• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment

    2024-04-01 02:08:24ZhangLejunPengMinghuiSuShenWangWeizhengJinZilongSuYansenChenHuilingGuoRanSergeyGataullin9
    China Communications 2024年3期

    Zhang Lejun ,Peng Minghui ,Su Shen ,Wang Weizheng ,Jin Zilong ,Su Yansen ,Chen Huiling,Guo Ran,Sergey Gataullin9,0

    1 Cyberspace Institute Advanced Technology,Guangzhou University,Guangzhou 510006,China

    2 College of Information Engineering,Yangzhou University,Yangzhou 225127,China

    3 School Math&Computer Science,Quanzhou Normal University,Quanzhou 362000,China

    4 Computer Science Department,City University of Hong Kong,Hong Kong 999077,China

    5 School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 21004,China

    6 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,School of Computer Science and Technology,Anhui University,Hefei 230601,China

    7 Department of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou 325035,China

    8 Guangzhou University Library,Guangzhou University,Guangzhou 510006,China

    9 Central Economic and Mathematics Institute,Russian Academy of Sciences

    10 MIREA-Russian Technological University,Moscow Region,Russia

    Abstract: With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.

    Keywords: blockchain;data integrity;edge computing;privacy protection;redundant data

    I.INTRODUCTION

    The rapid development of information technology makes IoT devices closer to people’s lives [1].IoT devices play a huge role in physiological health data[2].IoT devices in edge computing [3-6] can monitor and collect the user’s physical health data in time,the remote cloud server will perform statistical processing on the received data.However,cloud computing often cannot guarantee the timely processing of data.In this information age,users want their requests to be processed in a timely manner [7].The cloud computing-based architecture has strong computing power,but cannot guarantee the timeliness of data processing,and long-distance transmission causes a large delay.To solve this problem,the mobile-edge computing(MEC)technology was born[8].Edge nodes connect edge devices and remote cloud servers,providing quality services[9-11]for the users.but there are still the following problems.1)The storage space of edge nodes is limited,and the unreasonable distribution of data cannot guarantee the timeliness of data response.2)A lot of redundant and repeated data is stored in the edge node,which leads to a waste of storage space.3)Semi-trusted edge nodes and cloud servers may leak users’private data.To address these issues[12],some researchers propose to store original data that needs to be searched frequently in edge nodes to improve the hit rate and the timeliness of response,though the disadvantages still exist[13-15].How to ensure that the sub-data of the original data meets the requirements of hot data [16-18],how to ensure that the integrity of the data will not be damaged when the redundant data in the original data is deleted.In order to solve these problems,our paper proposes redundant data detection and deletion to meet privacy protection requirements under blockchain-based edge computing.The main contributions of this paper are described as follows:

    1.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.

    2.Our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use CES to generate the remaining hot data signature after the redundant data is deleted.

    3.In our scheme,content popularity meets the Zipf distribution.We can know the requirements that the hot data needs to meet according to the Zipf distribution.After deleting the redundant data of the edge node,we can ensure the timeliness of the response and improve the hit rate of the access data.

    The paper is organized as follows: The second section reviewed on research status of redundant data detection and deletion under blockchain-based edge computing is provided.In Section II,the system model of this scheme will be described.The Workflow of the Scheme will be described in Section IV.Section V will make a reasonable analysis of the safety and performance of our scheme.Finally,the summary of this article and future prospects will be elaborated in Section VI.

    II.RELATED WORK

    In this section,we reviewed the research status of redundant data detection and deletion under blockchainbased edge computing.

    Zhang et al.[19] proposed a resource allocation and trust computing scheme for blockchain-enabled edge computing system.In Zhang’s scheme,the cloud server sorts the keywords according to the search frequency of the original data,and stores the original data corresponding to the top keywords in the edge node’s hot data pool.Although storing the original data with a higher search frequency in the hot data pool of the edge node can improve the access hit rate,there are inevitably redundant data in the original data.The existence of these redundant data will reduce the access hit rate.and waste storage space.

    He et al.[20] analyzed data deduplication techniques and studying the data de-duplication strategy,processes,and implementations for the following further lay the foundation of the work.Since users often use their own private keys to sign the original data,the integrity of the remaining data cannot be guaranteed after the redundant data is deleted.

