李曉誼 陸曉瑩 黃巧玉 李永強(qiáng) 宗宇 徐麗珊 郭衛(wèi)東
收稿日期:2023-10-15 接受日期:2023-11-22
基金項(xiàng)目:浙江省農(nóng)業(yè)新品種選育重大科技專項(xiàng)(2021C02066-9);浙江省科技廳重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018C02007);浙江省大學(xué)生科技創(chuàng)新活動(dòng)計(jì)劃暨新苗人才計(jì)劃(2021R404079)
作者簡(jiǎn)介:李曉誼,在讀碩士研究生,研究方向?yàn)楣麡?shù)遺傳育種。E-mail:lixiaoyi0328@163.com
*通信作者 Author for correspondence. E-mail:yzong@zjnu.cn;E-mail:xls@zjnu.cn
DOI:10.13925/j.cnki.gsxb.20230427
摘? ? 要:【目的】探究果膠裂解酶基因在藍(lán)莓硬肉品種和軟肉品種果實(shí)硬度差異中的作用,為選育高硬度藍(lán)莓品種提供參考。【方法】以藍(lán)莓硬肉品種Star和軟肉品種ONeal不同發(fā)育時(shí)期的果實(shí)為材料,測(cè)定果實(shí)硬度、細(xì)胞壁物質(zhì)含量和果膠裂解酶活力,分析比較果肉細(xì)胞解剖結(jié)構(gòu),克隆果膠裂解酶基因并研究其表達(dá)模式,轉(zhuǎn)化番茄驗(yàn)證VcPL的功能。【結(jié)果】S4(膨大期)到S6(紅果期)時(shí)期是果實(shí)硬度快速下降關(guān)鍵時(shí)期,果肉細(xì)胞在發(fā)育初期細(xì)胞壁輪廓清晰,Star果肉細(xì)胞出現(xiàn)結(jié)構(gòu)破損的時(shí)期晚于ONeal,果實(shí)硬度與可溶性果膠含量、果膠裂解酶活力均呈極顯著負(fù)相關(guān),VcPL41和VcPL65編碼區(qū)序列長(zhǎng)度分別為1230 bp和1209 bp,Star和ONeal中VcPL65氨基酸序列完全相同,VcPL41的序列在品種間有4個(gè)氨基酸差異。2個(gè)基因在Star中快速上調(diào)表達(dá)的時(shí)期晚于ONeal。超表達(dá)VcPL41和VcPL65的番茄果實(shí)硬度顯著小于對(duì)照組,可溶性果膠含量顯著高于對(duì)照組?!窘Y(jié)論】藍(lán)莓硬肉品種Star和軟肉品種ONeal果實(shí)硬度差異受果膠裂解酶活力和可溶性果膠含量影響,VcPL41和VcPL65能夠加速果實(shí)成熟軟化進(jìn)程。
關(guān)鍵詞:藍(lán)莓;果實(shí)硬度;果膠;果膠裂解酶;VcPLs;基因克隆
中圖分類號(hào):S663.9 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)01-0001-11
Gene cloning and function analysis of VcPLs genes in blueberries with different fruit firmness
LI Xiaoyi1, LU Xiaoying1, HUANG Qiaoyu1, LI Yongqiang1, 2, ZONG Yu1, 2*, XU Lishan1, 2*, GUO Weidong1, 2
(1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; 2Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, Zhejiang, China)
Abstact: 【Objects】 Fruit firmness is an significant classification indicator of fruit quality, which directly affects fruit mechanical harvesting, transportability, storage and processing. This study aimed to explore the function of the pectin lyase genes on fruit firmness between firm-flesh and soft-flesh blueberry cultivars in order to enrich the molecular mechanism of fruit firmness alteration, and to provide a reference for breeding high-firmness blueberry cultivars. 【Methods】 The blueberry fruits at six developmental stages from S3 (fruit setting) to S8 (maturation) of firm-flesh cultivar Star and soft-flesh cultivar ONeal were used as materials for the study. The fruit firmness, cell wall components including cellulose, hemicellulose and soluble pectin were measured. The activity of pectin lyase were analyzed and the correlation between the fruit firmness and physiological and biochemical indicators were calculated. The fruit anatomical structures at six developmental stages were compared between two cultivars with firm and soft flesh. We screened two pectin lyase (PL) genes according to transcript abundance in the fruits at these six stages. The two PL genes were cloned and their expression patterns at six stages were studied using quantification PCR. The functions of VcPLs genes were checked through inducing over-expression in the tomato fruits. 【Results】 The fruit firmness of the two blueberry cultivars showed a downward trend as fruit development. They decreased rapidly from S4 to S6 stages, and then showed a gentle decrease trend. Both Star and ONeal reached the maximum value of fruit firmness at the S4 stage. The critical stage for rapid decline of the fruit firmness happened from stages S4 to S6. At the early stages of the fruit development (S3 and S4), the flesh cells closed to the fruit skin were intact and tightly arranged without structure collapse. The boundary of the flesh cells was clear. The flesh cell structures of ONeal and Star gradually became disordered as the fruit expansion. But the changes occured earlier in the fruits of ONeal than those of Star. The contents of cellulose and hemicellulose generally showed a downward trend during the process of the fruit firmness reduction, and the content of hemicellulose showed few changes both in ONeal and Star. The significant differences of the hemicellulose content were observed only at the S4 and S5 stages between ONeal and Star cultivars. The soluble pectin contents showed an increased trend as the fruit softening progress, which raised quickly from the S5 stage. The upward trend in the fruits of ONeal was greater than those of Star, and the soluble pectin content in the mature fruits of ONeal was significantly higher than that in the Star fruits. The alteration trend of the pectin lyase activity at S3 and S4 stages were similar to the changes pattern of the soluble pectin content. The enzyme activity started to increase from S5 stage, and upward change in the fruits of ONeal was more obvious than those of Star. The correlation analysis results showed that there were extremely significant negative correlations between the fruit firmness, soluble pectin content and pectin lyase activity. The coding sequence lengths of the VcPL41 and VcPL65 were 1230 and 1209 base pairs, respectively. The amino acid sequences of VcPL65 in the fruits of Star and ONeal were the same. But VcPL41 has four amino acid differences between those two cultivars, namely amino acids at positions of 3, 92, 181 and 221, of which the alteration at position of 221 occured in the conserved domain Motif 1. The period of rapid up-regulation expression of the two genes in the fruits of Star was later than those of ONeal. The VcPL41 and VcPL65 genes were induced to express using estradiol from green stage of tomato fruits due to possible perish caused by cell wall construction failure when tomato seedlings were young. The color break time of tomato was earlier in the VcPL41 and VcPL65 overexpression tomato lines than those in the control. In addition, the sepal edges of the fruit in overexpression lines dried up, and this phenotype was more noticeable in the VcPL65 transgenic lines. The fruit firmness of the tomato overexpression lines was significantly smaller than that of the control, and the soluble pectin content was dramatically higher than that of the control. 【Conclusion】The pivotal difference of fruit firmness between the firm-flesh blueberry cultivar Star and the soft-flesh cultivar ONeal occurred at stages S4 to S6. The cell layer near the fruit skin was loose and the intercellular spaces were enlarged during the fruit softening. Both the pectin lyase enzyme activity and the soluble pectin content were increased. The physiological and biochemical indicators closely related to the decrease of fruit firmness showed significant differences between Star and ONeal cultivars. The alteration in the soft-flesh cultivar ONeal were generally earlier and more noticeable than that in the firm-flesh cultivar Star. There was a significant positive correlation between the soluble pectin content and pectin lyase activity and significant negative correlations between the fruit firmness and pectin lyase activity and soluble pectin content. Our results indicated that the VcPL41 and VcPL65 genes probably would have the function of accelerating the fruit softening and ripening process in blueberry.
