• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Approximate Solutions for Convex Semi-infinite Programming with Uncertainty

    2024-04-12 23:42:06SUKe蘇珂YUMengyao于夢(mèng)瑤LINYumeng林雨萌
    應(yīng)用數(shù)學(xué) 2024年1期

    SU Ke(蘇珂) ,YU Mengyao(于夢(mèng)瑤) ,LIN Yumeng(林雨萌)

    (1. College of Mathematics and Information Science, Hebei University,Baoding 071000, China; 2. Hebei Key Laboratory of Machine Learning and Computational Intelligence, Baoding 071000, China)

    Abstract: In this paper,we consider the approximate solutions (also called ε-solutions)for semi-infinite optimization problems that objective function and constraint functions with uncertain data are all convex,then the robust counterpart of convex semi-infinite program is established and the approximate solutions are considered.Moreover,the robust necessary condition and robust sufficient theorems are obtained.Additional,the Lagrangian duality results in the sense of the approximate solution are given by the robust optimization approach under the proposed cone constraint qualification.

    Key words: Convex function;Approximate solution;Dual theorem;Semi-infinite;Uncertainty

    1.Introduction

    Focus on the following convex semi-infinite programming (CSIP):

    wherew(x):Rn →R and:Rn →R(t ∈T)are convex and continuous functions,andTis an infinite set.We call the problem(CSIP)linear semi-infinite programming,ifw(x),are all linear functions.

    Dual theory plays an important role in the study of semi-infinite programming problems.Goberna[1]summarized the publications on semi-infinite linear programming (SILP),which aims to identify the most active research areas and the major trends in applications.Detailed bibliographical introduction on (SILP) and their extensions are contained in [2].The dual problems of convex semi-infinite programming are discussed in [3-4].All the above semiinfinite programming assume the data in the model are determinate.But in real life,the information of optimization problems sometimes are uncertain,wrong or lacking,so it is important to discuss the dual problem under uncertain set[5].

    Ben-Tal and Nemirovski et al.[6]proposed a deterministic framework for the mathematical programming under uncertain data.The robust optimization methods for linear programming problems and convex optimization problems under uncertain data are discussed successfully by Ghaoui[7].In consideration of the uncertain data,Goberna[8]used robust duality theory to deal with the convex programming problems.The research on the robust correspondence between dual problems and uncertain convex programming[9]shows that the value of the robust counterpart of primal problem is equal to the value of the optimistic counterpart of the dual primal (i.e.,primal worst equals dual best).

    Convex programming,in which the constraint functions are finite with uncertain data,can be summarized as follows[10]:

    In recent years,many scholars have studied the robust convex optimization problem with data uncertainty[11].Several selected topics in robust convex optimization are overviewed in[12].Jeyakumar and LI[13]proved Lagrangian strong duality theorem,then defined a new robust characteristic cone,and gave the necessary and sufficient conditions for the existence of strong duality.The optimistic correspondence is proposed by[6].SUN et al.[14]studied the robust quasi-approximate optimal solution for a class of nonsmooth semi-infinite programming with uncertain data.

    Lee and Lee[15]focused on the approximate solution to robust convex optimization problem,and established the duality theorem of Wolfe type dual problem with finite constraint function.Then Lee and Lee[16]defined theε-solution of the robust semi-infinite optimization problem.Based on the closed convex cone,an approximate weak duality theorem and a strong duality theorem for the original problem and its Wolfe dual problem are established.Then,ZENG et al.[17]presented some modified robust solutions for fractional semi-infinite programming with uncertain information.Lagrangian dual with finite constraints is studied in [13].It shows strong dual property holds (i.e.,ε=0) under the robust characteristic cone as follows:

    With uncertain constraint conditions,(CSIP) can be summarized as follows:

    whereht(x,ut):Rn×Rm →R (for anyt ∈T) are continuous convex functions,andut ∈Rm(for anyt ∈T)are uncertain parameters,which belong to some convex compact setsUt ?Rm.