    Kang et al.[21]proposed a secure and efficient data sharing scheme.In this scheme,edge computing has powerful computing power and the ability to store certain resources.IoT devices can collect relevant information about vehicles in a timely manner.The information will be submitted to the edge node for processing.However,edge nodes are untrustworthy,they may leak the user’s sensitive data.

    Our paper proposes a redundant data detection and deletion scheme to meet privacy protection requirements under blockchain-based edge computing.Our paper designs a redundant data detection method that meets the privacy protection requirements.By scanning the ciphertext,it is determined whether each submessage of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper designs a redundant data deletion scheme that meets the dynamic integrity of the data.We use CES to generate the hot data signature after the redundant data is deleted.CES realized the separation of the hot data part and the redundant data part of the original data and ensure the integrity of the data.

    III.REDUNDANT DATA DETECTION AND DELETION MODEL UNDER BLOCKCHAIN-BASED EDGE COMPUTING

    3.1 Notations

    The symbols and corresponding explanations in this article are given in the Table 1.

    Table 1.Notations.

    3.2 System Structure

    It can be seen from Figure 1 that our model is divided into three layers.

    Figure 1.System overall framework.

    Edge devices layer.Multiple IoT devices owned by users can collect user information in a timely manner.First,the user generates the keyword corresponding to each sub-message in the original data,and then uses its own symmetric key to encrypt each sub-message,finally the user uses CES to generate a complete signature of the ciphertext data.

    Edge computing layer.After receiving the ciphertext data submitted by the user,the edge node uploads the data to the cloud by means of backup upload;the cloud will return all ciphertext data that meets the hot data conditions.Since the sub-messages in the data returned by the cloud may not meet the requirements of the hot data,the edge node will delete the redundant data in the data returned from the cloud,and generate the extraction signature of the hot data at the same time,finally the edge node will store the ciphertext of the hot data and the extraction signature in hotspot data pool.

    Data storage layer.The server calculates the popularity of each keyword according to the search frequency,and the cloud server uses a database to store all the data in order according to the popularity of the content of the keyword.The index of each data will be stored in a tamper-proof blockchain.

    IV.THE WORKFLOW OF THE SCHEME

    4.1 Data Processing Stage

    It is assumed that original dataMfullcollected by IoT devices contains t sub-message,Mfull={m1,m2,...,mt}.IoT devices scan each submessage in the original data to extract the keywords corresponding to each sub-message,keyword setW={w1,w2,...,wt}.In order to ensure that data is not leaked by semi-trusted edge nodes and cloud servers,users will useKu1to encryptmiandwi,i ∈[1,9].original dataMfull.The encryption process is shown in Eq.(1),(2).According to the above encryption calculation,Original data ciphertextCMfull={Cm1,Cm2,...,Cmt}.Next we first introduce U’s key pair generation method.

    Key generation:Trusted authority selects two unequal prime numbers:handq.Then the trusted authority calculatesn=h×qand sets Euler function:?(n)=(h-1)*(q-1) .Thirdly,Uselects an integerethat is prime with?(n)in the interval[1,?(n)],and finds an integerdto satisfy(e×d)mod?(n)=1.Finally,according to the above calculation,PKU={n,e}.SKU={n,d}.

    Uwill generate’s signatureaccording to the following signature algorithm.

    As there may be data leakage during the data storage process,the data needs to be encrypted,U will use symmetric encryption keyKU2to encrypt||Hi(i ∈[1,t])||ξfull||R),and usePKENto encryptKU2.ThenDsendsInfo1 toP,Info1 is shown in Eq.(3).

    4.1.1 Data Storage Stage

    After EN receive Info1,EN first decrypt to obtainKU2with private keySKEN,and EN obtains||Hi(i ∈[1,t])||ξfull||R)further.

    EN needs to verify the correctness of the signature through the following two operations.

    (1)EN calculates the hash valueH(||ri),wherei ∈[0,b].ENwill make a judgment based on whether the result obtained from the ciphertext is consistent with the calculated result.

    (2) The base station needs to verify and calculateξH∧emodn.If H is consistent with the calculated result,it proves that the data is complete and accurate.

