• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Channel Estimation for Reconfigurable Intelligent Surface Aided Multiuser Millimeter-Wave/THz Systems

    2024-04-01 02:08:10ChuHongyunPanXueLiBaijiang
    China Communications 2024年3期

    Chu Hongyun,Pan Xue,Li Baijiang

    School of Communications and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Abstract: It is assumed that reconfigurable intelligent surface (RIS) is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE) ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization (ANM) to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers (ADMM) is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.

    Keywords: atomic norm minimization;cascaded channel estimation;convex optimization;mmWave/THz;reconfigurable intelligent surface(RIS);sparsity

    I.INTRODUCTION

    The millimeter wave (mmWave) bands have a significant amount of untapped spectrum.Both at the transmitters and receivers,massive antenna arrays are required to make up for the substantial free space route loss [1-3].Compared to conventional sub-6 GHz multiple-input multiple-output(MIMO)systems with fewer broadcast and receive antennas,this makes channel estimation(CE)more challenging.Due to the small number of identifiable pathways in the angular domain,the mmWave MIMO channel is intrinsically sparse.As a result,methods for compressive sensing (CS) that make use of sparsity have been widely used to estimate the channel(parameter)of mmWave MIMO channels,such as in[4,5].

    The idea of a reconfigurable intelligent surface(RIS) has recently been presented to intelligently change the propagation of electromagnetic waves in order to further increase spectrum efficiency(SE)and to provide a broad communication coverage[6-8].In comparison to a system without RISs,the RIS also has a tremendous potential to provide greater positioning and localization accuracy,both indoors and outdoors[8,9].By adjusting the phase of each RIS component,the array of phase shifters in the RIS may passively direct the beams toward the designated user(s).In[10],the authors study the use of reconfigurable intelligent terrestrial (RIS) for multi-antenna base station downstream multi-user communication.Under the premise of ensuring the link budget of mobile users,it is designed to save energy for the transmission power distribution and the phase shift of the surface reflective elements.Additionally,the results demonstrate that the suggested RIS-based resource allocation technique can offer up to 300%more energy efficiency than the multi-antenna amplified forwarding relay that is currently in use.

    Recent research on CE for RIS-aided MIMO systems may be found in[11-14].In[11],the RIS channel estimation problem is effectively addressed using the methods of compressed sensing and deep learning.In[12],iterative CE is carried out by sequentially utilizing sparse matrix factorization and matrix completion.Due to the on/off state that is applied to the RIS pieces in this work,full utilization of the RIS is not possible.The phase control matrix at the RIS and the combining vector at the mobile stations (MS)was simultaneously designed using a multi-level codebookbased technique as opposed to predicting the MIMO channels[15].In[13,14],an extension to a multiuser situation was investigated.In[16],the author concentrates on the wireless communication system with RIS assistance and offers two combined channel estimation and signal recovery strategies based on message passing algorithms.In[17],this paper focuses on the multi-user multiple-input single-output(MISO)uplink communication system and provides a channel estimation method based on parallel factorization to expand the obtained cascaded channel model.For the channel between the base station and RIS and the channel between RIS and the user,we provide two iterative estimation strategies.One takes vector approximation messaging to iteratively recreate two unknown channels from the estimated vector,while the other is based on alternate least squares(ALS).

    In this paper,we examine the mmWave/THz MIMO system’s CE issue using RIS assistance.The CE issue is split into two stages.Due to the fact of coupling,joint estimating two channels is difficult,but estimating partial information,e.g.,angle of arrival(AOA),is possible.The first stage is to formulate the AOA estimating problem as a semidefinite programming (SDP) via ANM,but the traditional methods,SDP-based methods are used to solve the ANM problem,which has high computational complexity and cannot be realized efficiently.Hence,we proposed a RIS-alternating direction method of multipliers(ADMM)algorithm to solve the above issues,and further calculate the RIS-to-BS channel based on the path-loss model and the locating information of the BS and the RIS.The second stage is estimating the UE-to-RIS channels under the condition of the known RIS-to-BS channel,also using ANM to formulate the problem.In the second stage,multiple measurements are required,which can be obtained only by changing the RIS phase shifter.Due to the wired high-speed connection between BS and RIS,the proposed channel estimation method can further reduce time consumption by specialized mechanisms.Simulation results show that the proposed method works well in the considered scenarios.

