雷杰 張碩 劉承岳 孔春賢 楊廣 李小龍 李鵬飛 何新林 李毅
摘 要 利用微咸水膜下灌溉是緩解干旱區(qū)農(nóng)業(yè)灌溉資源短缺的有效途徑之一,分析不同礦化度水源膜下滴灌對土壤鹽分分布及作物生長的影響對于確定灌溉水源礦化度閾值具有重要意義。開展4 a不同梯度礦化度水源膜下滴灌棉花測坑試驗,設(shè)置 6個處理礦化度分別為1 g/L(CK)、2 g/L(A)、3 g/L(B)、4 g/L(C)、? 5 g/L(D)和6 g/L(E),分析不同梯度礦化度水源膜下滴灌土壤鹽分累積及棉花生長特征,確定微咸水膜下滴灌棉花灌溉礦化度閾值。結(jié)果表明:2019-2022年,0~100 cm平均土壤電導率以每年0.920?? dS/m、0.995 dS/m、1.196 dS/m和1.188 dS/m的速率呈線性增長的趨勢。隨著灌溉年限增加,不同梯度微咸水膜下滴灌下土壤電導率呈現(xiàn)增加趨勢。5 g/L和6 g/L處理土壤鹽分累積最大,分別為38.70%和? 39.19%;灌水12 h后,寬行表層20~40 cm土壤鹽分累積最為明顯,土壤電導率為0.30~2.1 dS/m;窄行土壤鹽分在40~60 cm土層處出現(xiàn)累積,土壤電導率為1.26~1.93 dS/m。礦化度為3 g/L水源膜下滴灌棉花土壤鹽分累積量較小,對棉花葉片光合作用指數(shù)影響最小,生長指標和產(chǎn)量達到最大,微咸水膜下滴灌棉花適宜的灌溉水源閾值為3 g/L。
關(guān)鍵詞 礦化度;膜下滴灌;鹽分累積;棉花生長
新疆屬于溫帶大陸性氣候,干旱少雨,蒸發(fā)量大,是中國主要的棉花種植區(qū)[1]。由于特殊的氣候和地理特征,區(qū)域淡水資源短缺,膜下滴灌技術(shù)應運而生并在農(nóng)業(yè)生產(chǎn)中應用廣泛。據(jù)調(diào)查,新疆每年可利用的地下微咸水為17.24×108 m3,微咸水膜下滴灌技術(shù)的發(fā)展為緩解區(qū)域農(nóng)業(yè)用水短缺提供了新的途徑[2-3]。膜下滴灌可以將鹽分隨水分遷移到根區(qū)以下,為作物根區(qū)提供適宜養(yǎng)分吸收環(huán)境;并且覆膜可以抑制因土壤表層強烈蒸發(fā),達到節(jié)水、抑鹽和增產(chǎn)的效果[4]。
國內(nèi)外許多學者開展了微咸水灌溉下土壤水鹽運移相關(guān)研究,為微咸水科學使用提供了基礎(chǔ)依據(jù)[5-7]。研究表明,隨著灌溉水礦化度的增加,棉花出苗率降低,葉面積指數(shù)、株高、莖粗減小,葉綠素含量、光合速率和蒸騰速率降低,產(chǎn)量減少[8-10]。Wang等[11]研究發(fā)現(xiàn)利用低于3.0 g/L微咸水膜下滴灌對棉花產(chǎn)量沒有造成影響,而且不會造成鹽分在土壤中累積。Zartman等[12]在佛羅里達州開展了4 a堿性土壤咸水灌溉作物研究,研究表明灌水濃度從0.4 dS/m增加到6.0 dS/m,顯著降低了土壤電導率。Symbol`@@郭太龍等[13]研究了礦化度1~5 g/L微(咸)水在土壤中入滲能力,發(fā)現(xiàn)35~45 cm土層出現(xiàn)積鹽,濕潤鋒邊界處鹽分達到最大,土壤表層0~30 cm水分都達到飽和。劉雪艷等[8]認為當灌溉水的礦化度為 2.36~3.39 g/L時對棉花的生理生長影響較小,產(chǎn)量減少11.85%。徐鑫等[14]利用3個梯度微咸水滴灌棉花幼苗,5 mS/cm處理下土壤在40~? 60 cm土壤含鹽量最高,且土壤電導率受水分影響先增加后減少?;⒛憽ね埋R爾白等[15]在新疆121團對棉花開展了研究,發(fā)現(xiàn)土壤鹽分在土層深度? 60~80 cm積累,灌后地表0~5 cm土壤表面容易返鹽。由于不同地區(qū)氣候條件特征、土壤條件以及種植棉花品種不同,適宜的灌溉水礦化度閾值存在明顯不同。為探究不同礦化度水源膜下滴灌棉花對土壤鹽分和作物生理生長影響機制,本文通過4 a不同礦化度水源膜下滴灌棉花測坑試驗,分析不同礦化度水源膜下滴灌土壤鹽分分布以及累積規(guī)律,基于鹽脅迫下棉花產(chǎn)量和灌溉水利用效率提出合理的棉花膜下滴灌水源礦化度閾值,以期為微(咸)水膜下滴灌技術(shù)利用提供支撐。
