• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algorithm of automatic identification of diabetic retinopathy foci based on ultra-widefield scanning laser ophthalmoscopy

    2024-04-11 03:52:16JieWangSuZhenWangXiaoLinQinMengChenHengMingZhangXinLiuMengJunXiangJianBinHuHaiYuHuangChangJunLan

    Jie Wang, Su-Zhen Wang, Xiao-Lin Qin, Meng Chen, Heng-Ming Zhang, Xin Liu,Meng-Jun Xiang, Jian-Bin Hu, Hai-Yu Huang, Chang-Jun Lan

    1Aier Eye Hospital (East of Chengdu), Chengdu 610051,Sichuan Province, China

    2Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu 610095, Sichuan Province, China

    3School of Computer and Artificial Intelligence, Southwest Jiaotong University, Chengdu 610097, Sichuan Province, China

    4Chengdu Aier Eye Hospital, Chengdu 610041, Sichuan Province, China

    Abstract

    · KEYWORDS: diabetic retinopathy; ultra-widefield scanning laser ophthalmoscopy; intelligent diagnosis system

    INTRODUCTION

    Diabetes mellitus (DM) is a chronic disease that poses a significant threat to human health.According to the International Diabetes Federation, there were 370 million DM patients worldwide in 2019, and this number is projected to increase to 700 million by 2045[1-2].Diabetic retinopathy(DR) is a prevalent microvascular complication of DM and the leading cause of blindness in patients with DM[3].The prevalence of DR is as high as 34.6% among DM patients,and 7% of DR cases are associated with vision-threatening complications.Although the clinical treatment technology for DR has reached a relatively advanced stage, there still exists a significant number of patients who suffer from irreversible visual impairment due to inadequate early diagnosis and treatment.Therefore, early screening, diagnosis and timely treatment of DR patients are crucial for effective management of the disease[4-5].

    In recent years, the continuous advancement of artificial intelligence (AI) diagnostic technology has led to a competition among ophthalmic AI research teams striving towards the development of DR AI diagnosis technology based on ordinary color fundus photography.Currently, numerous domestic and overseas research teams have developed diverse deep learning models for DR screening, all of which exhibit exceptional detection performance with an area under the curve ranging from 0.89 to 0.99, sensitivity between 87.2% and 100%, and specificity from 87.0% to 100%[5-12].

    Figure 1 Image cropping and cutting.

    When detecting DR lesions using color fundus photographic(CFP), there are several challenges.First, the fundus area displayed in CFP images is limited and even with 7-orientation splicing, only about 65%-70% of the retina area can be shown[13-14], which increases the risk of missing eye lesions.Second, the clarity of CFP can be easily affected by various factors such as dioptric medium clarity, shooting environment and operator skills.

    The ultra-widefield scanning laser ophthalmoscopy (SLO)utilizes scanning laser ophthalmoscope technology and elliptical mirror technology, employing the elliptical bifocal principle to capture retinal imaging up to 200° in a mere 0.25s while maintaining high resolution[15].The device employs red(633 nm) and green (532 nm) lasers to simultaneously scan the retina and choroid, enabling acquisition of a “false color image” of the fundus, non-red light image, and choroid image through its dual-channel laser imaging capabilities, thereby facilitating lesion localization[16-17].

    In a collaborative effort, our hospital and the Southwest Jiaotong University team conducted a study on “Research on algorithm for automatic identification of diabetic retinopathy lesions based on ultra-widefield scanning laser ophthalmoscopy”.The intelligent detection of hemorrhagic spots, cotton wool spots,exudates, and microaneurysms in ultra-widefield SLO provides valuable assistance to clinicians in the diagnosis of DR.

    MATERIALS AND METHODS

    Ethical ApprovalThe Institutional Medical Ethics Committee at our hospital meticulously reviewed and granted approval for the study (DQAIER202203001).All investigations were conducted in strict adherence to pertinent guidelines and regulations.The ethics committee waived informed consent,as none of the ultra-widefield SLO contained any personal information about the patients included.