    Define the uncertain set-valued mappingU(t) :T →RmasU(t) :=Ut(for allt ∈T).Andu ∈Uimplies thatuis an element ofU,i.e.,u(t):T →Rmandu(t):=ut ∈Ut(for allt ∈T).

    The Lagrangian dual of (UCSIP) is given by

    The robust counterpart of (UCSIP) can be summarized as follows:

    The best possible robust feasible solution is the one that solves the optimization problem(RCSIP).(RCSIP)is called the robust counterpart of the original uncertain problem(UCSIP).

    Motivated by the above,in this paper,we consider the approximate solutions(i.e.,ε>0)for robust semi-infinite convex programming.By using the robust optimization method,the robust necessary condition and sufficient conclusions of(RCSIP)under the closed convex cone constraints are established,denote the coneΓas follows:

    Denote the optimistic counterpart of (LDUCSIP) as follows:

    Denote the Lagrangian dual of the robust counterpart (RCSIP) as follows:

    We present the approximate weak dual theorem and strong dual theorem of (LDRCSIP)in Section 4.Given the feasible set of (UCSIP) as follows:

    Letε ≥0.We callanε-solution of (RCSIP),ifsatisfies

    for anyx ∈F.

    The rest of the paper is organized as following.We introduce some preliminaries and notations in Section 2.Some conditions for the existence are discussed in Section 3.Approximate weak and strong theorems are given in Section 4.In Section 5,we summarize the content of this article.

    2.Notations and Preliminaries

    In order to show our conclusions,we recall some symbols and preliminaries.Rnis represented as then-dimension Euclidean space,R+as the nonnegative quadrant of R,the graph of setUas gphU:={(t,ut)|ut ∈Ut,t ∈T},clA,coA,and coneAas the closure,the convex hull,and the conical hull severally.Letw(x) : Rn →whereis an extended real set,denoted as=[-∞,+∞].If for allx ∈Rn,w(x)>-∞and existsx′∈Rnsuch thatw(x′)∈R,thenw(x) is said to be proper.

    Definition 2.1LetAbe a closed and convex set in Rn.CallδA:Rn →R∪{+∞}the indicator function ofAifδA=0 asx ∈AandδA=+∞asx/∈A,i.e.,

    Definition 2.2Define the domain of the functionw(x):Rn →R∪{+∞}as follows:

    Definition 2.3Define the epigraph of the functionw(x):Rn →R∪{+∞}as follows:

    Definition 2.4Define the conjugate function ofw(x) asw?(x?):Rn →R∪{+∞},for any proper convex functionw(x) on Rn,and for anyx?∈Rn,

    Definition 2.5Callw(x) a convex function,if for anyμ∈[0,1],x,y ∈Rn,it holds

    It is easy to show that epiwis convex according to Definition 2.5.Since-w(x) is a convex function,the functionw(x) is a concave function.

    The sub-differential of domwatx ∈domwis defined by

    Ifxdomw,?xw(x) is empty.More generally,forε ≥0,define theε-sub-differential ofw(x) atx ∈domwas follows:

    Forxdomw,?εw(x) is empty.We callwbe a lower semi-continuous function if

    for allx ∈Rn.

    Definition 2.6[15]For anyε>0,there existsρ>0 such that for alls ∈T,Us ?Ut+εB,whereBis a unit ball in Rmandd(s,t)≤ρwheredis the distance onU,then the set-valued mappingU:T →Rmis called the upper semi-continuous att ∈T,where (T,d) is a metric space.

    If for anyε>0,there existsρ>0 such that for alls,t ∈T,Us ?Ut+εBwithd(s,t)≤ρ,thenUis called uniformly upper semi-continuous onT.

    In order to describe the relationship between theε-sub-differential and the epigraph of a conjugate function,we give the following lemma,which plays a key role in the main results.

    Lemma 2.1Ifw(x):Rn →R∪{+∞}is proper,domw={x ∈Rn|w(x)<+∞}=?.Letw(x) be a proper lower semi-continuous convex function.Then

    whereξ ∈domw.