    Notations: A vector is denoted by a bold lowercase lettera,and a matrix is denoted by a bold capital letterA.(·)T,(·)*and (·)Hdenote the matrix or vector transpose,conjugate,conjugate transpose,respectively.Tr(X) is the trace ofX.IMdenotes theM×Midentity matrix,j=and CN×1denotes the space ofN×1 complex-valued matrices.For a square matrixS,S-1denotes its inverse (ifSis of full rank).?denote the Kronecker product,(·)?denotes the Moore-Penrose inverse,vec(A) is the vectorization ofA.The symbol?(·) denotes the real part.The inner product of vectorsx,yis defined as〈x,y〉=xTy*.The Frobenius inner product of two matricesX,Yis defined as〈X,Y〉F=Tr(XTY*).

    II.SYSTEM MODEL

    We explore an uplink mmWave multiuser communications scenario assisted by RIS.The direct link between the BS and the UEs is blocked,and the communicate with each other via the RIS,where there are both line-of-sight(LoS)links in BS-RIS and RIS-UE channels.As shown in Figure 1,more specifically the RIS consists ofNreflecting elements,and the BS is equipped withMantennas to serveKsingle-antenna users.Without generality,we consider both the BS and the RIS to consist of uniform linear arrays(ULA)s.

    Figure 1.RIS-aided mmWave with blocked device-BS channels.

    We assume a block-fading channel model where the channel is quasi-static in each block of length T.Lethk ∈CN×1andG∈CM×Ndenote the channels between the user k and the RIS,and the channel between the RIS and the BS,respectively.Define setK={1,...,K}.Due to the fact that both the BS and the RIS are fixed,it is assumed that there is only a LoS path among the BS-RIS[18].Thus,hkandGshould be given by

    with the array response given as follow:

    whereβlandγdenote the complex gains of the paths with the distribution ofβl,γ~CN(0,1),andLrepresents the number of paths between userkand RIS.θgtis the departure angle at RIS andθgris the arrival angle at the base station.When the channel estimation process,the k-th user transmits T training pilots from T time slotsxk ∈CT×1to the BS via the RIS.We denoteP∈CN×Nas the phase shifting matrix of the RIS,which is represented as

    where?i,i=1,...,Nrepresents the phase of the RIS element.Finally,the received signal from userkat the BSYk ∈CM×Tcan be expressed as

    whereNk~CN(0,σ2IM×T) is the additive white Gaussian noise andσ2is the power ofNk.Assuming there are K users,the received signalYcan be represented as

    III.TWO-STAGE CHANNEL ESTIMATION

    Figure 2 illustrates the fundamental concepts of the suggested channel estimating protocol.Where the“Pilot”and“Data”stand for the phases of uplink channel estimation and downstream data transmission at the BS side,respectively[19].Our research focuses on the estimation of the uplink channels for cascaded channels.Specifically,start by dividing the cascade channel for all users into two parts,the common channel,and the unique channel.In Phase I,the common channel for all users is estimated.Information about the common BS-RIS channel is extracted from all users’CSI estimates to reduce the pilot overhead of the next stage.Then,in the second phase,only one user-k’s channel to RIS is estimated.For convenience,we refer to this user as a typical user.Using the status information of the common channel obtained in the first stage,the channel information of the user to RIS can be easily obtained.

    Figure 2.The adopted two-stage channel estimation protocol.

    According to (5),it is aimed to estimateGandhkfrom the measurementsY.The first stage is to calculate the RIS-to-BS channel by estimating the AOA ofGand using the path-loss model,and the second stage is then estimatinghkusing the knownGobtained in stage one.