    Figure 2 Labeling of lesions.

    DatasetsThe present study retrospectively amassed 1076 fundus photographs of DR patients who underwent ultrawidefield SLO examination at Aier Eye Hospital (East of Chengdu) between 2020 and 2022.All images were meticulously acquired by proficient ophthalmic technicians,and the dimensions of the photographs were 2600 mm×2048 mm.The dataset comprised a total of 253 proliferative diabetic retinopathy (PDR) images and 823 non-proliferative diabetic retinopathy (NPDR) images.

    Datasets ProcessingRedundant information, such as eyelids and eyelashes, commonly present in ultra-widefield SLO can increase the computational burden of training and interfere with DR lesion detection.When using the entire ultra-widefield SLO as input for convolutional networks, local lesions can be difficult to focus on due to high resolution and large pixel value differences.Therefore, at the start of algorithm training,we crop and divide the image into N different images (Figure 1).

    Labeling of LesionsUnder the guidance of the deputy chief physician from the Department of Fundus Diseases at our hospital, we manually labeled hemorrhagic spots, cotton wool spots, exudates, and microaneurysms in ultra-widefield SLO using LabelImg software (including coordinate information and name; Figure 2).

    Model Establishment and TrainingOwing to the frequent conjunction with fundus hemorrhage, PDR often presents with less distinct information regarding hemorrhagic spots, cotton wool spots, exudates, and microaneurysms.Consequently, the trained model directly outputs results for PDR images, sans subsequent lesion recognition.Automated algorithm-based detection and lesion identification were conducted on NPDR images.The ultra-widefield SLO processing flow is delineated in Figure 3.

    Model TrainingWe standardized the processed images and partitioned the dataset into training, test, and validation sets in accordance with the 6:2:2.The model was trained using a combination of ResNet50, FasterRCNN, and FPN (Feature Pyramid Networks).During the training process, the number of iterations was set to 100, with a batch size of 1.The optimizer employed was Stochastic Gradient Descent (SGD), and the initial learning rate was set to 0.001.In the event that the loss value for the training set failed to decrease during the training process, the learning rate was adjusted to half of its original value.

    Improved ResNet50This study Improved ResNet50 by altering the size of convolution kernels to augment the model's feature extraction capacity.Concurrently, a Convolutional Block Attention Module (CBAM) is incorporated into the final layer of the ResNet50 architecture to facilitate model attention towards salient regions.Irrelevant image data is thereby mitigated.The Improved ResNet50 demonstrates the ability to extract subtle features from ultra-widefield SLO, effectively minimizes the number of network parameters, and exhibits a higher level of accuracy in distinguishing NPDR and PDR.

    Faster Regions with CNN FeaturesThe first module of Faster Regions with CNN Features (Faster RCNN)[18]is the feature extraction mechanism, which utilizes an Anchor-based approach to generate candidate frames.This network integrates feature extraction, candidate frame selection, frame regression and classification into a single system that effectively detects target objects within images.A feature extraction network with a greater number of layers can extract features at various levels, and precise target features are beneficial for enhancing the recognition rate of targets[19].In ultra-widefield SLO, the dimensions of hemorrhages spots and microaneurysms targets are minimal.After undergoing feature extraction network processes such as convolution and pooling, the amount of information present is diminished.As a result, adjustments to the Anchor are necessitated in this study, and a clustering method based on means is employed to determine the optimal anchor size.

    Feature Pyramid NetworksHemorrhagic spots and microaneurysms in ultra-widefield SLO images of DR patients exhibit uneven distribution, significant size variations, and reduced pixel information.Utilizing a single high-level feature for detection may result in information loss during the sampling process.To address the challenge of detecting significant differences between objects, this paper employs feature pyramid networks (FPN)[20], which can integrate feature maps with strong semantic information at low resolution and those with weak semantic information but rich spatial details at high resolution while minimizing computational costs.This approach effectively resolves the issue of deep residual lesion detection.