Key words: Blueberry; Fruit firmness; Pectin; Pectin lyase; VcPLs; Gene cloning
硬度是果實(shí)品質(zhì)分級(jí)的重要指標(biāo),直接影響果實(shí)機(jī)械采收、運(yùn)輸、貯藏加工等過(guò)程[1-2]。藍(lán)莓(Vaccinium spp.)不同品種的果實(shí)硬度存在差異,硬肉品種在機(jī)械采收和長(zhǎng)距離運(yùn)輸方面比軟肉品種更有優(yōu)勢(shì)[3]。消費(fèi)者對(duì)鮮食藍(lán)莓的喜好程度與果實(shí)硬度呈顯著正相關(guān)[4],高硬度果實(shí)有更高的脆度和彈性反饋力[5],更受消費(fèi)者歡迎,培育高硬度果實(shí)品種對(duì)藍(lán)莓產(chǎn)業(yè)健康可持續(xù)發(fā)展至關(guān)重要[3,6]。目前關(guān)于藍(lán)莓果實(shí)硬度的報(bào)道集中在采后貯藏環(huán)節(jié)[4,7-8],關(guān)于發(fā)育時(shí)期果實(shí)硬度的報(bào)道較少,但越來(lái)越多研究表明發(fā)育期具有更高硬度的果實(shí)在成熟時(shí)傾向于保持其硬度特征[9]。
果實(shí)硬度下降與細(xì)胞壁結(jié)構(gòu)、組分含量變化密切相關(guān)[10-12],植物細(xì)胞壁一般由纖維素、半纖維素和果膠組成,隨著果實(shí)的發(fā)育、成熟或貯藏時(shí)間延長(zhǎng),細(xì)胞壁物質(zhì)水解導(dǎo)致果實(shí)軟化[12-13]。已有研究表明果膠甲酯酶(pectin methylesterase,PME)與果實(shí)軟化無(wú)直接聯(lián)系[14];多聚半乳糖醛酸酶(polygalacturonase,PG)酶活力在硬肉葡萄果實(shí)軟化階段幾乎沒(méi)有變化[15],沉默PG基因不會(huì)改變番茄果實(shí)可溶性果膠含量[16]。但在沉默PL基因的番茄果實(shí)中,果膠可溶性和解聚度都會(huì)受到抑制。多個(gè)物種中報(bào)道了果膠裂解酶(pectin lyase,PL)參與果實(shí)軟化。香蕉(Musa acuminata)和草莓(Fragaria ananassa)果實(shí)成熟時(shí)期PL酶活力顯著增加[17-18],葡萄(Vitis vinifera)VvPL11在果實(shí)發(fā)育期高表達(dá),過(guò)表達(dá)VvPL11基因的番茄果實(shí)相比對(duì)照果實(shí)硬度降低[15]。沉默SlPL基因可抑制果肉細(xì)胞胞間層果膠降解,減緩番茄果實(shí)硬度下降[16]。沉默PL基因的草莓(F. ananassa)果實(shí)硬度顯著高于對(duì)照果實(shí)[18]。果膠可溶性變化是藍(lán)莓果實(shí)軟化的主要原因之一,但其具體機(jī)制尚不完全清楚[19]。
筆者課題組前期采用優(yōu)化的方法測(cè)定了36個(gè)藍(lán)莓品種的果實(shí)硬度,篩選得到硬肉品種Star和軟肉品種ONeal,2個(gè)品種遺傳背景相似(ONeal為Star父本),果實(shí)硬度卻存在顯著差異[3],果膠裂解酶基因在果實(shí)硬度差異中發(fā)揮的作用尚不清晰。筆者在本研究中測(cè)定2個(gè)藍(lán)莓品種果實(shí)不同時(shí)期纖維素、半纖維素和果膠含量,比較果實(shí)不同發(fā)育時(shí)期的果肉細(xì)胞,分析細(xì)胞壁組分與果實(shí)硬度的相關(guān)性,基于果膠裂解酶基因全基因組鑒定和不同發(fā)育時(shí)期果實(shí)轉(zhuǎn)錄組數(shù)據(jù),筆者課題組篩選到在藍(lán)莓不同硬度果實(shí)中存在表達(dá)豐度差異的2個(gè)VcPL基因,克隆VcPLs基因并進(jìn)行番茄轉(zhuǎn)基因功能驗(yàn)證,以期探明VcPL基因在藍(lán)莓硬肉品種和軟肉品種果實(shí)硬度差異中的作用,豐富果實(shí)硬度變化研究機(jī)制,為選育高硬度藍(lán)莓品種提供參考。
1 材料和方法
1.1 試驗(yàn)材料
藍(lán)莓果實(shí)采自浙江師范大學(xué)藍(lán)莓種質(zhì)資源圃。隨機(jī)選取同一區(qū)組的Star和ONeal藍(lán)莓樹(shù)各20株,參考沈朱俐等[3]對(duì)藍(lán)莓果實(shí)發(fā)育時(shí)期的劃分,依據(jù)大小和著色程度篩選6個(gè)發(fā)育時(shí)期(圖1)的足量(≥150個(gè))果實(shí),室溫條件下放置1 h去除田間熱,去除傷果和病果,選擇果實(shí)大小和發(fā)育狀態(tài)相似的100個(gè)果實(shí)。兩個(gè)品種分別隨機(jī)取60個(gè)果實(shí)進(jìn)行硬度測(cè)定,取6個(gè)果實(shí)用于果肉細(xì)胞解剖結(jié)構(gòu)觀察,剩余果實(shí)使用液氮速凍后放置在-80 ℃?zhèn)溆谩?/p>
1.2 果實(shí)硬度測(cè)定