    Lemma 2.2If domw ∩domh?,letw(x),h(x) : Rn →R∪{+∞}be proper lower semi-continuous convex functions,thenwherew(x) andh(x) are continuous.

    Lemma 2.3LetIbe an arbitrary index set,hi(x):Rn →R∪{+∞}(i ∈I) be proper lower semi-continuous convex functions.If there existsx′∈Rnsuch that supi∈Ihi(x′)<+∞.Then

    Lemma 2.4Letut ∈Rm,for any vectorx,ht(x,ut):Rn×Rm →R(t ∈T) be convex functions andht(x,ut) be continuous functions,then

    is called the robust characteristic cone,and the cone is convex and closed.

    ProofLetλt=0(t ∈T),it holds

    Generally speaking,without the convexity of the functionsht(x,ut),most robust characteristic cones are not convex cones.

    We next illustrate that convexity of the robust characteristic cone under the concavity ofh(x,·) and the convexity ofUt.

    Lemma 2.5Letht(x,ut):Rn×Rm →R(t ∈T)be continuous functions.Assume that for every convex setUt ?Rm,everyut ∈Rm,t ∈T,ht(·,ut) are convex,ht(x,·) are concave onUt(for anyx ∈Rn),then

    is convex.

    According to the definition of epiw,we have

    Ifλt=0,i.e.,λt>0,then

    Actually,according to the definition of concave function,the second inequality in(2.19)holds.

    By (2.15),we have

    Because of Definition 2.3,the second equality in (2.20) holds,and the fourth inequality in(2.20) holds by (2.15).Hence,(μa1+(1-μ)a2,μb1+(1-μ)b2)T∈Γ.

    Lemma 2.6Letht(x,ut): Rn×Rm →R(t ∈T) be continuous convex functions,such that for anyut ∈Rm,ht(·,ut) is convex.Suppose that eachUtis convex and compact,there exists∈Rnsuch that

    is closed.

    ProofWe define that

    According to the proposition of proper lower semi-continuous convex functions and functionsht(·,ut) are continuous,it holds

    Together with (2.23),it can be obtained that

    BecauseTis compact,we have→ti ∈Tasκ →∞,i=1,···,n+1.

    Fori=1,···,n+1 andε>0,sinceUis uniformly upper semi-continuous,there existsρ>0 such that

    whereBis a closed unit ball in Rnfor anyt ∈Twithd(t,ti)≤ρ.Since→tiasκ →∞,there existsκi ∈N such that for allκ ≥κi,

    Hence,for allκ ≥κi,it holds

    Therefore,

    That means,there existsκi ∈N such that for allκ ≥κi,

    Ifσi=0,?i=1,···,n+1,then we get

    This is contrary to the assumption.Also,ifσi=0,for somei,then

    Therefore,Γis closed.

    3.Necessary Conditions for Dual Theorem

    Some main necessary optimality conditions for a robust approximate optimal solution of(UCSIP)are discussed in this section.In order to show necessary conditions for dual theorem,we give the following Robust Farkas lemma of convex function.

    Lemma 3.1Letw(x) : Rn →R andht(x,ut) : Rn×Rm →R be convex functions.LetUt ?Rm(t ∈T) be compact andF:={x ∈Rn:ht(x,ut)≤0,for allut ∈Ut,t ∈T}be nonempty.Then the following relationships are equivalent:

    ProofBy the definition ofF,we need to prove that

    where the third equality in (3.2) holds by Lemma 2.3.

    Hence,we get

    According to Lemma 3.1,the following theorem holds:

    Becauseht(x,ut) : Rn×Rm →R(t ∈T) are continuous and≥0,together with Lemma 2.2,we have,

    Hence,according to (3.10),for anyx ∈Rn,

    where the second inequality in (3.11) holds byw?(s?)=sup{〈s?,s〉-w(s),s ∈Rn}.Thus,for anyx ∈Rn,

    According to the definition of conjugate function ofht(·,),the third inequality in (3.12) is true.

    For anyx ∈F,we have

    It impliesw(x)≥w-ε.Henceis an approximate solution of (RCSIP).