    Figure 3 Image processing flow SLO: Scanning laser ophthalmoscopy;DR: Diabetic retinopathy; Faster RCNN: Faster regions with CNN features.

    Table 1 Test results

    Vessel SegmentationIt is challenging to differentiate between hemorrhagic spots and microaneurysms, which often leads to misdiagnoses.In this study, Res_Unet was employed to vessel segmentation, aiming to further delineate hemorrhagic spots and microaneurysms based on their proximity to blood vessels,generally within 20 pixels.Additionally, the accuracy of lesion detection was enhanced by correcting the results with lesions extracted using the Faster RCNN network.

    RESULTS

    Evaluation IndexTo assess the performance of the constructed multi-classification model, two evaluation metrics—precision and sensitivity—are utilized.Precision is computed as follows: Precision=TP/(TP+FP).The formula for calculating sensitivity is: Sensitivity=TN/(TN+FP).

    Precision, also known as positive prediction value, is the proportion of true positive samples to the positive samples determined by the algorithm; Sensitivity (Sen), also known as Recall (R), is the proportion of true positive samples to all positive samples; True positive (TP): The number of samples that are actually positive and correctly predicted to be positive;False positive (FP): The number of samples that are actually negative and incorrectly predicted as positive; True negative(TN): The number of samples that are actually negative and correctly predicted to be negative[21].

    Experimental ResultsAfter training and testing the model, we achieved an accuracy of 54.94% in detecting microaneurysms, 83.57% for cotton wool spots, 86.75% for exudates, and 87.23% for hemorrhages spots.The verification lesion detection results are shown in Table 1, and the lesion labeling results are shown in Figure 4.

    Figure 4 Results of lesion labeling.

    Based on the results of lesion detection, the algorithm proposed in this paper demonstrates high accuracy and sensitivity in detecting hemorrhagic spots, cotton wool spots and exudates in DR ultra-widefield SLO images.However,its performance is limited when it comes to microaneurysms detection due to their resemblance to deep retinal hemorrhages.Based on the detection results, distinguishing microaneurysms from hemorrhagic spots can be challenging, and identifying microaneurysms in ultra-widefield SLO images is difficult.Typically, the green channel image is selected for further analysis due to the limited number of microaneurysms in our dataset.Therefore, future studies should aim to design alternative algorithms for combined detection and conduct a range of experiments to compare and analyze the efficacy of lesion detection in ultra-widefield SLO images of DR.

    DISCUSSION

    With the progression of AI diagnostic technology, an increasing number of sophisticated diagnostic models have been developed.Studies comparable to the model presented in this research include the following.Wanget al[22]developed a deep learning-based DR Classification model.This model employed the optimization of the cyclic generative adversary network(CycleGAN) and convolutional neural network (CNN)model classifiers, and utilized ultra-widefield angiography to facilitate DR Classification, which is dependent on ischemic index and leakage index.Sunet al[23]developed an ultrawidefield SLO-based intelligent diagnostic model for various diseases.They assessed the performance of three deep learning networks (EfficientNet-B7, DenseNet, and ResNet-101),and the aggregate accuracy of the deep learning model for DR diagnosis averaged 93.00%.The two aforementioned algorithm modes do not extract features of hemorrhagic spots, cotton wool spots, exudates, and microaneurysms,instead, they diagnose the diseaseviaalternative features.Abitbolet al[24]employed a DenseNet121 CNN to develop a diagnostic model for various diseases, achieving disease diagnosis through enhanced image separation.The model demonstrated an accuracy of 85.2% for DR.Ohet al[5]recently developed a novel SLO image diagnosis model utilizing the ResNet-34 residual network.This model effectively extracted the region of interest from both the optic disc and the macula’s center, resulting in a DR detection accuracy of 83.38%±0.47%.The two aforementioned algorithms employ a single model for feature extraction.As SLO images possess more lesion information, it becomes challenging to detect small lesions.