    3.1 Estimating G

    Based on(1),(5)can be rewritten as

    In order to solve (7),we first reformulate it as a semidefinite programming problem.It can be rewritten as

    The enhanced Lagrangian for this issue is provided by

    whereρis the augmented Lagrangian parameter and Λk ∈C(M+1)×(M+1)are dual variables.Then,ADMM includes the subsequent iterations:

    The cannonical dual window ?gcan prevent the computation of matrix inversion in(15)as

    The updates foru,v,Zk,and Λkcan be computed in parallel for each k,T?:CM×M →CMin the update forurepresents the pseudoinverse operator ofT,

    The rest parameterγofGcan be estimated via the free-space path loss model[23]

    whereL0,f,anddare measured in units ofdB,MHz,andkm,respectively,wherefsignifies the signal frequency anddis the spreading distance,such as the distance between BS and RIS.The path loss model gives us an estimate of the channel gain that is expressed as

    Then the estimate ofGcan be obtained

    3.2 Estimating hk

    The equivalent SDP of(22)can be written as

    where Toep(t2)∈CN×Ndenotes the Toeplitz matrix formed by the elements oft2,t2=

    According to(23),the channel estimation ofhkcan be formulated as the following optimization problem:

    whereμ >0 is the weight factor.In practice,we set

    Equation(24)can be reformulated as a SDP and can be solved using SDP solvers,e.g.,CVX toolbox.By solving the problem(24),?hkis obtained.

    3.3 Computational Complexity

    In this paper,a two-stage channel estimation method is adopted.The first stage estimates the common channelGuses the ADMM algorithm with a complexity ofO(KMN).In the second stage,hkhas been estimated,with a complexity ofO(KN2).Based on the above algorithm,the total complexity isO(KN(M+N)).Secondly,the ALS algorithm proposed in [17],the complexity of ALS-based algorithm is dominated by involved matrix inverse computations: the computational complexities ofhkandGareO(N3+4N2M-NM) andO(N3+4N2K-NK),respectively.Thus,the total computational complexity of the ALS-based CE isO(2N3+4N2(M+K)-N(M+K)).Next,the VAMP algorithm proposed in [17],the VAMP-based algorithm is mainly dominated by matrix-vector multiplications the computational complexities ofhkandGareO(K(5N2-N))andO(M(5N2-N)),respectively.In summary,the total complexity of the VAMP-based CE isO(K+M)(5N2-N).Last,we analyze the complexity of the OMP algorithm,in which the complexity ofhkandGestimates areO(KMN2)andO(KN2),respectively.Thus,the total complexity of the OMP-based CE isO(KMN2+KN2).Finally,the computational complexity of the channel estimation algorithm involved is summarized in Table 1.

    Table 1.Computational complexity of channel estimation algorithms.

    3.4 Extended to Multi-Antennas User

    As can be seen from above,when extended to multiple antenna users,the difference in formulating the channel estimation problem is that the atomic norm changes from one dimension to decoupled two dimensions.Therefore,the follow-up processing is similar to that in Sections 3.1 and 3.2.

    IV.CRLB ANALYSES

    The Cramer-Rao Lower Bound (CRLB) serves as a performance measure for our suggested CE approach because it is the lower bound of any unbiased estimator.As a result,in this part,we derive the CRLB for the estimation of the channel parameter based on[24,25].In the two-stage CE,the channelGusing the signals that were received at BS has been estimated in the first,and then we estimate the channelhusing the signals that were received at RIS.We additionally divide the computations of the CRLB into two parts in order to be consistent with our suggested two-stage CE approach.

    The first stage of the proposed CE involves the estimation of the parametersη={γ,θgt,θgr},and the specifics of the derivations ofCRLB(η)=J(η)-1,whereJ(η) is the fisher information matrix (FIM) ofη.In Appendix A,including the specifics of how the FIM was derived,The parameters for the RIS-BS channelξ={βl,θl}are estimated during the second stage of the suggested CE method.Appendix B contains the specifics of theCRLB(ξ)=J(ξ)-1derivations of the FIM.

    V.SIMULATION RESULTS

    For the first experiment,as shown in Figure 3a,we consider the performance of the channel estimatingG.It can be found that in the case of signal-to-noise ratio(SNR)≤-5dB,the accuracy ofGestimation is not satisfied,but when it comes to the case of SNR>-5dB,the NMSE falls down to lower than-12dB,which is considered precise enough.It can be seen from the simulation results that with the improvement of the signal-to-noise ratio,the performance is getting better and better,and with the increase of the number of LoS in the case of the same SNR,the NMSE is getting smaller and smaller,but when the signal-tonoise ratio increases,the performance difference under different paths gradually decreases.

    Figure 3.NMSE of G,hk and H estimation using the proposed method with measurement number of L=5,10,15 respectively.