1 材料與方法
1.1 研究區(qū)概況
本試驗在現(xiàn)代節(jié)水灌溉兵團重點實驗室? (85°59′47″E, 44°19′26″N)進行,溫帶大陸性氣候。土壤為沙壤土,平均氣溫為7.9~8.7 ℃,最高氣溫為43.8 ℃,最低氣溫為-39.2 ℃。年降水量? 125~208 mm,年蒸散量為1 660~2 000 mm,地下水潛水埋深7~9 m。研究區(qū)地理位置見圖1。
1.2 試驗設(shè)計
試驗在測坑種植棉花(‘農(nóng)豐No.133),測坑規(guī)格2 m×2 m×2 m,設(shè)3個重復,坑底設(shè)30 cm沙礫石反濾層,四周用防滲墻隔開,滴灌帶滴頭流量為2 L/h。灌溉水設(shè)6個不同梯度:CK、A、B、C、D、E,分別為1 g /L、2 g/L、3 g/L、4 g/L、? 5 g/L、6 g/L。棉花種植密度25萬株/hm2,株距10 cm,行距 60 cm,棉花種植方式為“一膜兩管四行”,滴灌帶鋪設(shè)與兩個窄行之間,灌溉定額為? 4 800 m3/hm2,主要依據(jù)目前研究區(qū)大田生產(chǎn)中膜下滴灌棉花灌溉定額,出苗水為淡水。棉花布置方式如圖2,土壤基本信息如表1。
1.3 測定項目與方法
1.3.1 土壤電導率 在每次灌水后12 h及生育期開始和結(jié)束時,對0~100 cm土層土壤進行取樣。利用土鉆分別在棉花寬行和窄行處采樣,將土壤裝入鋁盒封裝,進行稱量、烘干、研磨,土水比按1∶5混合振蕩靜置過濾紙形成溶液,采用雷磁電導率儀(DDS-11A,上海雷磁儀器有限公司,中國)測定土壤電導率[16]。
1.3.2 生理指標 采用手持光合測量儀(LI-6800,LI-COR,美國)測定棉花上、中、下3片葉子的凈光合速率(Pn,Photosynthetic rate)、蒸騰速率(Tr,Transpiration rate)、氣孔導度 (Gs,Stomatal conductance)和細胞間CO2濃度(Ci,Intercellular CO2 concentration)[17]。不同礦化度水源膜下滴灌棉花灌溉制度見表2。
1.3.3 株高、莖粗 在棉花苗期、蕾期、花鈴期和吐絮期各取樣1次,取樣時選取1株長勢均勻棉花。棉花株高用鋼尺測定從土壤表面到棉花的頂部距離;棉花莖粗利用游標卡尺在莖基部測定。
1.3.4 灌溉水利用效率 灌溉水利用效率(IWUE)為產(chǎn)量和灌溉水量之間比值,計算公式[18]為:
式中IWUE為灌溉水利用效率(kg/m3);Y為籽棉產(chǎn)量(kg/hm2);I為灌溉定額? (m3/hm2)。
1.3.5 土壤積鹽率計算 土壤積鹽率為0~100 cm土壤剖面某一時期與其前一時期相比土壤含鹽量的增加率,其計算公式為:
式中t為土壤積鹽率(%);Wi為第i時期土壤含鹽量(kg/hm2);Wi-1為第i-1時期土壤含鹽量(kg/hm2)。
1.4 數(shù)據(jù)處理
不同礦化度處理之間用SPSS軟件進行方差分析和(Least significant difference method,LSD)差異顯著性多重比較(α=0.05)。
2 結(jié)果與分析
2.1 不同礦化度水源膜下滴灌棉花年際土壤鹽分累積
