun,XU Guixiang,LI Haifeng,ZENG Xiaoyan,JIANG Jianfu,LIU Yongxiang,WEI Yinong,REN Hongsong. Effects of heat stress on chlorophyll fluorescence and photosynthetic characteristic parameters in grape (Vitis vinifera L. ‘Manicure finger)[J]. Xinjiang Agricultural Sciences,2021,58(12):2274-2281.
[31] 陳貽竹,李曉萍,夏麗,郭俊彥. 葉綠素熒光技術在植物環(huán)境脅迫研究中的應用[J]. 熱帶亞熱帶植物學報,1995,3(4):79-86.
CHEN Yizhu,LI Xiaoping,XIA Li,GUO Junyan. The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses[J]. Journal of Tropical and Subtropical Botany,1995,3(4):79-86.
[32] 王振興,艾軍,陳麗,范書田,何偉,秦紅艷,趙瀅. 軟棗獼猴桃葉片光系統(tǒng)Ⅱ活性對不同溫度的響應[J]. 西北植物學報,2015,35(2):329-334.
WANG Zhenxing,AI Jun,CHEN Li,FAN Shutian,HE Wei,QIN Hongyan,ZHAO Ying. Activity of photosystems Ⅱ in leaves of Actinidia arguta under different temperature treatments[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(2):329-334.
[33] ZHANG C,ZHANG W C,YAN H F,NI Y X,AKHLAQ M,ZHOU J N,XUE R. Effect of micro-spray on plant growth and chlorophyll fluorescence parameter of tomato under high temperature condition in a greenhouse[J]. Scientia Horticulturae,2022,306:111441.
[34] ZHANG L X,CHANG Q S,HOU X G,WANG J Z,CHEN S D,ZHANG Q M,WANG Z,YIN Y,LIU J K. The effect of high-temperature stress on the physiological indexes,chloroplast ultrastructure,and photosystems of two herbaceous peony cultivars[J]. Journal of Plant Growth Regulation,2023,42(3):1631-1646.
[35] SHEN J S,CHENG H F,LI X Q,PAN X D,HU Y E,JIN S H. Beneficial effect of exogenously applied calcium chloride on the anatomy and fast chlorophyll fluorescence in Rhododendron × pulchrum leaves following short-term heat stress treatment[J]. Agronomy,2022,12(12):3226.
[36] 李化龍,王景紅,張維敏,柏秦鳳,張燾,潘宇鷹,權文婷. 高溫脅迫對獼猴桃葉片葉綠素熒光特性的影響[J]. 應用氣象學報,2021,32(4):468-478.
LI Hualong,WANG Jinghong,ZHANG Weimin,BAI Qinfeng,ZHANG Tao,PAN Yuying,QUAN Wenting. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit[J]. Journal of Applied Meteorological Science,2021,32(4):468-478.
[37] STRASSERF R J,SRIVASTAVA A,GOVINDJEE. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry and Photobiology,1995,61(1):32-42.
[38] 魯菁. 異質性光環(huán)境對不同品種大豆葉片形態(tài)結構及光合特性的影響[D]. 雅安:四川農業(yè)大學,2019.
LU Jing. Effects of heterogeneous light on morphological structure and photosynthetic characteristics of soybean leaves[D]. Yaan:Sichuan Agricultural University,2019.
[39] XIE F C,SHI Z J,ZHANG G Y,ZHANG C T,SUN X Y,YAN Y,ZHAO W,GUO Z X,ZHANG L,FAHAD S,SAUD S,CHEN Y J. Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading[J]. Scientia Horticulturae,2020,274:109674.
[40] CHEN L L,ZHANG K,GONG X C,WANG H Y,GAO Y H,WANG X Q,ZENG Z H,HU Y G. Effects of different LEDs light spectrum on the growth,leaf anatomy,and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse[J]. Journal of Integrative Agriculture,2020,19(1):108-119.
[41] 母德錦,吳美珍,余瓊芬,胡小龍. LED紅光對蠶豆幼苗生長和生理生化特性的影響[J]. 中國瓜菜,2023,36(2):35-41.
MU Dejin,WU Meizhen,YU Qiongfen,HU Xiaolong. Effects of LED red light on growth,physiology and biochemistry features of Vicia faba seedlings[J]. China Cucurbits and Vegetables,2023,36(2):35-41.
[42] 劉志強,朱新紅,劉勇鵬,王清,李春,張嬋,姜俊. 夜間不同LED補光時段對番茄幼苗生長生理指標的影響[J]. 中國瓜菜,2022,35(8):79-85.
LIU Zhiqiang,ZHU Xinhong,LIU Yongpeng,WANG Qing,LI Chun,ZHANG Chan,JIANG Jun. LED lighting periods at night affects the growth and development of tomato seedlings[J]. China Cucurbits and Vegetables,2022,35(8):79-85.
[43] 王舒亞,徐威,唐中祺,王鵬,景濤,劉琪,馬正宇,呂劍,郁繼華. 不同補光時長對日光溫室西葫蘆生長、品質及產量的影響[J]. 中國瓜菜,2020,33(4):23-27.
WANG Shuya,XU Wei,TANG Zhongqi,WANG Peng,JING Tao,LIU Qi,MA Zhengyu,L? Jian,YU Jihua. Effects of different duration of light supplementation on growth,quality and yield of Cucurbita pepo in greenhouse[J]. China Cucurbits and Vegetables,2020,33(4):23-27.
[44] 范盼盼. 不同栽培環(huán)境及其對冬棗生長結果和效益的影響[D]. 阿拉爾:塔里木大學,2021.
FAN Panpan. Different cultivation environments and their effects on the growth,fruits and benefits of winter jujube[D]. Alar:Tarim University,2021.
[45] 陳海豹,戚行江,張淑文,俞浙萍,孫鸝,鄭錫良,梁森苗. 不同促成設施栽培模式對楊梅果實品質形成的影響[J]. 浙江農業(yè)科學,2023,64(8):1885-1891.
CHEN Haibao,QI Xingjiang,ZHANG Shuwen,YU Zheping,SUN Li,ZHENG Xiliang,LIANG Senmiao. Effects of different cultivation models in facilitation facilities on fruit quality formation of bayberry[J]. Journal of Zhejiang Agricultural Sciences,2023,64(8):1885-1891.