使用Firmtech FT7果實(shí)硬度計(jì)(UP GmbH Firmensitz,德國(guó)),參照沈朱俐等[3]的方法測(cè)定藍(lán)莓不同發(fā)育時(shí)期果實(shí)的硬度。測(cè)量模式選擇形變閾值模式(Deflection threshold),形變閾值根據(jù)果實(shí)發(fā)育時(shí)期設(shè)置為1.0(S3,坐果期;S4,膨大期)和2.0 mm(S5,白綠期;S6,紅綠期;S7,紫果期;S8,成熟期)。將硬度計(jì)探頭垂直對(duì)準(zhǔn)果實(shí)赤道面進(jìn)行測(cè)量,使用FT7 Control軟件(UP GmbH Firmensitz,德國(guó))記錄探頭擠壓的反饋質(zhì)量并計(jì)算果實(shí)硬度。
1.3 果實(shí)解剖結(jié)構(gòu)觀察
將新鮮藍(lán)莓果實(shí)縱向切開(kāi),切取邊長(zhǎng)為5 mm左右的帶皮果肉小塊,快速置于FAA固定液中。充分固定后分別用梯度乙醇(75%、85%、95%、兩次100%乙醇)、透明劑、二甲苯浸泡,揮發(fā)二甲苯后使用液體石蠟浸泡兩次。用石蠟包埋果肉樣品,設(shè)置厚度6~11 ?m在切片機(jī)(Leica Biosystems RM2245)上切片,粘片和脫蠟后進(jìn)行番紅固綠對(duì)染,中性樹(shù)膠封片置于顯微鏡下觀察。
1.4 果實(shí)細(xì)胞壁物質(zhì)含量和果膠裂解酶活力測(cè)定
參考海龍飛等[20]的方法測(cè)定纖維素、半纖維素和可溶性果膠含量,使用光譜法試劑盒(蘇州科銘生物公司)測(cè)定果膠裂解酶活力,均設(shè)置3次生物學(xué)重復(fù),使用Microsoft Excel 2021和SPSS 19.0軟件進(jìn)行圖表制作和數(shù)據(jù)分析,采用Duncan新復(fù)極差法分析不同品種和發(fā)育時(shí)期之間的差異顯著性。
1.5 VcPL基因克隆和表達(dá)模式分析
采用改良CTAB法分別提取Star和ONeal藍(lán)莓不同發(fā)育時(shí)期的果實(shí)RNA,利用試劑盒(TaKaRa,大連)反轉(zhuǎn)錄成cDNA。以Draper藍(lán)莓轉(zhuǎn)錄本序列為模板設(shè)計(jì)基因克隆引物(表1),采用Oligo Calc檢查引物穩(wěn)定性,PCR擴(kuò)增產(chǎn)物經(jīng)割膠回收后連接到pMD-19T載體上,轉(zhuǎn)化DH5α大腸桿菌,菌液PCR檢測(cè)后送擎科生物技術(shù)有限公司(杭州,浙江)測(cè)序。使用Primer-BLAST設(shè)計(jì)Quantitative PCR(qPCR)引物(表1),由生工(上海)生物工程有限公司合成。以藍(lán)莓VcGAPDH為內(nèi)參基因進(jìn)行qPCR,反應(yīng)體系10 μL包括:2× SYBR Green qPCR premix(TaKaRa,大連)5 μL,cDNA 模板1 μL,上、下游引物(10 μmol·L-1)各 1 μL,雙蒸水7 μL。反應(yīng)程序?yàn)椋?4 ℃預(yù)變性3 min;94 ℃變性30 s,58 ℃退火30 s,72 ℃延伸30 s,30 個(gè)循環(huán);循環(huán)結(jié)束后 72 ℃ 10 min。每個(gè)樣品進(jìn)行3次生物學(xué)重復(fù),使用2?ΔΔCt法計(jì)算相對(duì)表達(dá)量。
1.6 VcPLs誘導(dǎo)表達(dá)載體構(gòu)建
將克隆得到的基因連接到pMD19-T載體,用限制性核酸內(nèi)切酶XhoⅠ和SpeⅠ(TaKaRa,大連)酶切VcPL-pMD19-T和pER8質(zhì)粒,獲得相同的雙酶切位點(diǎn)。將目的片段連接到誘導(dǎo)表達(dá)載體pER8中,轉(zhuǎn)化大腸桿菌DH5α,進(jìn)行菌液PCR和雙酶切驗(yàn)證,將構(gòu)建成功的載體轉(zhuǎn)化農(nóng)桿菌GV3101。
1.7 VcPL轉(zhuǎn)基因功能驗(yàn)證
將Micro-Tom種子進(jìn)行消毒處理,在培養(yǎng)皿中暗培養(yǎng)3 d后移至光下,光照/黑暗周期為16 h/8 h培養(yǎng)4 d,黑暗和光照條件下的溫度均為24 ℃。將萌發(fā)的幼苗移栽到土壤中,待子葉完全展開(kāi)后切除,保留2~3 cm下胚軸用于菌液侵染,將1 mL于1.6構(gòu)建成功的載體轉(zhuǎn)化農(nóng)桿菌GV3101菌液分多次滴加在切口平面處。暗培養(yǎng)1 d后進(jìn)行光照(光照/黑暗為16 h/8 h)培養(yǎng),溫度均為24 ℃;同時(shí)以pER8空載為對(duì)照進(jìn)行轉(zhuǎn)化。切口萌生新植株后提取基因組DNA,利用PCR鑒定轉(zhuǎn)基因陽(yáng)性植株用于后續(xù)試驗(yàn)。