如圖3所示,2019-2022年間0~100 cm平均土壤電導率以每年0.920 dS/m 、0.995 dS/m、1.196 dS/m和1.188 dS/m的速率呈線性增長趨勢。以2022年為例,隨著灌溉水礦化度升高,土壤電導率6 g/L處理下最高,其次為5?? g/L、? 4 g/L、3 g/L、2 g/L和1 g/L。6月份(苗期)平均土壤電導率為2.051 dS/m,與初始土壤含鹽量相比,增加20.15%,鹽分上升速率最快;7月份(蕾期)土壤電導率為2.346 dS/m,與6月份(苗期)土壤含鹽量相比,增加12.57%;8月份(花鈴期)土壤電導率為2.707 dS/m,與7月份(蕾期)土壤含鹽量相比,增加13.34%;9月份(吐絮期)土壤電導率為2.826 dS/m,與8月份(花鈴期)初始土壤含鹽量相比,增加4.40%。生育期結(jié)束后,5?? g/L和6 g/L處理與播種前相比土壤鹽分累積最多分別為38.70%和39.19%,當灌溉水礦化度小于3 g/L時,4 a微(咸)水膜下灌溉未引起明顯累積。
2.2 不同礦化度水源膜下滴灌棉花對土壤電導率的影響
圖4為2022年灌水12 h后窄行和寬行各處理土壤剖面鹽分分布情況。土壤電導率橫向上表現(xiàn)為滴頭(0~40 cm)處最低,沿著滴頭方向向兩側(cè)擴散含鹽量逐漸增高,運移至寬行(0~40 cm)處土壤含鹽量達到最大值,20~40 cm土層含鹽率增大幅度明顯大于40~60 cm土壤,土壤在? 40~80 cm深度出現(xiàn)穩(wěn)定積鹽層;且在土壤深度? 60 cm處土壤電導率都最高。因為“鹽隨水來,鹽隨水去”灌溉后鹽分隨著水分下滲到土壤40~60 cm根系形成“半橢圓”形狀,鹽分分布其濕潤體邊沿,造成積鹽。微(咸)水灌溉會導致寬行土壤鹽分積累,由于水分擴散影響寬行處在濕潤體左右側(cè)邊緣處,因此表層20~40 cm土壤最為明顯,土壤電導率為0.30~2.1 dS/m。寬行處土壤電導率>窄行處土壤電導率。窄行鹽分在40~60 cm土層出現(xiàn)明顯積累,其中1? g/L、2 g/L、3 g/L、? 4 g/L、5 g/L、6 g/L處理下鹽分積累試驗結(jié)束時電導率分別為1.52 dS/m、1.26 dS/m、1.56?? dS/m、1.67 dS/m、1.78 dS/m和1.93 dS/m,積鹽率分別為62.5%、46.03%、35.26%、56.29%、? 57.87%和55.44%。
2.3 不同礦化度水源膜下滴灌對棉花生理指標的影響
圖5顯示,2021-2022年隨著灌溉水源礦化度的升高,棉花凈光合速率(Pn)和蒸騰速率(Tr)明顯降低。氣孔導度(Gs)和胞間CO2濃度(Ci)對棉花葉片的光合作用影響較大。棉花Gs隨著礦化度的增加而降低。Ci隨著礦化度的增加而增加。
棉花全生育期,3 g/L處理與2 g/L處理相比,Pn升高11.26%,Tr升高8.05%,Gs升高11.2%,Ci降低25.4%;4 g/L處理、5 g/L處理、6 g/L處理與3 g/L處理相比,Pn分別降低了16.99%、31.05%和42.75%,Pn分別降低? 14.65%、22.68%和29.59%,Tr隨著生育期推移,太陽光照越來越強,棉花片葉氣孔關(guān)閉,Gs減小,導致Tr逐漸下降,最后趨于穩(wěn)定,說明低礦化度情況下,有利于提高棉花葉片Tr,而礦化度過高Tr顯著下降;Gs降低23.03%、32.6%和32.93%,說明礦化度較低的微咸水滴灌不僅不會降低Gs,在一定時期提高了Gs,礦化度過高則Gs顯著下降。不同處理Gs峰值均出現(xiàn)在盛鈴期;Ci升高28.59%、27.80%和44.91%。棉花Ci的變化規(guī)律剛好和Pn、Tr及Gs相反。棉花Ci隨著生育期的推進,變化趨勢為先減小后增大再較小,整體上呈現(xiàn)增加趨勢。[FL)]
2.4 不同礦化度水源膜下滴灌對棉花生長的? 影響