    Theorem 3.2(εoptimality theorem) Letw(x) : Rn →R be a convex function,andht(x,ut) : Rn×Rm →R (for anyt ∈T) be continuous such that for eachut ∈Rm,ht(·,ut)is convex on Rn.LetUt ?Rm(t ∈T) be compact.Assume thatΓis closed and convex.Let∈F,then the following (i),(ii),(iii) are equivalent:

    and by Lemma 3.1,it holds that (i)?(ii).

    LetF:={x ∈Rn:ht(x,ut)≤0,?ut ∈Ut,t ∈T},thenF?.

    According to(ii),we get

    By Lemma 2.1,there existε0≥0,εt ≥0,t ∈T,thenw(x) andut ∈Rm,ht(·,ut) are convex,such that

    which is equivalent to (iii).

    4. ε-Duality Theorem of Lagrangian Dual

    Next,using the approximate solution to(RCSIP),we consider a Lagrangian dual problem(LDRCSIP)εas follows:

    Theorem 4.1Supposexand(z,u,λ)are feasible solutions of(RCSIP)and(LDRCSIP)ε,respectively.If

    thenxsatisfies the approximate weak duality theorem.

    The conclusion holds.

    Then according to Theorem 4.1,

    5.Conclusion

    A convex semi-infinite optimization problem with uncertain information in the constraint function is established in this paper.Based on the robust optimization approach,some approximate optimality qualifications and approximate dual theorem are all established under a closed and convex coneΓ.Then a Lagrangian dual problem is established,and the approximate weak dual and strong dual theorem with uncertain data are also given in this paper.In the future research,it is worth considering that,under more generalized convexity and weaker constraint specifications,whether the dual theory and approximate solution of this kind of uncertain semi-infinite optimization can be established.