待轉(zhuǎn)基因陽(yáng)性植株進(jìn)入花后20 d,選擇長(zhǎng)勢(shì)一致、果實(shí)大小相似的綠果期番茄,在其果面均勻噴施雌二醇,48 h后觀察表型。使用Firmtech FT7測(cè)定番茄果實(shí)硬度,參考曹建康等[21]的方法對(duì)番茄果實(shí)中可溶性果膠進(jìn)行提取和測(cè)定。利用CTAB法提取果實(shí)RNA,使用HiScript? Reverse Transcriptase Kit(Vazyme)反轉(zhuǎn)錄cDNA,以VcPLs基因引物進(jìn)行qPCR,反應(yīng)程序、反應(yīng)體系、相對(duì)表達(dá)量計(jì)算方法同1.5。
2 結(jié)果與分析
2.1 不同發(fā)育時(shí)期果實(shí)硬度變化
2個(gè)藍(lán)莓品種的果實(shí)硬度總體表現(xiàn)為下降趨勢(shì),但S3到S4時(shí)期有小幅度上升(圖2)。S4到S6時(shí)期果實(shí)硬度快速下降,之后降幅趨于平緩。Star和ONeal都在S4時(shí)期達(dá)到果實(shí)硬度最大值,果實(shí)硬度分別為1 061.5 g·mm-1和1 207.7 g·mm-1。Star和ONeal在S6時(shí)期的果實(shí)硬度已經(jīng)下降到273.4 g·mm-1和227.1 g·mm-1,ONeal降幅遠(yuǎn)大于Star。2個(gè)品種果實(shí)硬度最小值出現(xiàn)在S8時(shí)期,分別為217.0 g·mm-1和165.9 g·mm-1。
2.2 不同發(fā)育時(shí)期果實(shí)解剖結(jié)構(gòu)觀察
對(duì)藍(lán)莓果實(shí)不同發(fā)育時(shí)期的果皮和果肉細(xì)胞結(jié)構(gòu)進(jìn)行觀察,結(jié)果表明軟肉品種ONeal和硬肉品種Star果肉細(xì)胞結(jié)構(gòu)逐漸失序,ONeal中早于Star(圖3)。2個(gè)藍(lán)莓品種的果實(shí)在發(fā)育初期(S3和S4)近果皮處果肉細(xì)胞結(jié)構(gòu)完整,排列緊密,細(xì)胞壁輪廓清晰。從S5時(shí)期開(kāi)始ONeal果實(shí)近果皮處果肉細(xì)胞出現(xiàn)結(jié)構(gòu)破損,而Star果實(shí)中的細(xì)胞結(jié)構(gòu)仍較為完整。在S6到S8時(shí)期,大量果肉細(xì)胞結(jié)構(gòu)逐漸趨于不完整,失序狀態(tài)嚴(yán)重,ONeal比Star更加突出。
2.3 果實(shí)細(xì)胞壁結(jié)構(gòu)物質(zhì)含量和果膠裂解酶活力
對(duì)果實(shí)纖維素、半纖維素、可溶性果膠等細(xì)胞壁結(jié)構(gòu)物質(zhì)含量和果膠裂解酶活力進(jìn)行了測(cè)定,結(jié)果表明纖維素和半纖維素含量在果實(shí)硬度降低過(guò)程中總體均呈現(xiàn)下降趨勢(shì)(圖4-A、B)。除S4時(shí)期外,2個(gè)品種間的纖維素含量存在顯著差異,ONeal纖維素含量(w,后同)最大值在S3時(shí)期,為10.0 mg·g-1,Star出現(xiàn)在S4時(shí)期,為8.20 mg·g-1;2個(gè)品種纖維素含量最小值均出現(xiàn)在S8時(shí)期。果實(shí)發(fā)育期半纖維素含量變化較小,品種間僅在S4和S5兩個(gè)時(shí)期存在顯著差異(圖4-B)??扇苄怨z含量隨著果實(shí)軟化呈上升趨勢(shì),從S5時(shí)期開(kāi)始快速增加,ONeal漲幅大于Star,最大值分別出現(xiàn)在S7和S8兩個(gè)時(shí)期,ONeal果實(shí)中可溶性果膠含量顯著高于Star(圖4-C)。果膠裂解酶活力在S3和S4兩個(gè)時(shí)期變化較小,與可溶性果膠含量增加趨勢(shì)相似,酶活力從S5時(shí)期開(kāi)始升高,ONeal中趨勢(shì)比Star更明顯。果膠裂解酶在ONeal S5到S8時(shí)期均保持在較高活力,且顯著大于Star。Star中酶活力從S6時(shí)期才開(kāi)始保持在高水平(圖4-D)。
2.4 果實(shí)硬度與細(xì)胞壁結(jié)構(gòu)物質(zhì)含量、果膠裂解酶活力相關(guān)性分析
對(duì)細(xì)胞壁結(jié)構(gòu)物質(zhì)含量和果膠裂解酶活力與果實(shí)硬度進(jìn)行相關(guān)性分析(表2),結(jié)果表明,纖維素和半纖維素含量與果實(shí)硬度呈顯著或極顯著正相關(guān),相關(guān)系數(shù)分別為0.688和0.741。與可溶性果膠含量和果膠裂解酶活力均呈極顯著負(fù)相關(guān),其相關(guān)系數(shù)分別為-0.742和-0.823,果膠裂解酶活力與果實(shí)硬度相關(guān)性最顯著??扇苄怨z含量與果膠裂解酶活力呈極顯著正相關(guān),相關(guān)系數(shù)為0.727。
2.5 VcPL基因克隆和表達(dá)模式分析