    In our scheme,edge nodes will use backup uploads to store data in the cloud avoiding data flooding caused by centralized time upload.The cloud receives the ciphertext data uploaded by the edge node and the keyword ciphertext corresponding to the ciphertext data,it will assign a ciphertext id to each ciphertext data.In addition,the cloud server will maintain a database table for record which ciphertext IDs the keywords correspond to;Next,the cloud server will sort keywords according to the frequency of user searches.

    We assume that the keyword set is described asK={k1,k2,···,ki,···,kH},the collection is sorted in descending order according to the frequency of occurrence.Content popularity in our scheme satisfies the Zipf distribution.The content popularity of the keywordkican be expressed as Eq.(4):

    Whereadenotes the feature degree describing the distribution of caching data.Whenais large,popular contents occupy the most of the requested content.

    According to the content popularity of keywords,the cloud server can predict search frequency of keywords and sort keywords according to the search frequency.In order to improve the access hit rate and response timeliness,the cloud server will filter out the topθkeywords and send the topθkeywords,the ciphertext id and ciphertext corresponding to the topθkeywords to the edge node.

    4.1.2 Redundant Data Detection and Deletion Stage The edge node receives the topθkeywords ciphertext,the ciphertext id and ciphertext from the cloud.Each ciphertext data will be scanned,and the following algorithm will be used to generate the extracted signature after deleting the redundant data.

    After the edge node obtains the hotspot data and the corresponding extracted signature,the data is stored in the hotspot data pool for sharing.Next,the edge node generates an indexIndexhotdataaccording to the storage address of the hot dataurlhotdata,and uploads the index of the generated hot data to the blockchain.

    In this section,EN generatesMhotdata’sIndexhotdataaccording tourlhotdata.The index generation methods are introduced as follows.After EN receiveurlhotdata,EN first useSKENto signurlhotdata,the generated signature is defined asδurlhotdata,Finally,PstoreIndexshareto shared blockchain.Indexsharegeneration process is shown in Eq.(5).

    V.PERFORMANCE ANALYSIS

    5.1 Security Analysis

    Security is a key issue in redundant data extraction and deletion under blockchain-based edge computing.

    1.Anti-tampering: In our solution,the original data is encrypted and stored in the cloud server,and the index is stored in the tamper-proof blockchain.Therefore,the characteristics of the blockchain can ensure that the data will not be easily tampered with.

    2.Data consistency: In the process of deleting redundant data,the edge node processed the original data corresponding to the topθkeywords sent by the cloud.On the basis of the original data,the redundant data is deleted,and only the hot data that meets the requirements is retained,so the consistency of the data will not be changed.

    3.Privacy protection:In our scheme,before uploading the original data,users use their own symmetric key to encrypt each sub-message and corresponding keywords.Semi-trusted cloud servers and edge nodes cannot obtain plaintext data.In the process of deleting redundant data,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data by scanning the ciphertext.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.

    4.Data integrity:In the entire process from data collection to data processing and storage,we will use signatures to ensure the integrity of the data.

    5.2 Efficiency Analysis

    5.2.1 Effect of Data Searching When the Capacity of the Edge Node Is Different

    The efficiency of search depends on the hit rate of data access.Here we use the hotspot data request ratio(PHDR)to indicate the ratio of hot data in all user requests.

    In Zhang’s scheme,the cloud server sorts the keywords according to the search frequency of the original data,and stores the original data corresponding to the topθkeywords in the edge node’s hot data pool.But our scheme has further processed the original data corresponding to the top keywords before storing data in the edge node’s hot data pool.Our scheme will judge whether each sub-message in the original data meets the requirements of hot data,and will delete the redundant data in the original data.We compare average hit ratio of user requests between our scheme and other schemes when the capacity of the edge node is different,as shown in Figure 2.

    Figure 2.Average Hit ratio of user requests when the capacity of the edge node is different.

    It can be seen from Figure 2 that PHDR account for about 30%and 60%of all requests.When the capacity of the edge node is greater than the total amount of hot data,regardless of PHDR,the average hit rate of requested data is equal to the proportion of hot data in all requests.But the capacity of the edge node is less than the capacity of the hot data and when the PHRD is unchanged,because the data stored in the edge node in Zhang’s scheme contains redundant data,our scheme realizes the deletion of redundant data and adds new hot data,so the average hit rate of our scheme is higher than the average hit rate of Zhang’s scheme.