    青春草亚洲视频在线观看| 七月丁香在线播放| 免费观看在线日韩| 九草在线视频观看| 国产亚洲精品av在线| 乱码一卡2卡4卡精品| 亚洲成人一二三区av| 久久精品国产亚洲网站| 日韩亚洲欧美综合| 六月丁香七月| 一二三四中文在线观看免费高清| 国产黄色小视频在线观看| 91久久精品国产一区二区三区| 日韩精品有码人妻一区| 免费观看a级毛片全部| 久久久久久九九精品二区国产| 中国美白少妇内射xxxbb| 啦啦啦韩国在线观看视频| 亚洲av电影不卡..在线观看| 青春草国产在线视频| 在线免费观看不下载黄p国产| 婷婷色综合www| 国模一区二区三区四区视频| 成人美女网站在线观看视频| 人妻少妇偷人精品九色| 亚洲最大成人手机在线| 精品久久久精品久久久| 久久国内精品自在自线图片| 亚洲最大成人手机在线| 亚洲av免费高清在线观看| 午夜精品在线福利| 国模一区二区三区四区视频| 插阴视频在线观看视频| 一个人观看的视频www高清免费观看| 丰满乱子伦码专区| 亚洲欧洲日产国产| 日韩大片免费观看网站| 丰满人妻一区二区三区视频av| 色综合亚洲欧美另类图片| 精品一区二区免费观看| 久久99热这里只有精品18| 婷婷色综合大香蕉| 日韩av在线免费看完整版不卡| 只有这里有精品99| 久久99精品国语久久久| 亚洲精品,欧美精品| 91av网一区二区| 免费观看a级毛片全部| 亚洲国产av新网站| 免费不卡的大黄色大毛片视频在线观看 | 人妻夜夜爽99麻豆av| 成人毛片a级毛片在线播放| 日韩人妻高清精品专区| 国产黄色免费在线视频| 亚洲精品,欧美精品| 亚洲乱码一区二区免费版| 欧美日韩在线观看h| 亚洲美女视频黄频| 久久99热这里只有精品18| 精品一区二区免费观看| 97超视频在线观看视频| 五月玫瑰六月丁香| 欧美另类一区| 深爱激情五月婷婷| 亚洲欧美日韩无卡精品| 久久久久免费精品人妻一区二区| 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 美女被艹到高潮喷水动态| 亚洲精品视频女| 波野结衣二区三区在线| 女人久久www免费人成看片| 看十八女毛片水多多多| 免费大片黄手机在线观看| 欧美不卡视频在线免费观看| 精品少妇黑人巨大在线播放| 人妻制服诱惑在线中文字幕| 国产黄片美女视频| 高清午夜精品一区二区三区| 亚洲第一区二区三区不卡| 亚洲精品日韩在线中文字幕| 亚洲第一区二区三区不卡| 久久久久久九九精品二区国产| 中文字幕av成人在线电影| 婷婷色麻豆天堂久久| 国产一区二区三区av在线| 国产不卡一卡二| 亚洲伊人久久精品综合| 国产欧美另类精品又又久久亚洲欧美| 2018国产大陆天天弄谢| 我要看日韩黄色一级片| 亚洲国产欧美人成| 国产一区二区亚洲精品在线观看| 淫秽高清视频在线观看| 国产黄色小视频在线观看| 男女视频在线观看网站免费| 亚洲四区av| 麻豆成人午夜福利视频| 一级黄片播放器| 欧美丝袜亚洲另类| 成年免费大片在线观看| 婷婷色av中文字幕| 国产综合懂色| 精品久久久噜噜| 日韩电影二区| 欧美一级a爱片免费观看看| 黄色欧美视频在线观看| av专区在线播放| 久久久久久久久中文| 欧美激情国产日韩精品一区| 青春草视频在线免费观看| 卡戴珊不雅视频在线播放| 六月丁香七月| 日韩 亚洲 欧美在线| 久热久热在线精品观看| 国产 一区 欧美 日韩| 国产淫语在线视频| 少妇熟女aⅴ在线视频| 九九在线视频观看精品| 男人舔奶头视频| 久久久久精品久久久久真实原创| 国产男人的电影天堂91| 国产精品日韩av在线免费观看| 男女国产视频网站| 国产高清有码在线观看视频| 国产精品嫩草影院av在线观看| 少妇人妻精品综合一区二区| 中文字幕制服av| 联通29元200g的流量卡| 日本熟妇午夜| 你懂的网址亚洲精品在线观看| 午夜福利高清视频| 国产黄频视频在线观看| 精品久久久久久电影网| 精品一区在线观看国产| 久久6这里有精品| 亚洲av免费高清在线观看| 18禁动态无遮挡网站| 国产一区有黄有色的免费视频 | 免费无遮挡裸体视频| 欧美xxⅹ黑人| 亚洲精品自拍成人| 日本色播在线视频| 99热网站在线观看| 日韩av免费高清视频| 久久久精品94久久精品| 一级毛片电影观看| 日本一二三区视频观看| 一个人免费在线观看电影| 91精品伊人久久大香线蕉| 免费观看的影片在线观看| 少妇人妻精品综合一区二区| 啦啦啦啦在线视频资源| 尤物成人国产欧美一区二区三区| 美女被艹到高潮喷水动态| 人妻制服诱惑在线中文字幕| 亚洲电影在线观看av| 免费观看a级毛片全部| 亚洲av男天堂| 精品午夜福利在线看| 欧美日韩视频高清一区二区三区二| 欧美zozozo另类| 简卡轻食公司| 别揉我奶头 嗯啊视频| 高清视频免费观看一区二区 | 亚洲内射少妇av| 一区二区三区免费毛片| 日韩一区二区三区影片| 国产色爽女视频免费观看| 