    In light of the dearth of lesion information in PDR and the conspicuous disparity between PDR and NPDR images, this study employs ResNet50 convolution kernel size substitution to directly generate PDR images, aiming to enhance the detection rate of PDR.For NPDR, an improved Faster RCNN is proposed.During the feature extraction phase, a residual network integrated with a feature pyramid is employed to extract lesion information, while simultaneously adjusting the FRN candidate box size, effectively addressing the challenges associated with extracting small lesions.In this research,Res_Unet was utilized for retinal blood vessel segmentation and the extraction of retinal blood vesselsviaan algorithm.Concurrently, the lesion detection outcomes of the improved Faster RCNN were optimized to augment the detection precision of microhemangioma and bleeding points.The primary limitation of our study is the small sample size,which precludes the inclusion of images of patients without DR for learning, resulting in suboptimal detection accuracy and sensitivity for arterioles.In the near future, we plan to increase the sample size for both learning and detection, and optimize the algorithm to enhance the lesion recognition rate.Furthermore, the presence of redundant information, such as eyelashes and eyelids in stereoscopic fundus photography,can impede lesion recognition.Consequently, we aim to develop an automatic segmentation method for retinal images to improve the intelligence of the system.At present, our algorithm is based on the entire fundus map.In the future, we intend to utilize the position of the optic disc and the center of the macula as reference points to identify lesions in different areas of the image.In the subsequent step, we will validate the model using additional data sets and optimize the model to achieve DR grading diagnosis.

    The objective of this research is to facilitate the advancement of DR intelligent diagnosis studies, supply efficient supportive tools for clinicians, facilitate early diagnosis for patients, and decrease the blindness rate associated with DR.

    ACKNOWLEDGEMENTS

    Foundation:Supported by Hunan Provincial Science and Technology Department Clinical Medical Technology Innovation Guidance Project (No.2021SK50103);

    Conflicts of Interest:Wang J,None;Wang SZ,None;Qin XL,None;Chen M,None;Zhang HM,None;Liu X,None;Xiang MJ,None;Hu JB,None;Huang HY,None;Lan CJ,None.