如表3所示,2022年不同礦化度水源膜下滴灌對棉花株高、莖粗生長影響差異顯著(P 0.05)。苗期灌溉淡水,生長緩慢,各礦化度水源膜下滴灌對棉花株高和莖粗差異性不明顯(P>? 0.05)。蕾期,棉花株高和莖粗明顯升高,由苗期時的17.35~22.93 cm,增長到35.02~46.25 cm,增長速率為0.442~0.583 cm/d;莖粗由? 4.028~4.603 mm增長到4.396~6.163 mm,增長速率為0.010~0.039 mm/d;因為前期主要為營養(yǎng)生長(根、莖、葉的生長)加快,生殖生長(蕾、花、鈴、絮生長)減慢;花鈴期株高生長緩慢,由蕾期時的35.02~46.25 cm,增長到37.63~53 cm,增長速率為0.087~0.225 cm/d,莖粗由4.396~? 6.163 mm增長到5.133~7.583 mm,增長速率為0.025~0.047 mm/d;此時,生長后期主要為生殖生長(蕾、花、鈴、絮生長),營養(yǎng)生長(根、莖、葉的生長)減慢,打頂后基本不再生長;到吐絮期植株由花鈴期時37.63~53 cm,增長到43.70~58.36 cm,增長速率為0.179~0.202 cm/d,莖粗由5.133~7.583 mm增長到5.727~8.777 mm,增長速率為0.020~0.040 mm/d,此時,棉花株高、莖粗達到最大值。低濃度的鹽分能夠促進棉花地上部分的生長發(fā)育,但是濃度過高的鹽分會顯著地抑制棉花的生長發(fā)育,造成出葉變慢,花鈴脫落加快,莖部變細等。
2.5 不同礦化度水源膜下滴灌對棉花灌溉水利用效率的影響
如圖6所示,2020-2022年隨著灌溉水源礦化度的升高,棉花產(chǎn)量呈現(xiàn)先增加后降低趨勢,產(chǎn)量降低的主要因素是咸水灌溉使得棉花根層的鹽分含量過高,造成棉花根系不能充分吸收水分,從而導致花鈴期縮短,單株鈴數(shù)明顯減少,而棉花的單鈴質(zhì)量對產(chǎn)量的影響較小。當灌溉水為全淡水時棉花產(chǎn)量最高為5 049.25 kg/hm2,3 g/L處理下產(chǎn)量最高為5 279.44 kg/hm2,4 g/L處理產(chǎn)量為5 296.67 kg/hm2,與對照相比沒有明顯減產(chǎn)。5 g/L、6 g/L處理下產(chǎn)量為4 478.45 kg/hm2、? 4 125.69 kg/hm2,相比淡水灌溉下棉花產(chǎn)量減小11.29%和18.27%。從產(chǎn)量構(gòu)成因子來看,單鈴質(zhì)量與棉花產(chǎn)量呈正比,隨礦化度的升高,單鈴質(zhì)量先增加后減小,3 g/L處理單鈴質(zhì)量為最大值5.73 g和6.17 g。同時,隨著灌溉水源礦化度的升高,相同灌溉定額下灌溉水利用效率逐漸降低,其中4 g/L處理灌溉水分利用效率最高為1.12 kg/m3。
3 討論與結(jié)論
土壤鹽分運動受到地膜覆蓋、微(咸)水灌溉、降雨、蒸發(fā)蒸騰、根系吸水等因素影響,棉花生育期土壤鹽分運移及累積是一個復雜物理變化過程[19-20]。微(咸)水膜下滴灌“驅(qū)鹽”作用有一定的局限性,只能將土壤鹽分驅(qū)于濕潤體外,為作物在生育期內(nèi)提供相對低鹽環(huán)境,而未能將土壤鹽分淋洗出整個根層。這與郭仁松等[21]、孫三民等[22]研究結(jié)論一致。張前兵等[23]認為苜蓿生育期土壤鹽分隨土壤深度增大而增大,垂直方向上土壤含鹽量高低關(guān)系0~30 cm<30~60 cm<60 cm,60 cm 土層含鹽量最大,水平方向土壤鹽分變化不大。與本文研究結(jié)果一致。本研究發(fā)現(xiàn)膜下滴灌4 a棉田,冬季融雪壓鹽后土壤鹽分隨灌溉年限的推移而減小,在土壤深層20 cm以下脫鹽率最明顯,在深度大約60~70 cm形成穩(wěn)定積鹽層。