日韩国内少妇激情av| 国产免费一级a男人的天堂| 亚洲欧美成人综合另类久久久| 最近视频中文字幕2019在线8| 亚洲婷婷狠狠爱综合网| 久99久视频精品免费| 国产91av在线免费观看| 久久这里有精品视频免费| 国产熟女欧美一区二区| 免费高清在线观看视频在线观看| 亚洲国产av新网站| 青春草亚洲视频在线观看| 大香蕉97超碰在线| 欧美3d第一页| 免费人成在线观看视频色| 黄色日韩在线| 国产精品国产三级专区第一集| 亚洲av男天堂| 搡老妇女老女人老熟妇| 午夜爱爱视频在线播放| 国产v大片淫在线免费观看| 国产伦精品一区二区三区四那| 色网站视频免费| 26uuu在线亚洲综合色| 国产高清国产精品国产三级| 又黄又粗又硬又大视频| 男人舔女人的私密视频| 赤兔流量卡办理| 老司机影院毛片| 香蕉国产在线看| 亚洲第一av免费看| 久热这里只有精品99| 人体艺术视频欧美日本| 日韩不卡一区二区三区视频在线| 美女xxoo啪啪120秒动态图| 欧美日韩精品网址| 国产野战对白在线观看| 成人免费观看视频高清| 街头女战士在线观看网站| 夫妻午夜视频| 久久人人爽av亚洲精品天堂| 9热在线视频观看99| 波多野结衣av一区二区av| 看免费成人av毛片| 免费高清在线观看视频在线观看| 国产亚洲欧美精品永久| 春色校园在线视频观看| 在线亚洲精品国产二区图片欧美| 国产午夜精品一二区理论片| 亚洲第一区二区三区不卡| 少妇人妻久久综合中文| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品电影小说| 高清在线视频一区二区三区| 国产欧美亚洲国产| 国产精品国产三级专区第一集| 国产成人精品婷婷| 最近手机中文字幕大全| 老熟女久久久| 在线天堂中文资源库| 欧美bdsm另类| 精品第一国产精品| 侵犯人妻中文字幕一二三四区| 久久久久久久亚洲中文字幕| 久久女婷五月综合色啪小说| 欧美日韩精品成人综合77777| 欧美精品av麻豆av| 国产黄色视频一区二区在线观看| 国产日韩欧美在线精品| 欧美激情高清一区二区三区 | 日韩av不卡免费在线播放| 一级片'在线观看视频| 五月天丁香电影| 国产精品久久久av美女十八| 五月开心婷婷网| 日本午夜av视频| 黄片播放在线免费| 亚洲精品第二区| 国产又色又爽无遮挡免| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 婷婷色av中文字幕| 老汉色av国产亚洲站长工具| 如日韩欧美国产精品一区二区三区| 国产高清国产精品国产三级| 久久久久精品性色| 欧美精品高潮呻吟av久久| 亚洲经典国产精华液单| 91国产中文字幕| 伦理电影免费视频| 欧美精品亚洲一区二区| 欧美97在线视频| 亚洲精品aⅴ在线观看| www.精华液| 男人爽女人下面视频在线观看| 丝袜喷水一区| 免费观看在线日韩| 可以免费在线观看a视频的电影网站 | 久久久亚洲精品成人影院| 777米奇影视久久| 亚洲一区中文字幕在线| 欧美在线黄色| av网站免费在线观看视频| 国产精品免费大片| 女性被躁到高潮视频| 国产精品香港三级国产av潘金莲 | 热re99久久国产66热| 亚洲国产成人一精品久久久| 日本黄色日本黄色录像| 久久精品国产自在天天线| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 免费在线观看完整版高清| 国产精品无大码| 免费观看性生交大片5| 如何舔出高潮| 欧美激情极品国产一区二区三区| 香蕉国产在线看| 久久99热这里只频精品6学生| 在线观看www视频免费| 99国产精品免费福利视频| 欧美bdsm另类| 91精品国产国语对白视频| 国产精品久久久久久久久免| 老汉色av国产亚洲站长工具| 91aial.com中文字幕在线观看| 久久久久久久精品精品| 纯流量卡能插随身wifi吗| 亚洲成色77777| 日韩精品有码人妻一区| 91精品伊人久久大香线蕉| 国产亚洲精品第一综合不卡| 免费观看av网站的网址| 大码成人一级视频| 曰老女人黄片| 日韩在线高清观看一区二区三区| 久久精品亚洲av国产电影网| 天美传媒精品一区二区| 欧美亚洲日本最大视频资源| 精品酒店卫生间| 亚洲av.av天堂| 嫩草影院入口| 亚洲av在线观看美女高潮| 大陆偷拍与自拍| 99热国产这里只有精品6| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 不卡视频在线观看欧美| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 国产精品 国内视频| 在线观看国产h片| 欧美成人精品欧美一级黄| 亚洲美女视频黄频| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 一级毛片黄色毛片免费观看视频| 