    5.2.2 Effect of Data Searching When the Data Update Method Is Different

    In order to better evaluate our system model,we compare our content model with models such as FIFO,LRU and Zhang’s scheme.In Zhang’s scheme: The cloud server sorts the keywords according to the search frequency of the original data,and stores the original data corresponding to the topθkeywords in the edge node.

    Comparing Figure 3,In FIFO scheme,if the capacity of the hotspot data pool is full,the new one will take the place of the content with the longest stay.LRU scheme removes data that has not been used for the longest time recently from the cache and the data in the cache is constantly updated and replaced.When the capacity of the edge node is greater than the size of the hot data,the above two schemes use data update and replacement methods,and there is no guarantee that hot data is stored in edge nodes.In our scheme,our hotspot data can all be stored in edge nodes,all our hotspot data can be stored in edge nodes.The hit rate of our solution basically depends on the proportion of hotspot data in our requests.

    Figure 3.Average Hit ratio of user requests when the capacity of the edge node is greater than the size of the hot data and PHDR is different.

    When the capacity of the edge node is lesser than the size of the hot data,we can find that as analyzed in Figure 4,When the hotspot data cannot be stored in all edge nodes,due to our fine-grained division of submessages,some non-hot-spot sub-message parts have actually been removed,while redundant parts have not been removed in the FIFO and LRU schemes,and the data replacement method in Figure 3 cannot guarantee the data hit rate.

    Figure 4.Average Hit ratio of user requests when the capacity of the edge node is lesser than the size of the hot data and PHDR is different.

    5.2.3 Time and Space Costs to Ensure Dynamic Integrity Verification

    At edge computing layer,before the redundant data is deleted and the hot data is uploaded to the hot data pool,edge node needs to ensure that the hot data is verifiable,the time and space cost comparison to ensure that the data is complete and verifiable during the redundant data deletion process are shown in Figure 5 and Figure 6.

    Figure 5.Signing time when the number of keywords in the original data is different.

    Figure 5 shows that the signature scheme A signs the complete information.This method only needs to be signed once.Since we need to realize the separation of sub-messages,this kind of signature cannot ensure the integrity.Scheme B needs to individually sign each part of the complete message.Although it can solve the above problems,it will take a lot of time.Compared with the above two methods,our scheme can still generate the signature of the remaining data when deleting redundant data,and the time spent is between the two.

    Figure 6 shows that the signature scheme A signs the complete information.This method only needs to be signed once.Since we need to realize the separation of sub-messages,this kind of signature cannot ensure the integrity.Scheme B needs to individually sign each part of the complete message.Although it can solve the above problems,it will take a lot of space.Compared with the above two methods,our scheme can still generate the signature of the remaining data when deleting redundant data,and the time spent is between the two.

    VI.CONCLUSION

    Our paper proposes a redundant data detection and deletion scheme to meet privacy protection requirements under blockchain-based edge computing.Our paper designs a redundant data detection method that meets the privacy protection requirements.By scanning the ciphertext,it is determined whether each submessage of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper designs a redundant data deletion scheme that meets the dynamic integrity of the data.We use CES to generate the hot data signature after the redundant data is deleted.CES realized the separation of the hot data part and the redundant data part of the original data and ensure the integrity of the data.By comparing with existing schemes,our scheme takes less time and space to achieve data dynamic integrity verification,and by deleting redundant data in edge nodes,our scheme increases the hit ratio of user requests and ensures the timeliness of response.

    ACKNOWLEDGEMENT

    The authors would like to thank the reviewers for their detailed reviews and constructive comments,which have helped improve the quality of this paper.This work is sponsored by the National Natural Science Foundation of China under grant number No.62172353,No.62302114,No.U20B2046 and No.62172115.Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1331007 and No.1311022.Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No.17KJB520044 and Six Talent Peaks Project in Jiangsu Province No.XYDXX-108.