克隆得到VcPL41和VcPL65的編碼區(qū)全長(zhǎng)序列,長(zhǎng)度為1230 bp和1209 bp(圖5),分別編碼409個(gè)和402個(gè)氨基酸,Star和ONeal中VcPL65氨基酸序列完全相同,VcPL41的序列相似度大于99%。VcPL41的氨基酸序列中包含果膠裂解酶保守結(jié)構(gòu)域Motif 1(WIDH)、Motif 2(DGLIDAIMGSSAITISNNYM)和Motif 3(LVQRMPRCRHGYFHVVNN),在品種間有4個(gè)氨基酸差異,分別為第3、92、181和221位的氨基酸,其中第221位氨基酸變化發(fā)生在保守結(jié)構(gòu)域Motif 1中。ONeal中氨基酸分別是蘇氨酸、纈氨酸、天冬氨酸和纈氨酸,在Star對(duì)應(yīng)位置是丙氨酸、異亮氨酸、組氨酸和甲硫氨酸(圖6)。
基因VcPL41和VcPL65相對(duì)表達(dá)量在Star和ONeal果實(shí)發(fā)育期表現(xiàn)為先升高后降低的趨勢(shì)(圖7)。2個(gè)基因在S3和S4時(shí)期表達(dá)水平很低,其相對(duì)表達(dá)量在ONeal中從S5期開(kāi)始快速增加,在S6期達(dá)到最大值,分別為76.1和13.1。Star中2個(gè)基因的相對(duì)表達(dá)量從S6時(shí)期快速上升,最大值也在S6時(shí)期,分別為85.6和12.1。VcPL41和VcPL65相對(duì)表達(dá)量在S6時(shí)期后下降,VcPL41降幅遠(yuǎn)大于VcPL65,但VcPL65的相對(duì)表達(dá)量在S8時(shí)期出現(xiàn)了小幅度增加。
2.6 番茄轉(zhuǎn)基因功能驗(yàn)證
構(gòu)建了VcPL41和VcPL65的過(guò)表達(dá)載體,遺傳轉(zhuǎn)化番茄后分別得到10和14株轉(zhuǎn)基因植株,花后20 d利用雌二醇在番茄綠果中誘導(dǎo)VcPLs基因表達(dá),結(jié)果表明VcPL41和VcPL65轉(zhuǎn)基因番茄果實(shí)轉(zhuǎn)色早于對(duì)照組(圖8)。轉(zhuǎn)基因番茄果實(shí)萼片邊緣干枯,且VcPL65轉(zhuǎn)基因番茄組更明顯(圖8-A)。番茄果實(shí)中VcPL41和VcPL65基因顯著上調(diào)表達(dá),表明誘導(dǎo)表達(dá)效果良好(圖8-B),測(cè)定了對(duì)照組和轉(zhuǎn)基因株系番茄果實(shí)硬度、可溶性果膠含量,超表達(dá)VcPLs基因的番茄果實(shí)硬度均顯著小于對(duì)照組,可溶性果膠含量均顯著高于對(duì)照組,VcPL65表現(xiàn)更突出(圖8-C、D)。
3 討 論
3.1 細(xì)胞壁物質(zhì)對(duì)果實(shí)硬度的影響
果實(shí)細(xì)胞壁是由纖維素、半纖維素和果膠為主形成的交聯(lián)結(jié)構(gòu),多種物質(zhì)共同維持細(xì)胞壁穩(wěn)定[10-13]。葡萄果實(shí)開(kāi)始軟化和著色時(shí),細(xì)胞壁邊界逐漸模糊,伴隨著成熟加劇,大量出現(xiàn)細(xì)胞壁降解現(xiàn)象[15]。這與本研究結(jié)果相似,2個(gè)藍(lán)莓品種從S5時(shí)期開(kāi)始出現(xiàn)細(xì)胞結(jié)構(gòu)的差別,軟肉品種ONeal細(xì)胞排列和大小相比硬肉品種Star更加雜亂。果實(shí)硬度下降過(guò)程中細(xì)胞壁物質(zhì)纖維素和半纖維素逐漸降解,果膠可溶性增強(qiáng),影響果實(shí)硬度的細(xì)胞壁物質(zhì)在不同果實(shí)或同類果實(shí)不同品種之間存在差異[20,22-23]。共價(jià)結(jié)合果膠和纖維素是影響蘋果品種秦冠果實(shí)硬度的主要組分,而半纖維素和水溶性果膠含量與富士果實(shí)硬度密切關(guān)聯(lián)[24]。隨著果實(shí)硬度的降低,一些蘋果品種水溶性果膠、離子結(jié)合型果膠和共價(jià)結(jié)合型果膠均呈現(xiàn)下降趨勢(shì)[25]。原果膠降解和纖維素水解是櫻桃果實(shí)軟化的關(guān)鍵因素[26],也有觀點(diǎn)認(rèn)為半纖維素和果膠含量變化是導(dǎo)致硬肉櫻桃和軟肉櫻桃果實(shí)硬度差異的主要因素,硬肉櫻桃在全紅期的半纖維素和共價(jià)結(jié)合型果膠多于軟肉品種,水溶性果膠和離子結(jié)合型果膠少于軟肉品種[27]。筆者在本研究中發(fā)現(xiàn),藍(lán)莓果實(shí)軟化過(guò)程中,纖維素含量降低,同時(shí)期的2個(gè)品種呈現(xiàn)顯著差異;半纖維素含量也表現(xiàn)出逐漸降低的趨勢(shì),但降幅較小,2個(gè)品種在S3、S6到S8共4個(gè)時(shí)期沒(méi)有顯著差異。藍(lán)莓硬肉品種Star可溶性果膠含量顯著低于軟肉品種ONeal,特別是S5到S8時(shí)期,同時(shí)期果膠裂解酶活力在品種之間也存在顯著差異,這表明果膠是影響藍(lán)莓果實(shí)硬度的主要細(xì)胞壁物質(zhì),與蘋果、櫻桃等果實(shí)中的研究結(jié)果不完全相同,暗示藍(lán)莓果實(shí)軟化和硬度差異形成機(jī)制可能有其特殊性。
3.2 超表達(dá)藍(lán)莓VcPL41和VcPL65促進(jìn)番茄果實(shí)軟化