這與趙永成等[24]、楊廣等[25]、劉建軍等[26]研究結(jié)果一致。本研究發(fā)現(xiàn)滴頭0~40 cm處土壤電導率最低,滴水后表層含鹽率逐漸減小,水的淋洗作用使得表面0~40 cm土層形成淡化區(qū);寬行處20~40 cm土層含鹽率增大幅度明顯大于40~60 cm土壤,土壤在40~80 cm深度出現(xiàn)穩(wěn)定積鹽層;窄行鹽分在40~60 cm土層出現(xiàn)明顯積累,其中膜間處累積鹽分最多,這與牟洪臣等[27]、王莉婷等[28]研究結(jié)果一致。
適宜的灌溉水礦化度對棉花的株高、莖粗和產(chǎn)量有促進作用,因為適宜礦化度水源可為棉花生長提供K+和Na+,促進植物生長;灌溉水源礦化度過高會引起棉花Pn、Gs、Tr降低,這與馬君等[29]研究結(jié)果一致。土壤鹽分脅迫增大了土壤溶液的滲透勢,導致棉花根系的細胞質(zhì)膜受損,增大棉花葉片的水勢梯度,使棉花對養(yǎng)分和水分吸收受阻,棉花葉片表面的氣孔開度降低,CO2進入葉肉細胞速率下降,從而導致光合作用減弱,與王慶惠等[30]研究一致。本研究發(fā)現(xiàn)礦化度小于? 3 g/L灌溉對棉花株高、莖粗影響不明顯,但超過? 3 g/L對棉花株高、莖粗抑制作用很明顯,這與Ahmad等[31]的研究結(jié)果一致。
土壤含鹽量隨灌溉水礦化度升高而增大,2019-2022年間土壤鹽分以每年0.920 dS/m、0.995 dS/m、1.196 dS/m和1.188 dS/m的速率呈線性增長趨勢。
微(咸)水膜下滴灌棉花寬行土壤鹽分積累在20~40 cm土層明顯,窄行處土壤鹽分在40~? 60 cm土層累積。
灌溉水礦化度小于3 g/L時,棉花株高、莖粗和凈光合速率、蒸騰速率、氣孔導度和胞間CO2濃度受到抑制程度較小,是較適宜的膜下滴灌棉花灌溉水源。
參考文獻 Reference:
[1] 朱長明,李均力,常 存,等.新疆干旱區(qū)濕地景觀格局遙感動態(tài)監(jiān)測與時空變異 [J].農(nóng)業(yè)工程學報,2014,30(15):229-238,339.
ZHU CH? M,LI J L,CHANG C,et al.Remote sensing detection and spatio-temporal change analysis of wetlands in Xinjiang arid region [J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(15):229-238,339.
[2]王艷娜,侯振安,龔 江,等.咸水滴灌對土壤鹽分分布、棉花生長和產(chǎn)量的影響 [J].石河子大學學報(自然科學版),2007,1(2):158-162.
WANG YN,HOU ZH A,GONG J,et al.The effect of drip irrigation with saline water to the distribution of salt and development and yield of cotton [J].Jourmal of Shihezi University(Natural Science),2007,1(2):158-162.
[3]宗 含.旱區(qū)長期膜下滴灌條件下農(nóng)田土壤鹽分運移規(guī)律研究 [D].陜西楊凌:西北農(nóng)林科技大學,2018.
ZONG H.Soil salinity dynamic on farmland with long-term dripirrigation under mulchin arid area [D].Yangling Shaanxi:Northwest A&F University,2018.