精品久久蜜臀av无| 黄色毛片三级朝国网站| 亚洲精品日本国产第一区| 久久婷婷青草| 欧美日韩一级在线毛片| 国产免费一区二区三区四区乱码| 一个人免费看片子| 国产精品 国内视频| 久久热在线av| 久久精品国产亚洲av天美| 狠狠婷婷综合久久久久久88av| 亚洲欧洲日产国产| 最近2019中文字幕mv第一页| 亚洲欧美成人精品一区二区| 欧美日韩视频精品一区| 大片免费播放器 马上看| 少妇精品久久久久久久| 亚洲一码二码三码区别大吗| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 性色av一级| 久久精品人人爽人人爽视色| 美女国产视频在线观看| 美女国产高潮福利片在线看| 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 国产成人免费无遮挡视频| 老熟女久久久| 日本免费在线观看一区| 国产精品 欧美亚洲| 999精品在线视频| videosex国产| av网站在线播放免费| 热re99久久精品国产66热6| 看十八女毛片水多多多| 色吧在线观看| 国产 精品1| 在线精品无人区一区二区三| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 亚洲在久久综合| 一本色道久久久久久精品综合| 妹子高潮喷水视频| 在线天堂最新版资源| 国产人伦9x9x在线观看 | 国产黄色免费在线视频| 亚洲精品av麻豆狂野| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠久久av| 免费观看无遮挡的男女| 国产一区有黄有色的免费视频| 在线观看免费日韩欧美大片| 黄色毛片三级朝国网站| 国产xxxxx性猛交| 日本av免费视频播放| 超碰成人久久| 亚洲精品美女久久av网站| 亚洲国产欧美在线一区| 亚洲精品国产av蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 男人舔女人的私密视频| 久久人妻熟女aⅴ| 日本av手机在线免费观看| 一个人免费看片子| 国产精品偷伦视频观看了| 王馨瑶露胸无遮挡在线观看| 美女中出高潮动态图| 亚洲色图 男人天堂 中文字幕| 热re99久久国产66热| 国产精品国产av在线观看| 日本wwww免费看| 少妇熟女欧美另类| 久久国产精品大桥未久av| 91久久精品国产一区二区三区| 伊人久久大香线蕉亚洲五| 婷婷色麻豆天堂久久| 91精品伊人久久大香线蕉| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 成人二区视频| 男女下面插进去视频免费观看| 亚洲国产精品一区三区| 丝袜喷水一区| 在线观看免费日韩欧美大片| videossex国产| a级片在线免费高清观看视频| 亚洲综合色惰| 久久精品久久久久久久性| 天堂中文最新版在线下载| av天堂久久9| 国产日韩欧美亚洲二区| 丝袜人妻中文字幕| 亚洲国产欧美网| 国产成人午夜福利电影在线观看| 精品一区二区免费观看| av电影中文网址| av有码第一页| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 青草久久国产| 亚洲欧美中文字幕日韩二区| 夫妻性生交免费视频一级片| av一本久久久久| 久久精品国产鲁丝片午夜精品| 国产黄频视频在线观看| 超碰成人久久| 看十八女毛片水多多多| 在线观看国产h片| 午夜福利视频在线观看免费| 久久99精品国语久久久| 午夜91福利影院| 国产成人午夜福利电影在线观看| 又大又黄又爽视频免费| 最近的中文字幕免费完整| 国产精品一二三区在线看| 亚洲久久久国产精品| 在线观看三级黄色| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲 | 午夜久久久在线观看| 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 2021少妇久久久久久久久久久| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 女人高潮潮喷娇喘18禁视频| 欧美日韩视频精品一区| 美女国产高潮福利片在线看| 波野结衣二区三区在线| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 99热网站在线观看| 老汉色∧v一级毛片| 国产女主播在线喷水免费视频网站| 午夜日韩欧美国产| 久久av网站| 高清av免费在线| 精品人妻一区二区三区麻豆| 国产熟女午夜一区二区三区| 少妇熟女欧美另类| 天天操日日干夜夜撸| 人妻人人澡人人爽人人| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图| 