果膠裂解酶通過(guò)β?反式消除作用催化降解去甲酯化多聚半乳糖醛酸α?1,4?糖苷鍵,在非還原性末端產(chǎn)生含有不飽和半乳糖醛酸殘基的寡聚糖[28]。已有研究表明,PL主要參與植物花器官發(fā)育、果實(shí)成熟軟化、與病原微生物互作等過(guò)程[28]。抑制PL基因表達(dá)可以提高成熟期草莓果實(shí)硬度;在番茄中沉默SlPL基因可以降低可溶性果膠含量,使得采后果實(shí)表現(xiàn)出更強(qiáng)的抗病原體和抗腐爛能力[29];MiPel1參與杧果(Mangifera indica)果實(shí)成熟過(guò)程中的果膠降解從而促進(jìn)果實(shí)軟化[30]。本研究中VcPL41和VcPL65兩個(gè)果膠裂解酶基因在果實(shí)發(fā)育后期上調(diào)表達(dá),軟肉品種ONeal中上調(diào)表達(dá)早于硬肉品種Star,且VcPL41相對(duì)表達(dá)量變化大于VcPL65(圖7),VcPL41和VcPL65的差異化表達(dá)模式可能是引起藍(lán)莓果實(shí)硬度差別的原因之一,番茄[29]和歐洲甜櫻桃[27]中果膠裂解酶基因研究結(jié)果與本研究結(jié)果相似。超表達(dá)VcPLs基因的番茄果實(shí)比對(duì)照果實(shí)轉(zhuǎn)黃更早,還出現(xiàn)了萼片干枯表型,超表達(dá)番茄果實(shí)中可溶性果膠含量顯著高于對(duì)照果實(shí),果實(shí)硬度顯著下降。這進(jìn)一步表明VcPL41和VcPL65基因具有促進(jìn)果實(shí)軟化的功能。
值得注意的是,2個(gè)品種VcPL41有4個(gè)氨基酸不同,而VcPL65氨基酸序列相同,這暗示VcPL41和VcPL65基因在品種間表達(dá)模式的差異很可能是因?yàn)槭懿煌D(zhuǎn)錄因子調(diào)控。果膠裂解酶基因可以響應(yīng)生長(zhǎng)素[28,31]、脫落酸[27]、乙烯[32-33]等植物激素,硬肉品種Star和ONeal果實(shí)同一時(shí)期的激素含量可能存在差別,導(dǎo)致PL對(duì)植物激素不同程度的響應(yīng),造成表達(dá)模式不同。對(duì)于藍(lán)莓是否屬于呼吸躍變型尚存在爭(zhēng)議,廣為接受的觀點(diǎn)是藍(lán)莓乙烯釋放量有品種特異性,目前已知大部分藍(lán)莓品種無(wú)乙烯釋放高峰。筆者課題組對(duì)Star和ONeal果實(shí)乙烯前體物質(zhì)1-氨基環(huán)丙基-1-羧酸(ACC)的測(cè)定初步表明Star和ONeal均為非呼吸躍變型,脫落酸變化趨勢(shì)一致且同時(shí)期無(wú)顯著差異,吲哚乙酸(IAA)在品種間表現(xiàn)為顯著性差異(數(shù)據(jù)未發(fā)表)。將來(lái)可以使用外源IAA處理藍(lán)莓不同發(fā)育時(shí)期的果實(shí),揭示生長(zhǎng)素及其響應(yīng)轉(zhuǎn)錄因子對(duì)果膠裂解酶基因的調(diào)控作用,進(jìn)一步闡明藍(lán)莓硬肉品種和軟肉品種果實(shí)硬度差異的形成機(jī)制。
4 結(jié) 論
藍(lán)莓硬肉品種Star和軟肉品種ONeal果實(shí)硬度差異主要發(fā)生在S4到S6時(shí)期,近果皮處細(xì)胞層松散、細(xì)胞間隙增大、果膠裂解酶活力增強(qiáng)、可溶性果膠含量上升等與果實(shí)硬度下降緊密關(guān)聯(lián)的變化在2個(gè)品種間呈顯著差異。ONeal果實(shí)中各項(xiàng)變化一般早于Star且更為顯著??扇苄怨z含量與果膠裂解酶活力呈顯著正相關(guān),果實(shí)硬度與果膠裂解酶活力和可溶性果膠含量呈顯著負(fù)相關(guān),VcPL41和VcPL65能夠加速果實(shí)成熟軟化進(jìn)程。
參考文獻(xiàn) References:
[1] HU Y N,HAN Z Y,SUN Y Q,WANG S,WANG T,WANG Y,XU K N,ZHANG X Z,XU X F,HAN Z H,WU T. ERF4 affects fruit firmness through TPL4 by reducing ethylene production[J]. The Plant Journal,2020,103(3):937-950.
[2] LI R,SUN S,WANG H J,WANG K T,YU H,ZHOU Z,XIN P Y,CHU J F,ZHAO T M,WANG H Z,LI J Y,CUI X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nature Communications,2020,11:5844.
[3] 沈朱俐,顧莉莉,李曉誼,李永強(qiáng),宗宇,徐麗珊,郭衛(wèi)東. 基于形變距離和受壓質(zhì)量混合模式測(cè)定藍(lán)莓果實(shí)硬度的方法建立和優(yōu)化[J]. 果樹(shù)學(xué)報(bào),2023,40(1):169-179.