    欧美另类一区| 成人毛片a级毛片在线播放| 老汉色∧v一级毛片| 夜夜骑夜夜射夜夜干| 久久久久久久久久久久大奶| 日韩,欧美,国产一区二区三区| 日韩欧美一区视频在线观看| 一区二区三区四区激情视频| 99香蕉大伊视频| 久久国产精品大桥未久av| 亚洲成av片中文字幕在线观看 | 美女福利国产在线| 亚洲精品,欧美精品| 日韩av在线免费看完整版不卡| 精品国产乱码久久久久久男人| 大香蕉久久网| www.av在线官网国产| 久久久久精品人妻al黑| 青春草视频在线免费观看| 青春草国产在线视频| 亚洲国产欧美网| 有码 亚洲区| 国产一区亚洲一区在线观看| 久久精品亚洲av国产电影网| 中文字幕另类日韩欧美亚洲嫩草| 深夜精品福利| 精品国产一区二区三区四区第35| 国产乱人偷精品视频| 日韩中文字幕欧美一区二区 | 大陆偷拍与自拍| 国产又色又爽无遮挡免| 韩国av在线不卡| 黄色视频在线播放观看不卡| 黄色视频在线播放观看不卡| 99久久精品国产国产毛片| 中文字幕av电影在线播放| 一级毛片电影观看| 国产精品秋霞免费鲁丝片| 汤姆久久久久久久影院中文字幕| 天天操日日干夜夜撸| 香蕉丝袜av| www.av在线官网国产| 波多野结衣av一区二区av| 人妻人人澡人人爽人人| 久久ye,这里只有精品| 熟女少妇亚洲综合色aaa.| 叶爱在线成人免费视频播放| 1024香蕉在线观看| 国产野战对白在线观看| 18禁动态无遮挡网站| 热re99久久精品国产66热6| 久久精品夜色国产| 在线 av 中文字幕| 老司机亚洲免费影院| 国产精品嫩草影院av在线观看| 色播在线永久视频| 啦啦啦视频在线资源免费观看| 亚洲精品久久午夜乱码| av天堂久久9| 中文字幕最新亚洲高清| 中文字幕色久视频| 少妇的丰满在线观看| 最近最新中文字幕免费大全7| 观看av在线不卡| 汤姆久久久久久久影院中文字幕| 国产黄色免费在线视频| 成人毛片a级毛片在线播放| 永久网站在线| 日本免费在线观看一区| 久久精品人人爽人人爽视色| 久久精品国产亚洲av涩爱| 午夜免费观看性视频| 国产淫语在线视频| 国产精品麻豆人妻色哟哟久久| 纯流量卡能插随身wifi吗| 久热久热在线精品观看| 国产一级毛片在线| 亚洲av综合色区一区| 激情视频va一区二区三区| 亚洲av免费高清在线观看| 欧美人与性动交α欧美软件| 激情五月婷婷亚洲| 国产精品三级大全| 久久久久国产一级毛片高清牌| 亚洲国产av新网站| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕人妻熟女乱码| 2022亚洲国产成人精品| 免费观看在线日韩| 伦理电影大哥的女人| 亚洲,欧美,日韩| 久久精品熟女亚洲av麻豆精品| 国产深夜福利视频在线观看| 国产精品久久久久久精品古装| 人妻系列 视频| 9191精品国产免费久久| 熟女少妇亚洲综合色aaa.| 国产成人免费观看mmmm| 婷婷色综合大香蕉| 久久久久久人妻| 老司机影院成人| 97人妻天天添夜夜摸| 国产精品免费大片| 免费大片黄手机在线观看| 熟女av电影| 黄色配什么色好看| 国产熟女欧美一区二区| 香蕉丝袜av| 欧美激情高清一区二区三区 | 老熟女久久久| 日日啪夜夜爽| 久久国产精品男人的天堂亚洲| 考比视频在线观看| 99国产精品免费福利视频| 精品酒店卫生间| 国产精品av久久久久免费| 亚洲欧美精品自产自拍| 久久久亚洲精品成人影院| 午夜日本视频在线| 又大又黄又爽视频免费| 中文字幕色久视频| 亚洲精品一二三| 深夜精品福利| 亚洲欧美精品自产自拍| 叶爱在线成人免费视频播放| 日本黄色日本黄色录像| 看十八女毛片水多多多| 永久网站在线| 国产极品天堂在线| 99热网站在线观看| 久久久精品94久久精品| 热re99久久国产66热| 少妇 在线观看| 国产野战对白在线观看| 欧美日本中文国产一区发布| 久久人妻熟女aⅴ| freevideosex欧美| 菩萨蛮人人尽说江南好唐韦庄| 午夜久久久在线观看| 欧美日韩视频高清一区二区三区二| 午夜老司机福利剧场| 日韩中文字幕欧美一区二区 | 日韩制服骚丝袜av| 国产亚洲最大av| 国语对白做爰xxxⅹ性视频网站| 精品少妇一区二区三区视频日本电影 | 建设人人有责人人尽责人人享有的| 久久人人97超碰香蕉20202| 亚洲三级黄色毛片| 免费在线观看完整版高清| 久久久亚洲精品成人影院| 国产97色在线日韩免费| 久久久久人妻精品一区果冻| 久久国产亚洲av麻豆专区| 不卡av一区二区三区| 自线自在国产av| 国产亚洲av片在线观看秒播厂| 伦精品一区二区三区| 伊人亚洲综合成人网| 亚洲av.av天堂| 久久综合国产亚洲精品| 97人妻天天添夜夜摸| 国产亚洲精品第一综合不卡| 国产成人一区二区在线| 中文字幕人妻丝袜制服| 欧美日韩视频精品一区| 日韩中文字幕视频在线看片| 亚洲,一卡二卡三卡| 一本久久精品| 亚洲国产欧美日韩在线播放| 欧美精品高潮呻吟av久久| 