在线观看一区二区三区激情| 免费观看a级毛片全部| 三级国产精品片| 久久精品国产亚洲av高清一级| 欧美日韩国产mv在线观看视频| 久久鲁丝午夜福利片| 国产人伦9x9x在线观看 | 国产精品秋霞免费鲁丝片| 蜜桃国产av成人99| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 性高湖久久久久久久久免费观看| 国产一区二区 视频在线| h视频一区二区三区| xxx大片免费视频| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 亚洲精品国产av蜜桃| 欧美日韩视频精品一区| 久久人人爽人人片av| 国产福利在线免费观看视频| 国语对白做爰xxxⅹ性视频网站| 精品少妇黑人巨大在线播放| 亚洲av电影在线观看一区二区三区| 日韩精品免费视频一区二区三区| 中文字幕色久视频| 91成人精品电影| 日本wwww免费看| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 亚洲在久久综合| 久久ye,这里只有精品| 美女中出高潮动态图| 一本色道久久久久久精品综合| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 精品99又大又爽又粗少妇毛片| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 日产精品乱码卡一卡2卡三| 少妇人妻精品综合一区二区| 久久免费观看电影| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| www日本在线高清视频| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 久久久久国产网址| 免费观看无遮挡的男女| 九草在线视频观看| 国产av国产精品国产| 国产在线视频一区二区| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 久久青草综合色| 国产探花极品一区二区| av在线播放精品| 中文字幕人妻丝袜一区二区 | 我的亚洲天堂| 亚洲在久久综合| 国产成人av激情在线播放| a级片在线免费高清观看视频| 久久久久人妻精品一区果冻| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 午夜影院在线不卡| 亚洲美女视频黄频| 国产乱人偷精品视频| 一级毛片 在线播放| 老女人水多毛片| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 大片电影免费在线观看免费| 久久这里有精品视频免费| www.精华液| 欧美老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 在线精品无人区一区二区三| 亚洲 欧美一区二区三区| www.av在线官网国产| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 99九九在线精品视频| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 亚洲久久久国产精品| 久久韩国三级中文字幕| 色网站视频免费| av在线播放精品| 亚洲欧美成人精品一区二区| 国产亚洲欧美精品永久| 午夜精品国产一区二区电影| a级毛片在线看网站| videossex国产| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 国产爽快片一区二区三区| 狠狠婷婷综合久久久久久88av| 青青草视频在线视频观看| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 欧美精品高潮呻吟av久久| 欧美日韩亚洲国产一区二区在线观看 | xxxhd国产人妻xxx| 天天影视国产精品| 亚洲欧洲国产日韩| 一区二区三区激情视频| 免费观看a级毛片全部| 亚洲精品国产av蜜桃| 美女国产视频在线观看| 免费少妇av软件| 一级毛片电影观看| 深夜精品福利| 毛片一级片免费看久久久久| 大陆偷拍与自拍| www日本在线高清视频| 日韩一本色道免费dvd| 亚洲三区欧美一区| 69精品国产乱码久久久| 国产爽快片一区二区三区| av免费在线看不卡| 青春草视频在线免费观看| 一级毛片电影观看| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 国产免费现黄频在线看| av国产久精品久网站免费入址| 亚洲第一区二区三区不卡| 男人爽女人下面视频在线观看| 日韩一本色道免费dvd| 国产精品久久久久久精品古装| 久久这里只有精品19| 欧美av亚洲av综合av国产av | 伦理电影免费视频|