SHEN Zhuli,GU Lili,LI Xiaoyi,LI Yongqiang,ZONG Yu,XU Lishan,GUO Weidong. Foundation and optimization of protocol for blueberry fruit firmness measurement under mix mode of deflection distance and pressure weight[J]. Journal of Fruit Science,2023,40(1):169-179.
[4] GIONGO L,PONCETTA P,LORETTI P,COSTA F. Texture profiling of blueberries (Vaccinium spp.) during fruit development,ripening and storage[J]. Postharvest Biology and Technology,2013,76:34-39.
[5] CAPPAI F,BENEVENUTO J,F(xiàn)ERR?O L,MUNOZ P. Molecular and genetic bases of fruit firmness variation in blueberry:A review[J]. Agronomy,2018,8(9):174.
[6] 劉丙花,孫銳,王開(kāi)芳,舒秀閣,孫蕾. 不同藍(lán)莓品種果實(shí)品質(zhì)比較與綜合評(píng)價(jià)[J]. 食品科學(xué),2019,40(1):70-76.
LIU Binghua,SUN Rui,WANG Kaifang,SHU Xiuge,SUN Lei. Comparison and comprehensive evaluation of fruit quality of different blueberry (Vaccinium spp.) varieties[J]. Food Science,2019,40(1):70-76.
[7] LOBOS G A,BRAVO C,VALD?S M,GRAELL J,LARA A I,BEAUDRY R M,MOGGIA C. Within-plant variability in blueberry (Vaccinium corymbosum L.):Maturity at harvest and position within the canopy influence fruit firmness at harvest and postharvest[J]. Postharvest Biology and Technology,2018,146:26-35.
[8] MONTECCHIARINI M L,SILVA-SANZANA C,VALDERRAMO L,ALEMANO S,GOLL?N A,RIVADENEIRA M F,BELLO F,V?ZQUEZ D,BLANCO-HERRERA F,PODEST? F E,TRIPODI K E J. Biochemical differences in the skin of two blueberries (Vaccinium corymbosum) varieties with contrasting firmness:Implication of ions,metabolites and cell wall related proteins in two developmental stages[J]. Plant Physiology and Biochemistry,2021,162:483-495.
[9] HUANG B W,HU G J,WANG K K,F(xiàn)RASSE P,MAZA E,DJARI A,DENG W,PIRRELLO J,BURLAT V,PONS C,GRANELL A,LI Z G,VAN DER REST B,BOUZAYEN M. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes[J]. Nature Communications,2021,12:6892.
[10] ZEPEDA B,OLMEDO P,EJSMENTEWICZ T,SEP?LVEDA P,BALIC I,BALLADARES C,DELGADO-RIOSECO J,F(xiàn)UENTEALBA C,MORENO A A,DEFILIPPI B G,MENESES C,PEDRESCHI R,CAMPOS-VARGAS R. Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness[J]. Food Chemistry,2018,268:492-497.
[11] CHEN Y Z,ZHANG S,LIN H T,LU W J,WANG H,CHEN Y H,LIN Y F,F(xiàn)AN Z Q. The role of cell wall polysaccharides disassembly in Lasiodiplodia theobromae-induced disease occurrence and softening of fresh Longan fruit[J]. Food Chemistry,2021,351:129294.
[12] BRUMMELL D A. Cell wall disassembly in ripening fruit[J]. Functional Plant Biology,2006,33(2):103-119.
[13] FORLANI S,MASIERO S,MIZZOTTI C. Fruit ripening:The role of hormones,cell wall modifications,and their relationship with pathogens[J]. Journal of Experimental Botany,2019,70(11):2993-3006.
[14] HUANG W J,CHEN M Y,ZHAO T T,HAN F,ZHANG Q,LIU X L,JIANG C Y,ZHONG C H. Genome-wide identification and expression analysis of polygalacturonase gene family in kiwifruit (Actinidia chinensis) during fruit softening[J]. Plants,2020,9(3):327.
[15] LI W X,HE C,WEI H L,QIAN J K,XIE J N,LI Z Q,ZHENG X B,TAN B,LI J D,CHENG J,WANG W,YE X,F(xiàn)ENG J C. VvPL11 is a key member of the pectin lyase gene family involved in grape softening[J]. Horticulturae,2023,9(2):182.
[16] ULUISIK S,CHAPMAN N H,SMITH R,POOLE M,ADAMS G,GILLIS R B,BESONG T M D,SHELDON J,STIEGELMEYER S,PEREZ L,SAMSULRIZAL N,WANG D D,F(xiàn)ISK I D,YANG N,BAXTER C,RICKETT D,F(xiàn)RAY R,BLANCO-ULATE B,POWELL A L T,HARDING S E,CRAIGON J,ROSE J K C,F(xiàn)ICH E A,SUN L,DOMOZYCH D S,F(xiàn)RASER P D,TUCKER G A,GRIERSON D,SEYMOUR G B. Genetic improvement of tomato by targeted control of fruit softening[J]. Nature Biotechnology,2016,34(9):950-952.
[17] MAR?N-RODR?GUEZ M C,SMITH D L,MANNING K,ORCHARD J,SEYMOUR G B. Pectate lyase gene expression and enzyme activity in ripening banana fruit[J]. Plant Molecular Biology,2003,51(6):851-857.
[18] BALDI P,ORSUCCI S,MOSER M,BRILLI M,GIONGO L,SI-AMMOUR A. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening[J]. Planta,2018,248(5):1143-1157.
[19] CAPPAI F,AMADEU R R,BENEVENUTO J,CULLEN R,GARCIA A,GROSSMAN A,F(xiàn)ERR?O L F V,MUNOZ P. High-resolution linkage map and QTL analyses of fruit firmness in autotetraploid blueberry[J]. Frontiers in Plant Science,2020,11:562171.
[20] 海龍飛,栗溫新,李志謙,李猛,陳超陽(yáng),魏紅麗,鄒東方,何暢,馮建燦,葉霞. 軟/硬肉葡萄果實(shí)細(xì)胞壁結(jié)構(gòu)、組分及降解酶活性的變化[J]. 果樹(shù)學(xué)報(bào),2023,40(4):690-698.