热99久久久久精品小说推荐| 亚洲中文av在线| 亚洲一码二码三码区别大吗| 母亲3免费完整高清在线观看 | 观看美女的网站| 中文字幕精品免费在线观看视频| 丰满饥渴人妻一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| 一区二区av电影网| 久久热在线av| 免费在线观看视频国产中文字幕亚洲 | 一本色道久久久久久精品综合| av天堂久久9| 亚洲综合精品二区| 欧美成人精品欧美一级黄| 国产av一区二区精品久久| 色网站视频免费| 黄片无遮挡物在线观看| av网站在线播放免费| 王馨瑶露胸无遮挡在线观看| 777久久人妻少妇嫩草av网站| 99久久人妻综合| 亚洲视频免费观看视频| 久久精品国产亚洲av高清一级| 哪个播放器可以免费观看大片| 日本wwww免费看| 久久久久人妻精品一区果冻| 国语对白做爰xxxⅹ性视频网站| 欧美 日韩 精品 国产| 日韩欧美一区视频在线观看| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 久久ye,这里只有精品| 国语对白做爰xxxⅹ性视频网站| 女的被弄到高潮叫床怎么办| 日韩电影二区| 久久精品国产亚洲av高清一级| 亚洲国产av影院在线观看| 国产精品女同一区二区软件| 国产 精品1| 日本欧美视频一区| 在线天堂最新版资源| 在线观看免费日韩欧美大片| 视频在线观看一区二区三区| 黄片小视频在线播放| 极品少妇高潮喷水抽搐| 深夜精品福利| 亚洲精品日韩在线中文字幕| 亚洲国产av影院在线观看| 日本av手机在线免费观看| 一级黄片播放器| 午夜福利乱码中文字幕| 国产精品二区激情视频| 午夜福利在线观看免费完整高清在| 亚洲精品日韩在线中文字幕| 十分钟在线观看高清视频www| 我的亚洲天堂| 97人妻天天添夜夜摸| 国产xxxxx性猛交| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 美女xxoo啪啪120秒动态图| 狂野欧美激情性bbbbbb| 男女午夜视频在线观看| 18禁国产床啪视频网站| 亚洲一码二码三码区别大吗| 国产97色在线日韩免费| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 免费黄网站久久成人精品| 亚洲,欧美精品.| 亚洲国产精品一区二区三区在线| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 国产精品av久久久久免费| 中文欧美无线码| 国产精品三级大全| 国产老妇伦熟女老妇高清| 男人舔女人的私密视频| 熟女av电影| 欧美日韩视频精品一区| 久久午夜福利片| 亚洲欧美色中文字幕在线| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 赤兔流量卡办理| 亚洲一区二区三区欧美精品| 精品一区在线观看国产| 欧美日韩精品网址| 久久狼人影院| 纵有疾风起免费观看全集完整版| 国产精品亚洲av一区麻豆 | 青草久久国产| 色吧在线观看| 日韩一卡2卡3卡4卡2021年| 在线观看免费高清a一片| 女的被弄到高潮叫床怎么办| www.av在线官网国产| 2022亚洲国产成人精品| www.精华液| 国产精品久久久久久精品电影小说| 欧美成人午夜免费资源| www.av在线官网国产| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 精品国产国语对白av| 韩国精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲av成人精品一二三区| 精品少妇内射三级| 亚洲av在线观看美女高潮| 国产一区二区激情短视频 | 美女主播在线视频| 啦啦啦中文免费视频观看日本| 亚洲av综合色区一区| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 高清av免费在线| 亚洲国产色片| 亚洲欧美色中文字幕在线| 永久网站在线| 2018国产大陆天天弄谢| 免费日韩欧美在线观看| 欧美97在线视频| 国产女主播在线喷水免费视频网站| 男女边吃奶边做爰视频| 精品少妇一区二区三区视频日本电影 | 成人手机av| 国产一区二区 视频在线| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频| 69精品国产乱码久久久| 99久久综合免费| 波多野结衣av一区二区av| 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区久久| 巨乳人妻的诱惑在线观看| 日韩av在线免费看完整版不卡| 国产精品一区二区在线不卡| 韩国高清视频一区二区三区| 久久婷婷青草| 精品福利永久在线观看| 男女国产视频网站| 青春草国产在线视频| 日韩欧美一区视频在线观看| 制服诱惑二区| 