    As seen in Figure 3b,in the second experiment,we consider the resolution of the estimated information of channelhk.From the results,it is obvious that the curves have shown a similar tendency as Figure 3a.This is for the reason that the accuracy of ?hdepends on that of the ?G.On the other hand,the number of measurements also affects the results.From the figure,we can observe that its performance is significantly better than the other two whenL=15.

    For the third experiment,as shown in Figure 3c,we consider the performance of channel estimatingH.Expect a similar tendency as Figure 3b,and the final result is strongly influenced by the number of the LOSL.It can be observed that Figure 3c does not increase with the signal-to-noise ratio of Figure 3a and Figure 3b,and the final simulation results of different channel numbers tend to be consistent.What we observed was that the simulation results of the different channel numbers did not converge as the signal-tonoise ratio increased.We could see that the results ofL=15 were significantly better than the other two,and that the NMSE reached-19 at SNR=10dB.

    For the fourth experiment,as shown in Figure 4,we compare the performances of the proposed method and the orthogonal matching pursuit (OMP) method,ANM method,under the unified settings of the numbers of antennas and UEs,e.g.,K=4,M=16,N=16,L=5.From the simulation results,we can easily find that the proposed method achieves higher resolutions than that of the OMP method and ANM method,for the reason that the method we propose to denoise and extract the frequency information is based on the ANM,and the ADMM algorithm is used to solve the problem an off-grid method which obtains information directly from the continuous parameter domain.By contrast,the on-grid methods,e.g.,OMP,essentially discretize the continuous angle,and then search the closest point as the approximate value.These methods will lead to the basis mismatch problem in estimating continuous parameters,resulting in the decline of estimation accuracy.On the other hand,it can also be seen that the proposed method works well under low SNR conditions,which indicates its excellent denoising performance.We now compare our proposed method with the performance of the CRLB(more details can be found in Section IV,and the calculations/derivations are described in Appendices A and B).Although our method has achieved better performance compared to the literature,as shown in Figure 5,the gap between NMSE and CRLB of the proposed estimator indicates that there is still room for improvement in our method.

    Figure 4.The proposed method is compared with OMP and ANM and analyzed as a whole.

    Figure 5.NMSEs of the channel parameters vs. CRLBs.

    The NMSE performance comparison of the BUTAMP two layers algorithm,BAMP two layers algorithm[16],and the two-stage approach proposed versus the signal-to-noise ratio(SNR)is given in Figure 6.The parameter settings areM=16,K=5,L=10,andN=32,and the damping factorβin BAMP method is set 0.3.As can be seen from the figure,the NMSE performance of the first two scenarios is similar.Moreover,compared to these two algorithms,the proposed algorithm even slightly better than the two algorithms in the early stage,which is because ANM has strong denoising ability,but with the increase of signal-to-noise ratio,the performance of the algorithm proposed in this paper is slightly inferior to the two algorithms in[16],the reason is that we introduce parametersμin channel estimation,which has better robustness at low signal-to-noise ratio,but poor performance at high signal-to-noise ratio.

    Figure 6.NMSE performance comparisons of BUTAMP in[16],BAMP in[16],and Two-stage approach.

    The comparison of NMSE performance between ALS-based CE,VAMP-based CE [17],and the twostage approach proposed is shown in Figure 7.The parameter settings areM=8,K=5,L=8,andN=8.It can be seen from the figure that the two algorithms of ALS-based CE and VAMP-based CE have similar performance,and the two-stage approach proposed in this paper has better performance in the early stage because ANM has better denoising ability,but its performance is weaker than that of the two algorithms compared due to the influence of parameters in the later stage.

    Figure 7.NMSE performance comparisons of VAMP in[17],ALS in[17],and Two-stage approach.

    VI.CONCLUSION

    In this paper,we have proposed a two-stage channel estimation method for multi-user uplink RIS systems that can accurately calculate the active users’ channel based on the ADMM and the free space path loss model.Simulation results indicate that the proposed method works well in the given scenarios.