[4]劉艷梅.膜下滴灌技術(shù)的研究與應用 [J].農(nóng)業(yè)科技與裝備,2012,1(6):69-70.
LIU Y M.Research andapplication of drip irrigation under plastic film [J].Agricultural Science & Technology and Equipmen,2012,1(6):69-70.
[5]李萬精,楊 廣,雷 杰,等.不同礦化度(微)咸水膜下滴灌棉田土壤水鹽分布及棉花生長特性研究 [J].干旱地區(qū)農(nóng)業(yè)研究,2022,40(3):95-103.
LI W? J,YANG G,LEI J,et al.Soil water and salt distribution and cotton growth under filmdrip irrigation with different water salinity in cotton field [J].Agricultural Research in the Arid Areas,2022,40(3):95-103.
[6]陳 盛,黃 達,王振昌,等.土壤鹽分垂向非均勻分布下的番茄鹽分生產(chǎn)函數(shù)研究 [J].農(nóng)業(yè)機械學報,2022,53(8):388-396.
CHEN? SH,HUANG D,WANG ZH CH,et al.Salt production function in tomato under vertical uneven distribution of soil salt [J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):388-396.
[7]劉星辰,解學敏.西北農(nóng)區(qū)不同鹽分分布下適宜淋洗定額研究 [J].人民黃河,2020,42(11):157-161.
LIU X CH,XIE X M.Study on the leaching quota of saline-alkaline soil under different salt distribution in agricultural areas of Northwest China [J].Yellow River,2020,42(11):157-161.
[8]劉雪艷,丁邦新,白云崗,等.微咸水膜下滴灌對棉花生長及產(chǎn)量的影響 [J].干旱區(qū)研究,2020,37(6):1627-1634.
LIU X Y,DING B X,BAI Y G,et al.Effect of drip irrigation under brackish water film on cotton growth and yield [J].Arid Land Geography,2020,37(6):1627-1634.
[9]劉雪艷.微咸水膜下滴灌對土壤水鹽運移及棉花生長的影響 [D].烏魯木齊:新疆農(nóng)業(yè)大學,2020.
LIU X Y.Effect of film-mulched drip irrigation with brackish water on soil water and salt movement and gotton growth [D].Urumqi:Xinjiang Agricultural University,2020.
[10]周永學,李美琪,黃志杰,等.長期咸水滴灌對灰漠土理化性質(zhì)及棉花生長的影響 [J].干旱地區(qū)農(nóng)業(yè)研究,2021,? 39(4):12-20.
ZHOU Y? X,LI M Q,HUANG ZH? J,et al.Effects of long-term saline water drip irrigation on physicochemical properties and cotton growth in grey desert soil [J].Agricultural Research in the Arid Areas,2021,39(4):12-20.
[11]WANG Q M,HUO Z L,ZHANG? L D,et al.Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China [J].Agricultural Water Management,2016,163(15):125-138.
[12]ZARTMAN R E,GICHURU M.Saline irrigation water:effects on soil chemical and physical properties[J].Soil Science,1984,138(6):417-422.
[13]郭太龍,遲道才,王全九,等.入滲水礦化度對土壤水鹽運移影響的試驗研究 [J].農(nóng)業(yè)工程學報,2005,1(S1):84-87.
GUO T? L,CHI D C,WANG Q J,et al.Experimental study on salt and water movement affected by mineralization degree of infiltration water [J].Transactions of the Chinese Society of Agricultural Engineering,2005,? 1(S1):84-87.
[14]徐 鑫,張金珠,李寶珠,等.不同鹽度土壤水鹽時空分布特征及對棉花出苗的影響 [J].石河子大學學報(自然科學版),2022,40(2):204-12.
XU X,ZHANG J ZH,LI B ZH,et al.Response characteristics and numerical simulation of soil water and salt dynamics in different salinized cotton seedling stage to submembrane drip irrigation [J].Journal of Shihezi University Natural Science,2022,40(2):204-12.
[15]虎膽·吐馬爾白,弋鵬飛,王一民,等.干旱區(qū)膜下滴灌棉田土壤鹽分運移及累積特征研究 [J].干旱地區(qū)農(nóng)業(yè)研究,2011,29(5):144-50.
HUDAN·TUMAERBAI,GE P F,WANG Y M,et al.Research on transport and accumulation characteristics of soil salinity of cotton field under film mulched drip irrigation in arid areas [J].Agricultural Research in the Arid Areas,2011,29(5):144-150.