天美传媒精品一区二区| 飞空精品影院首页| 黄色一级大片看看| 日韩制服骚丝袜av| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 免费女性裸体啪啪无遮挡网站| 狂野欧美激情性bbbbbb| 久久人人97超碰香蕉20202| 你懂的网址亚洲精品在线观看| 久久久国产一区二区| 麻豆精品久久久久久蜜桃| 久久久久精品人妻al黑| 日日撸夜夜添| 2021少妇久久久久久久久久久| 美女午夜性视频免费| 丝袜美腿诱惑在线| 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av天美| 国产伦理片在线播放av一区| 性高湖久久久久久久久免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合一区二区三区 | 一本久久精品| 如日韩欧美国产精品一区二区三区| 曰老女人黄片| 卡戴珊不雅视频在线播放| 777久久人妻少妇嫩草av网站| 午夜福利一区二区在线看| 青草久久国产| 午夜老司机福利剧场| 久久久精品免费免费高清| 看非洲黑人一级黄片| videossex国产| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久精品古装| 国产一区二区激情短视频 | 成人漫画全彩无遮挡| 亚洲精品国产av蜜桃| www.av在线官网国产| 精品午夜福利在线看| 精品国产超薄肉色丝袜足j| 国产有黄有色有爽视频| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 97在线视频观看| 美女视频免费永久观看网站| 亚洲人成77777在线视频| 亚洲综合色网址| 蜜桃国产av成人99| 日本免费在线观看一区| 亚洲欧洲精品一区二区精品久久久 | 国产极品天堂在线| 久久影院123| 99久久人妻综合| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 成年动漫av网址| 国产 一区精品| 咕卡用的链子| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 精品久久久精品久久久| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 成年人午夜在线观看视频| 亚洲男人天堂网一区| 七月丁香在线播放| 国产乱来视频区| 精品国产露脸久久av麻豆| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 2022亚洲国产成人精品| 精品少妇内射三级| 国产淫语在线视频| 看非洲黑人一级黄片| 97人妻天天添夜夜摸| 久久女婷五月综合色啪小说| 欧美另类一区| 亚洲伊人色综图| 成人手机av| 在现免费观看毛片| 五月开心婷婷网| 免费久久久久久久精品成人欧美视频| 久久久精品区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久久久人妻精品一区果冻| 久久精品国产亚洲av天美| 电影成人av| 天美传媒精品一区二区| 国产一区有黄有色的免费视频| 免费高清在线观看视频在线观看| 一级毛片我不卡| 中文字幕人妻丝袜一区二区 | 久久久久久伊人网av| 午夜91福利影院| 欧美激情 高清一区二区三区| 美女国产视频在线观看| 少妇人妻精品综合一区二区| 大香蕉久久网| 少妇的丰满在线观看| 超碰97精品在线观看| 午夜福利在线免费观看网站| www.精华液| 久久精品国产a三级三级三级| 欧美日韩成人在线一区二区| 亚洲综合精品二区| 久久av网站| 国产一区亚洲一区在线观看| 国产成人欧美| 国产免费福利视频在线观看| 人人澡人人妻人| 欧美精品高潮呻吟av久久| 国产精品国产三级专区第一集| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 女人精品久久久久毛片| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 国产又爽黄色视频| 只有这里有精品99| 国产在视频线精品| 国产成人一区二区在线| 亚洲av福利一区| 伊人久久大香线蕉亚洲五| 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 国产免费又黄又爽又色| a级毛片在线看网站| 丝袜美足系列| 久久久欧美国产精品| 26uuu在线亚洲综合色| 久久国产精品大桥未久av| 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 成人午夜精彩视频在线观看| 久久这里只有精品19| 成人二区视频| 国产精品 国内视频| 日韩欧美精品免费久久| 在线精品无人区一区二区三| 亚洲国产欧美在线一区| 成年av动漫网址| 国产精品一国产av| 