    免费观看的影片在线观看| 天天添夜夜摸| 日韩免费av在线播放| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费男女啪啪视频观看 | 两人在一起打扑克的视频| 中国美女看黄片| 欧美在线一区亚洲| 久久久久久久午夜电影| 亚洲av免费在线观看| 3wmmmm亚洲av在线观看| 国产精品一及| 精品国产美女av久久久久小说| 精华霜和精华液先用哪个| 亚洲欧美日韩无卡精品| 99久久久亚洲精品蜜臀av| 在线观看66精品国产| 色老头精品视频在线观看| 91在线观看av| 亚洲中文日韩欧美视频| 国产av一区在线观看免费| 亚洲精品乱码久久久v下载方式 | 久久久久久九九精品二区国产| 久久精品国产亚洲av涩爱 | www.www免费av| 淫秽高清视频在线观看| 亚洲精品色激情综合| 日韩欧美三级三区| 免费高清视频大片| 久久久久久久午夜电影| 淫秽高清视频在线观看| 久久久精品欧美日韩精品| 舔av片在线| 最近视频中文字幕2019在线8| 亚洲无线在线观看| 露出奶头的视频| 中文字幕熟女人妻在线| 最近视频中文字幕2019在线8| 最近视频中文字幕2019在线8| 国产亚洲欧美在线一区二区| 长腿黑丝高跟| 天堂动漫精品| 九色成人免费人妻av| 99在线人妻在线中文字幕| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 国内精品美女久久久久久| av福利片在线观看| 变态另类成人亚洲欧美熟女| 手机成人av网站| 国产伦在线观看视频一区| 国产伦一二天堂av在线观看| 一区二区三区国产精品乱码| 真实男女啪啪啪动态图| 午夜久久久久精精品| 欧洲精品卡2卡3卡4卡5卡区| 日本在线视频免费播放| 国产高清videossex| 国产综合懂色| 99热这里只有是精品50| 国产在视频线在精品| 国产aⅴ精品一区二区三区波| 亚洲不卡免费看| 欧美黄色淫秽网站| 日本撒尿小便嘘嘘汇集6| 午夜激情欧美在线| 美女 人体艺术 gogo| 国产97色在线日韩免费| 欧美黄色淫秽网站| 免费在线观看亚洲国产| 一区二区三区免费毛片| 黄片大片在线免费观看| 日本一二三区视频观看| 一本一本综合久久| 午夜精品在线福利| 午夜福利视频1000在线观看| 99在线视频只有这里精品首页| 亚洲欧美日韩高清专用| 国产中年淑女户外野战色| 免费在线观看亚洲国产| 精品久久久久久成人av| 亚洲天堂国产精品一区在线| 99热这里只有是精品50| 欧美最黄视频在线播放免费| 国产精品电影一区二区三区| 国产伦在线观看视频一区| 91九色精品人成在线观看| 脱女人内裤的视频| 脱女人内裤的视频| 麻豆一二三区av精品| 搡老熟女国产l中国老女人| 天天一区二区日本电影三级| av福利片在线观看| 99久久久亚洲精品蜜臀av| 国产男靠女视频免费网站| 欧美av亚洲av综合av国产av| 美女大奶头视频| 亚洲国产精品999在线| 男女下面进入的视频免费午夜| 岛国视频午夜一区免费看| 亚洲精品国产精品久久久不卡| 亚洲狠狠婷婷综合久久图片| 亚洲欧美一区二区三区黑人| 欧美成人一区二区免费高清观看| 国产精品久久视频播放| 99在线视频只有这里精品首页| 97超级碰碰碰精品色视频在线观看| www国产在线视频色| 一本精品99久久精品77| 可以在线观看毛片的网站| 国产精品99久久久久久久久| 99久久九九国产精品国产免费| 国产老妇女一区| 日本免费一区二区三区高清不卡| 搡老岳熟女国产| 老汉色av国产亚洲站长工具| 女生性感内裤真人,穿戴方法视频| 观看美女的网站| 免费看十八禁软件| 免费在线观看亚洲国产| 日韩欧美在线二视频| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av| 久久精品人妻少妇| 搡女人真爽免费视频火全软件 | 91在线观看av| 欧美日韩国产亚洲二区| 白带黄色成豆腐渣| 精品不卡国产一区二区三区| 99久久久亚洲精品蜜臀av| 在线视频色国产色| 宅男免费午夜| 欧美一区二区亚洲| 国模一区二区三区四区视频| 国产美女午夜福利| 亚洲av不卡在线观看| 日韩大尺度精品在线看网址| 成人高潮视频无遮挡免费网站| 久久香蕉精品热| 国产av在哪里看| 色吧在线观看| 久久久精品欧美日韩精品| 男女视频在线观看网站免费| 亚洲欧美日韩高清专用| 狂野欧美激情性xxxx| 淫妇啪啪啪对白视频| 一个人看视频在线观看www免费 | 久久久久九九精品影院| 国产麻豆成人av免费视频| 国产97色在线日韩免费| 亚洲av成人精品一区久久| 搡老熟女国产l中国老女人| 九九在线视频观看精品| 国产av在哪里看| 高清日韩中文字幕在线| 亚洲av电影在线进入| 亚洲精华国产精华精| 日韩有码中文字幕| 精品99又大又爽又粗少妇毛片 | 香蕉丝袜av| 免费观看的影片在线观看| 国产成人av教育| 国产av一区在线观看免费| 一本综合久久免费| 老熟妇仑乱视频hdxx| eeuss影院久久| 女生性感内裤真人,穿戴方法视频| 99久久无色码亚洲精品果冻| 