[16]王澤林,楊 廣,王春霞,等.咸水灌溉對土壤理化性質(zhì)和棉花產(chǎn)量的影響 [J].石河子大學學報(自然科學版),2019,37(6):700-707.
WANG Z L,YANG G,WANG CH X,et al.Effects of saline water irrigation on cotton yield and soil physicochemical properties [J].Jourmal of Shihezi University Natural Science,2019,37(6):700-707.
[17]馬 燕.有機液體肥對棉花農(nóng)藝性狀、光合生理及產(chǎn)量的影響 [D].新疆石河子:石河子大學,2021.
MA Y.Effects oforganic liquid fertilizer on agronomic traits photosynthetic physiology and yield of cotton [D].Shihezi Xinjiang:Shihezi University,2021.
[18]劉杰云,邱虎森,張文正,等.灌溉方式及生物質(zhì)炭對冬小麥產(chǎn)量及水肥利用效率的影響 [J].灌溉排水學報,2021,40(6):59-65.
LIU J? Y,QIU H S,ZHANG W ZH,et al.The effects of lrrigation and biochar amendment on yield and water and nitrogen use eficiency of winter wheat [J].Journal of Irrigation and Drainage,2021,40(6):59-65.
[19]張俊鵬.咸水灌溉覆膜棉田水鹽運移規(guī)律及耦合模擬 [D].北京:中國農(nóng)業(yè)科學院,2015.
ZHANG J P.Couplingsimulation of soil water-salt movement in plastic film mulched cotton field under saline water irrigation[D].Beijing:Chinese Academy of Agricultural Sciences(CAAS),2015.
[20]王海霞.黃河三角洲典型地區(qū)冬小麥微咸水灌溉的土壤水鹽特征及運移模擬研究[D].北京:北京林業(yè)大學,2018.
WANG H X.Water and sailchariacterisitics of brackish water irrigation and its migration simulation in saline alkali soil of the Yellow River Delta[D].Beijing:Beijing Forestry University,2018.
[21]郭仁松,林 濤,徐海江,等.微咸水滴灌對綠洲棉田水鹽運移特征及棉花產(chǎn)量的影響 [J].水土保持學報,2017,? 31(1):211-216.
GUO R S,LIN T,XU H J,et al.Effect of saline water drip irrigation on water and salt transport features and cotton yield of oasis cotton field [J].Journal of Soil and Water Conservation,2017,31(1):211-216.
[22]孫三民,安巧霞,蔡煥杰,等.棗樹間接地下滴灌根區(qū)土壤鹽分運移規(guī)律研究 [J].農(nóng)業(yè)機械學報,2015,46(1):160-169.
SUN S M,AN Q X,CAI H J,et al.Research on salt movement law in jujube root zone under indirect subsurface drip irrigation [J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):160-169.
[23]張前兵,艾尼娃爾·艾合買提,于 磊,等.綠洲區(qū)不同灌溉方式及灌溉量對苜蓿田土壤鹽分運移的影響 [J].草業(yè)學報,2014,23(6):69-77.
ZHANG Q? B,AINIWAER· ANMAT,YU L,et al.Effects of different irrigation methods and quantities on soil salt transfer in oasis alfalfa fields [J].Acta Prataculturae Sinica,2014,23(6):69-77.
[24]趙永成,虎膽·吐馬爾白,馬合木江·艾合買提,等.北疆常年膜下滴灌棉田土壤鹽分年內(nèi)及年際變化特征研究 [J].干旱地區(qū)農(nóng)業(yè)研究,2015,33(5):130-134,62.
ZHAO Y CH,HUDAN·TUMAERBAI,MAHEMUJIANG·AIHEMAITI,et al.Study on the variation characteristics of soil salt in cotton field during the year and interannual by perennial drip irrigation under plastic film in Northern Xinjiang [J].Agricultural Research in the Arid Areas,2015,33(5):130-134,62.
[25]楊 廣,李萬精,任富天,等.不同礦化度咸水膜下滴灌棉花土壤鹽分累積規(guī)律及其數(shù)值模擬 [J].農(nóng)業(yè)工程學報,2021,37(19):73-83.
YANG G,LI W J,REN F T,et al.Soil salinity accumulation and model simulation of cottonunder mulch drip irrigation with different salinity level water [J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(19):73-83.