HAI Longfei,LI Wenxin,LI Zhiqian,LI Meng,CHEN Chaoyang,WEI Hongli,ZOU Dongfang,HE Chang,F(xiàn)ENG Jiancan,YE Xia. Variations in cell wall microstructure and components and activities of their degradation enzymes in grapes with soft or hard textures[J]. Journal of Fruit Science,2023,40(4):690-698.
[21] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)輕工業(yè)出版社,2007.
CAO Jiankang,JIANG Weibo,ZHAO Yumei. Guidance of postharvest physiological and biochemical experiment of fruits and vegetables[M]. Beijing:China Light Industry Press,2007.
[22] 陳凱莉,許軻,張賢聰,王亞楠,汪志輝,王迅. 果實(shí)中果膠代謝相關(guān)酶基因的研究進(jìn)展[J]. 園藝學(xué)報(bào),2017,44(10):2008-2014.
CHEN Kaili,XU Ke,ZHANG Xiancong,WANG Yanan,WANG Zhihui,WANG Xun. Advances in genes information involved in pectin metabolism in fruit[J]. Acta Horticulturae Sinica,2017,44(10):2008-2014.
[23] 周鶴瑩,張瑋,張卿,沈元月,秦嶺,邢宇. 森林草莓‘Ruegen果膠裂解酶基因的克隆及熒光定量表達(dá)分析[J]. 園藝學(xué)報(bào),2015,42(3):455-461.
ZHOU Heying,ZHANG Wei,ZHANG Qing,SHEN Yuanyue,QIN Ling,XING Yu. The cloning and quantitative expression analysis of pectate lyase gene in Fragaria vesca[J]. Acta Horticulturae Sinica,2015,42(3):455-461.
[24] 雷琴,任小林. 秦冠和富士蘋果果實(shí)成熟過(guò)程中的質(zhì)地變化特性[J]. 西北農(nóng)業(yè)學(xué)報(bào),2007,16(1):213-216.
LEI Qin,REN Xiaolin. Characteristics of texture change with Qinguan and fuji apples during ripening[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2007,16(1):213-216.
[25] 高滋藝,范獻(xiàn)光,楊惠娟,蔣小兵,楊亞州,趙政陽(yáng),黨智宏. 蘋果發(fā)育過(guò)程中細(xì)胞壁代謝及果肉質(zhì)地的變化[J]. 食品科學(xué),2016,37(19):70-75.
GAO Ziyi,F(xiàn)AN Xianguang,YANG Huijuan,JIANG Xiaobing,YANG Yazhou,ZHAO Zhengyang,DANG Zhihong. Correlation among cell wall components,related enzyme activities and texture of developing fruits of different apple (Malus×domestica) cultivars[J]. Food Science,2016,37(19):70-75.
[26] 沈穎,李芳東,王玉霞,張序,李延菊,趙慧,張福興. 甜櫻桃果實(shí)發(fā)育過(guò)程中細(xì)胞壁組分及其降解酶活性的變化[J]. 果樹(shù)學(xué)報(bào),2020,37(5):677-686.
SHEN Ying,LI Fangdong,WANG Yuxia,ZHANG Xu,LI Yanju,ZHAO Hui,ZHANG Fuxing. A study on the variation of cell wall components and activities of their degradation enzymes in sweet cherry during fruit development[J]. Journal of Fruit Science,2020,37(5):677-686.
[27] ZHAI Z F,XIAO Y Q,WANG Y Y,SUN Y T,PENG X,F(xiàn)ENG C,ZHANG X,DU B Y,ZHOU X,WANG C,LIU Y,LI T H. Abscisic acid-responsive transcription factors PavDof2/6/15 mediate fruit softening in sweet cherry[J]. Plant Physiology,2022,190(4):2501-2518.
[28] 陳樂(lè)天,王慧婷,韓靖鸞,欒瑩. 植物果膠裂解酶的研究現(xiàn)狀及展望[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,40(5):71-77.
CHEN Letian,WANG Huiting,HAN Jingluan,LUAN Ying. Research progress and perspective of plant pectin lysase[J]. Journal of South China Agricultural University,2019,40(5):71-77.
[29] YANG L,HUANG W,XIONG F J,XIAN Z Q,SU D D,REN M Z,LI Z G. Silencing of SlPL,which encodes a pectate lyase in tomato,confers enhanced fruit firmness,prolonged shelf-life and reduced susceptibility to grey mould[J]. Plant Biotechnology Journal,2017,15(12):1544-1555.
[30] CHOURASIA A,SANE V A,NATH P. Differential expression of pectate lyase during ethylene-induced postharvest softening of mango (Mangifera indica var. Dashehari)[J]. Physiologia Plantarum,2006,128(3):546-555.
[31] DOMINGO C,ROBERTS K,STACEY N J,CONNERTON I,RU?Z-TERAN F,MCCANN M C. A pectate lyase from Zinnia elegans is auxin inducible[J]. The Plant Journal,1998,13(1):17-28.
[32] 田嘉,曾斌,羅淑萍,李秀根,李疆. ‘庫(kù)爾勒香梨PsPL基因的克隆與表達(dá)分析[J]. 果樹(shù)學(xué)報(bào),2015,32(6):1012-1019.
TIAN Jia,ZENG Bin,LUO Shuping,LI Xiugen,LI Jiang. Cloning and expression analysis of PsPL gene in‘Korla fragrant pear (Pyrus sinkiangensis Yu)[J]. Journal of Fruit Science,2015,32(6):1012-1019.
[33] 溫波,王亞蘭,何麗麗,張峰,BOON-EK Y,柳士勇. 桃果膠裂解酶編碼基因PpPL1的鑒定及其在果實(shí)成熟軟化過(guò)程中的表達(dá)[J]. 核農(nóng)學(xué)報(bào),2020,34(8):1681-1689.
WEN Bo,WANG Yalan,HE Lili,ZHANG Feng,BOON-EK Y,LIU Shiyong. Identification of peach pectate lyase coding gene PpPL1 and its expression during fruit ripening and softening[J]. Journal of Nuclear Agricultural Sciences,2020,34(8):1681-1689.