一进一出抽搐动态| 国产精品久久电影中文字幕| 在线国产一区二区在线| 日韩中文字幕欧美一区二区| 村上凉子中文字幕在线| 88av欧美| 久久亚洲真实| 性欧美人与动物交配| 两个人看的免费小视频| www日本在线高清视频| 97碰自拍视频| 国产精品久久久人人做人人爽| 乱人视频在线观看| 亚洲最大成人手机在线| 欧美另类亚洲清纯唯美| 国产激情偷乱视频一区二区| 日韩中文字幕欧美一区二区| 3wmmmm亚洲av在线观看| 久久香蕉国产精品| 亚洲精品久久国产高清桃花| 少妇的丰满在线观看| 免费观看精品视频网站| 国产探花极品一区二区| 91字幕亚洲| 久久精品国产清高在天天线| 少妇裸体淫交视频免费看高清| 99精品久久久久人妻精品| 一本精品99久久精品77| 久久久久国产精品人妻aⅴ院| 日本黄大片高清| 久久精品国产亚洲av香蕉五月| 欧美性猛交╳xxx乱大交人| 国产欧美日韩一区二区精品| 国产精品永久免费网站| 免费看光身美女| 最好的美女福利视频网| 一二三四社区在线视频社区8| 久久亚洲真实| 最新在线观看一区二区三区| 看片在线看免费视频| 精品一区二区三区视频在线观看免费| www日本黄色视频网| 俄罗斯特黄特色一大片| 99精品久久久久人妻精品| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 午夜福利在线在线| 岛国视频午夜一区免费看| 老鸭窝网址在线观看| 成年免费大片在线观看| 怎么达到女性高潮| 国产亚洲精品久久久久久毛片| avwww免费| а√天堂www在线а√下载| xxxwww97欧美| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av| 亚洲欧美日韩无卡精品| 亚洲无线在线观看| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 波野结衣二区三区在线 | 69av精品久久久久久| 美女高潮的动态| 18+在线观看网站| 精品人妻偷拍中文字幕| 97超视频在线观看视频| 日韩高清综合在线| 亚洲精品456在线播放app | 97人妻精品一区二区三区麻豆| 国产欧美日韩一区二区三| 91久久精品国产一区二区成人 | 亚洲av中文字字幕乱码综合| 精品不卡国产一区二区三区| 国产一区二区在线观看日韩 | 狂野欧美激情性xxxx| 国产亚洲精品一区二区www| 动漫黄色视频在线观看| av欧美777| 日韩av在线大香蕉| 亚洲成a人片在线一区二区| 国产欧美日韩精品一区二区| 国产高潮美女av| 丰满的人妻完整版| 亚洲欧美日韩卡通动漫| 国产69精品久久久久777片| 小蜜桃在线观看免费完整版高清| 91九色精品人成在线观看| av黄色大香蕉| 国产精品女同一区二区软件 | 亚洲精品日韩av片在线观看 | 精品国产超薄肉色丝袜足j| 此物有八面人人有两片| 亚洲精品色激情综合| 最近最新中文字幕大全免费视频| 欧美成人免费av一区二区三区| 18+在线观看网站| 亚洲精品亚洲一区二区| 综合色av麻豆| bbb黄色大片| 国产激情偷乱视频一区二区| 在线观看av片永久免费下载| 99热只有精品国产| 日韩高清综合在线| xxx96com| 国产精品亚洲一级av第二区| 3wmmmm亚洲av在线观看| 69人妻影院| 色综合欧美亚洲国产小说| 日本成人三级电影网站| 免费电影在线观看免费观看| 俺也久久电影网| 99久久成人亚洲精品观看| 成年版毛片免费区| 91av网一区二区| 亚洲av一区综合| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 亚洲真实伦在线观看| 乱人视频在线观看| 99在线视频只有这里精品首页| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 久久中文看片网| 一区二区三区免费毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久色成人| 级片在线观看| 欧美日韩综合久久久久久 | 国产真实乱freesex| 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 好男人电影高清在线观看| 麻豆国产97在线/欧美| 欧美色视频一区免费| 怎么达到女性高潮| 一进一出抽搐gif免费好疼| 亚洲精品国产精品久久久不卡| 亚洲成人久久爱视频| 日本一本二区三区精品| 999久久久精品免费观看国产| 日韩欧美三级三区| 国产欧美日韩一区二区精品| 日日夜夜操网爽| 在线观看av片永久免费下载| 亚洲av日韩精品久久久久久密| 男插女下体视频免费在线播放| 在线播放国产精品三级| 又紧又爽又黄一区二区| 国产真人三级小视频在线观看| 免费观看人在逋| 少妇的丰满在线观看| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| 露出奶头的视频| 操出白浆在线播放| 国产免费男女视频| 亚洲精品在线观看二区| 欧美性猛交黑人性爽| 亚洲人成伊人成综合网2020| 