一级a爱视频在线免费观看| 黄频高清免费视频| 成人影院久久| 国产成人精品一,二区| 日韩伦理黄色片| 少妇 在线观看| 国产成人精品无人区| 春色校园在线视频观看| 国产成人精品福利久久| 欧美精品av麻豆av| 国产色婷婷99| 日韩伦理黄色片| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 色播在线永久视频| 午夜福利,免费看| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 欧美bdsm另类| 激情视频va一区二区三区| 美女大奶头黄色视频| 精品久久久精品久久久| 九草在线视频观看| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 一级黄片播放器| 交换朋友夫妻互换小说| 好男人视频免费观看在线| 十八禁网站网址无遮挡| 久久热在线av| 亚洲视频免费观看视频| 精品午夜福利在线看| 久久精品国产亚洲av天美| 26uuu在线亚洲综合色| 国产亚洲一区二区精品| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 国产欧美亚洲国产| 综合色丁香网| 亚洲视频免费观看视频| 国产男女内射视频| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 婷婷色综合www| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 日本黄色日本黄色录像| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲精品一区二区精品久久久 | 日本vs欧美在线观看视频| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 性色av一级| 青草久久国产| 三级国产精品片| 午夜日本视频在线| 欧美日韩精品网址| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 久久久久久久久久人人人人人人| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 亚洲av电影在线观看一区二区三区| 日韩电影二区| 日韩中文字幕视频在线看片| 欧美av亚洲av综合av国产av | 日韩伦理黄色片| 成年av动漫网址| 日韩中字成人| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 晚上一个人看的免费电影| 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 久久午夜福利片| 成年女人在线观看亚洲视频| 欧美日韩一级在线毛片| 久久久久精品性色| 老汉色av国产亚洲站长工具| 亚洲国产欧美在线一区| 老汉色∧v一级毛片| av.在线天堂| 美女xxoo啪啪120秒动态图| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| av国产精品久久久久影院| 精品亚洲成a人片在线观看| 日韩人妻精品一区2区三区| av卡一久久| 久久精品国产a三级三级三级| 国产免费福利视频在线观看| 综合色丁香网| 两个人免费观看高清视频| 极品人妻少妇av视频| 免费在线观看视频国产中文字幕亚洲 | 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 亚洲国产精品999| 亚洲精品久久午夜乱码| 亚洲男人天堂网一区| 久久青草综合色| 久久精品人人爽人人爽视色| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 国产精品99久久99久久久不卡 | 欧美精品一区二区免费开放| 蜜桃国产av成人99| 精品国产一区二区久久| 国产在线一区二区三区精| 国产97色在线日韩免费| 久久久久久久亚洲中文字幕| 一级片'在线观看视频| 考比视频在线观看| 激情五月婷婷亚洲| 99re6热这里在线精品视频| 免费观看性生交大片5| 亚洲av电影在线进入| 一本大道久久a久久精品| 高清黄色对白视频在线免费看| 欧美日韩av久久| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 日韩一卡2卡3卡4卡2021年| 午夜福利视频在线观看免费| 色哟哟·www| 欧美激情 高清一区二区三区| 日本爱情动作片www.在线观看| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 最近最新中文字幕大全免费视频 | 欧美精品一区二区免费开放| 国产精品久久久久久久久免| 久久这里只有精品19| 美女午夜性视频免费| 成人18禁高潮啪啪吃奶动态图| 成年人免费黄色播放视频| 亚洲成人手机|