[26]劉建軍,王全九,張 明,等.膜下滴灌土壤鹽分年季變化特征研究 [J].中國農(nóng)村水利水電,2012,1(11):48-52.
LIU J J,WANG Q J,ZHANG M,et al.Researchon on annual variation characteristics of soil salt of drip irrrigation under mulch [J].China Rural Water and Hydropower,2012,1(11):48-52.
[27]牟洪臣,虎膽·吐馬爾白,蘇里坦,等.干旱地區(qū)棉田膜下滴灌鹽分運移規(guī)律 [J].農(nóng)業(yè)工程學報,2011,27(7):18-22.
MOU H CH,HUDAN·T M E B,SU L T,et al.Salt transfer law for cotton field with drip irrgation under mulchin arid region [J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(7):18-22.
[28]王莉婷,范守杰,高麗秀,等.膜下滴灌棉花不同鹽分土壤水鹽運移規(guī)律研究 [J].中國棉花,2012,39(12):11-4.
WANG LT,F(xiàn)AN SH J,GAO L X,et al.Research on soil water and salt dynamic of cotton with different salt contents under film mulched drip irrigation [J].China Cotton,2012,39(12):11-14.
[29]馬 君,師維軍,郭仁松,等.微咸水對滴灌棉花冠層光合特征及產(chǎn)量品質(zhì)的影響 [J].中國農(nóng)學通報,2017,? 33(24):52-56.
MA J,SHI W J,GUO R S,et al.Saline water effects on canopy photosynthetic character istics,yield and quality of cotton under drip irrigation [J].Chinese Agricultural Science Bulletin,2017,33(24):52-56.
[30]王慶惠,楊嘉鵬,向光榮,等.鹽脅迫對不同基因型棉花苗期光合特性和養(yǎng)分吸收的影響 [J].中國農(nóng)業(yè)科技導報,2018,20(5):9-15.
WANG QH,YANG J P,XIANG G R,et al.Effects of salt stress on root morphology and physiological characteristics of potted cotton at seedling stage [J].Journal of Agricultural Science and Technology,2018,20(5):9-15.
[31]AHMAD S,KHAN N I,IQBAL M Z,et al.Salt tolerance of cotton[J].Asian Journal of Plant Sciences,2002,? 1(1):715-719.
Effect of? Drip Irrigation with Film Mulching on Soil Salinity Distribution and
Cotton Growth under Different Water Source Salinity Levels
Abstract Drip irrigation? with film mulching by using brackish water is one of the effective ways to alleviate the shortage of agricultural irrigation resources in arid areas.It is important to analyze the effect of this method on soil salinity distribution and crop growth to determine the salinity threshold of irrigation water.In this four-year study,a pit test of drip was conducted? for drip-irrigated cotton using water sources with different salinity gradients,including six treatments with salinity levels of 1 g/L (CK),2 g/L (A),3 g/L (B),4 g/L (C),5 g/L (D),and 6 g/L (E).We analyzed soil salinity accumulation and cotton growth characteristics under drip irrigation at different salinity levels,ultimately,we determined the salinity threshold for cotton when using drip irrigation with slightly salty water with film mulching.The results showed that during 2019-2022,the average soil conductivity of 0-10 cm exhibited a linear increase trend,with the annual rates of 0.920 dS/m,0.995 dS/m,1.196 dS/m and 1.188 dS/m.With the increase of irrigation years,soil conductivity under drip irrigation using water with different salinity gradients demonstrated a rising trend.Soil salt accumulation was highest in the 5 g/L and 6 g/L treatments,at 38.70% and 39.19%,respectively;after 12 h irrigation,the soil salt accumulation was the most obvious in the 20-40 cm wide surface layer,and the soil conductivity was?? 0.30-2.1 dS/m.The soil salinity accumulated in the 40-60 cm soil layer,with soil conductivity between 1.26-1.93 dS/m; the soil salt accumulation of cotton under drip irrigation of film mulcing with salinity of 3 g/L water source showed minimal effect on the photosynthetic index of cotton leaves.The optimal irrigation water source threshold for cotton under drip irrigation with brackish water was determined to be 3 g/L.
Key words Salinity;Drip irrigation with film mulching; Accumulation of salt; Cotton growth