午夜视频国产福利| ponron亚洲| 亚洲精品国产精品久久久不卡| 很黄的视频免费| 欧美日本视频| 午夜影院日韩av| 亚洲黑人精品在线| 精品久久久久久成人av| 国产亚洲精品久久久久久毛片| 国产精品免费一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 色综合婷婷激情| 欧美在线黄色| 欧美日韩福利视频一区二区| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 欧美色视频一区免费| 韩国av一区二区三区四区| 久久欧美精品欧美久久欧美| 啪啪无遮挡十八禁网站| 国产精品亚洲av一区麻豆| 欧美日韩瑟瑟在线播放| 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 欧美精品啪啪一区二区三区| 亚洲激情在线av| 精品一区二区三区视频在线 | 99久久精品热视频| 色播亚洲综合网| 欧美大码av| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女| 亚洲第一欧美日韩一区二区三区| 午夜两性在线视频| 亚洲av电影在线进入| svipshipincom国产片| 久久精品91蜜桃| 51午夜福利影视在线观看| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 在线观看美女被高潮喷水网站 | 久久天躁狠狠躁夜夜2o2o| 天堂网av新在线| 成人精品一区二区免费| 精品电影一区二区在线| 日韩av在线大香蕉| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 美女cb高潮喷水在线观看| 看免费av毛片| 日韩欧美精品v在线| 禁无遮挡网站| 国产成+人综合+亚洲专区| 日本 av在线| 欧美日韩福利视频一区二区| 黄色日韩在线| 长腿黑丝高跟| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费电影在线观看| 噜噜噜噜噜久久久久久91| 精品人妻一区二区三区麻豆 | 日本成人三级电影网站| 亚洲内射少妇av| 少妇的丰满在线观看| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 久久久久久久亚洲中文字幕 | 欧美av亚洲av综合av国产av| a在线观看视频网站| 9191精品国产免费久久| 宅男免费午夜| 99久久综合精品五月天人人| 国产一区二区三区视频了| 男女之事视频高清在线观看| 国产又黄又爽又无遮挡在线| 亚洲国产精品999在线| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 99久久成人亚洲精品观看| 国产三级中文精品| 久久性视频一级片| 在线播放无遮挡| 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 亚洲 欧美 日韩 在线 免费| 性色av乱码一区二区三区2| 亚洲欧美日韩高清在线视频| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 精品人妻一区二区三区麻豆 | 91久久精品电影网| 国产精品女同一区二区软件 | 18禁美女被吸乳视频| 亚洲天堂国产精品一区在线| 久久国产乱子伦精品免费另类| av女优亚洲男人天堂| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 国产成人av激情在线播放| 中文字幕人成人乱码亚洲影| 国产精华一区二区三区| 波野结衣二区三区在线 | 国产视频内射| 波野结衣二区三区在线 | 亚洲av电影不卡..在线观看| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区免费毛片| 国产精品99久久久久久久久| 十八禁网站免费在线| 欧美中文综合在线视频| 在线观看一区二区三区| av在线天堂中文字幕| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 久久久久久久精品吃奶| 国产精品野战在线观看| 一进一出好大好爽视频| 午夜福利成人在线免费观看| 1000部很黄的大片| а√天堂www在线а√下载| 亚洲在线自拍视频| 色在线成人网| 俺也久久电影网| 国产精品国产高清国产av| 国产av不卡久久| 色尼玛亚洲综合影院| 亚洲专区中文字幕在线| 嫩草影院入口| 91在线观看av| 亚洲内射少妇av| 成人18禁在线播放| 2021天堂中文幕一二区在线观| 亚洲五月婷婷丁香| 婷婷亚洲欧美| 色吧在线观看| 色尼玛亚洲综合影院| av中文乱码字幕在线| 一本一本综合久久| 欧美不卡视频在线免费观看| 国产一区二区亚洲精品在线观看| 亚洲国产精品久久男人天堂| 日本与韩国留学比较| 最后的刺客免费高清国语| 成人永久免费在线观看视频| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 久久久久久九九精品二区国产| 啪啪无遮挡十八禁网站| 欧美日韩国产亚洲二区| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 18禁裸乳无遮挡免费网站照片| 久久精品亚洲精品国产色婷小说| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 亚洲精品一区av在线观看| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| 亚洲狠狠婷婷综合久久图片| 99热这里只有是精品50| 最新中文字幕久久久久| av片东京热男人的天堂| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 高清在线国产一区| 神马国产精品三级电影在线观看| 超碰av人人做人人爽久久 | 久久精品91蜜桃| 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 成年女人永久免费观看视频| 久久人妻av系列| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜| 日韩高清综合在线| 岛国在线观看网站| or卡值多少钱| 免费人成在线观看视频色| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| 久久人人精品亚洲av| 黄色片一级片一级黄色片| 小说图片视频综合网站| 我要搜黄色片| av专区在线播放| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频| 色吧在线观看| 欧美另类亚洲清纯唯美| 国产午夜福利久久久久久| 岛国在线免费视频观看| 国产亚洲精品av在线| 午夜福利免费观看在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 夜夜躁狠狠躁天天躁| 村上凉子中文字幕在线| av女优亚洲男人天堂| 精品国产亚洲在线| 在线观看午夜福利视频| 在线播放无遮挡| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 亚洲国产欧洲综合997久久,| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件 | 午夜福利在线观看吧| 小说图片视频综合网站| 高清毛片免费观看视频网站| 国产老妇女一区| 一本久久中文字幕| 国产极品精品免费视频能看的| 日本一二三区视频观看| 身体一侧抽搐| 麻豆成人午夜福利视频| 精品一区二区三区视频在线观看免费| 日韩av在线大香蕉| 亚洲va日本ⅴa欧美va伊人久久| av在线天堂中文字幕| 亚洲成av人片在线播放无| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| av在线天堂中文字幕| 亚洲无线观看免费| 国产黄色小视频在线观看| 亚洲一区二区三区不卡视频| 日本a在线网址| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 十八禁人妻一区二区| 国产亚洲精品久久久久久毛片| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 亚洲欧美日韩高清专用| 日本黄大片高清| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 欧美色欧美亚洲另类二区| 91av网一区二区| 欧美另类亚洲清纯唯美| 搡女人真爽免费视频火全软件 | 久久九九热精品免费| 国产高清视频在线播放一区| av女优亚洲男人天堂| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 国产极品精品免费视频能看的| 最近在线观看免费完整版| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 亚洲精品在线美女| 亚洲五月天丁香| 三级男女做爰猛烈吃奶摸视频| 亚洲av熟女| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 麻豆成人av在线观看| 十八禁人妻一区二区| 成年女人看的毛片在线观看| 国产麻豆成人av免费视频| 又粗又爽又猛毛片免费看| 在线看三级毛片| 亚洲成人中文字幕在线播放| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 老司机福利观看| 美女大奶头视频| 老司机福利观看| 搡女人真爽免费视频火全软件 | 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看| 最近在线观看免费完整版| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产 | 国产麻豆成人av免费视频| 男女午夜视频在线观看|