    APPENDIX

    A CALCULATION OF THE CRLB: STAGE 1 OF CE

    We will go over the CRLB calculations for the suggested CE technique in the sections that follow.At the initial stage of CE,we estimate the RIS-UE channel’s parameters,which are denoted by the notationη={γ,θgt,θgr}.The lower bound for the MSEs of the channel parameters inηis defined byCRLB(η),which is written as

    whereJ(η) is the FIM.For instance,the observation vectory=vec(Y)follows Gaussian distribution withCN(μ1,σ2I),whereY=GPhkxT+N=Gu+Nandμ1is defined by

    Using this premise,we can write the (l1,l2)thelement of FIM as

    The derivatives ofμ1with respect to the channel parameters inηare described in the following step,after which the entries of the FIM are further derived.

    A.1 Partial Derivatives

    Regarding the channel parameters inη,we characterize the partial derivative ofμ1.

    A.2 Calculation of Fisher Information Matrix

    For the sake of simplicity,we merely specify the entries of the FIM elements as the following:

    The derivatives ofμ1with respect toηare substituted,and the result is

    The rest of the elements of FIM can be derived according to the same process.

    B CALCULATION OF THE CRLB: STAGE 2 OF CE

    At the second CE step,we aim to recover the RISUE channel’s parameters,which are specified asξ={βl,θl}.Keep in mind that the process of obtaining FIM elements and corresponding CRLBs is the same as the analysis in Appendix A.We assume that the observation vectory=vec(Y)follows Gaussian distribution withCN(μ2,σ2I),whereYH=?hkxT+Nand the meanμ2is expressed by

    By making use of this supposition,we may create the FIMJ(ξ)as

    The derivatives ofμ2with regard toξare developed in depth in the sections that follow.

    B.1 Partial Derivatives

    First,we develop the partial derivatives ofμ2with respect to the channel parameterθl.

    B.2 Calculation of Fisher Information Matrix

    We first calculate the entries of the elements in the principal diagonal.For instance,the (m,m)th entry ofJ(ξ)is given by

    By substituting the derivatives ofμ2with respect toθl,we obtain

    Similarly,we can obtain

    It should be noted that the same process is used to calculate the(m,i)-thoff-diagonal elements.

    老司机亚洲免费影院| 精品一区二区三区四区五区乱码| 亚洲七黄色美女视频| 国产精品一区二区三区四区久久 | 电影成人av| 国产成人欧美| 国产亚洲av高清不卡| 亚洲av五月六月丁香网| 美国免费a级毛片| 免费在线观看日本一区| 高清av免费在线| 国产精品亚洲av一区麻豆| 免费在线观看黄色视频的| 亚洲五月婷婷丁香| 亚洲五月婷婷丁香| 久久久久国内视频| 啪啪无遮挡十八禁网站| 淫秽高清视频在线观看| 天堂√8在线中文| 久久精品国产亚洲av香蕉五月| 日韩欧美国产一区二区入口| 天堂俺去俺来也www色官网| 欧美不卡视频在线免费观看 | 精品午夜福利视频在线观看一区| 久久精品成人免费网站| 免费搜索国产男女视频| 欧美成人性av电影在线观看| 日韩视频一区二区在线观看| 午夜福利免费观看在线| 国产精品日韩av在线免费观看 | 国产一卡二卡三卡精品| 啦啦啦免费观看视频1| 91字幕亚洲| 精品电影一区二区在线| 国产av又大| a在线观看视频网站| 超色免费av| 久久久久九九精品影院| 黄片大片在线免费观看| 国产成人影院久久av| 99riav亚洲国产免费| 视频在线观看一区二区三区| 男人的好看免费观看在线视频 | 久久这里只有精品19| 久久久国产成人免费| 亚洲一区二区三区欧美精品| 麻豆av在线久日| 嫁个100分男人电影在线观看| 青草久久国产| 亚洲五月婷婷丁香| 超色免费av| a级毛片在线看网站| 国产精品久久视频播放| 亚洲精华国产精华精| 嫁个100分男人电影在线观看| 在线观看日韩欧美| aaaaa片日本免费| 国产区一区二久久| 婷婷丁香在线五月| e午夜精品久久久久久久| 亚洲一区高清亚洲精品| 狂野欧美激情性xxxx| 丝袜人妻中文字幕| 久久中文字幕一级| 国产深夜福利视频在线观看| 波多野结衣高清无吗| 97碰自拍视频| 美女大奶头视频| 亚洲精品久久成人aⅴ小说| 可以在线观看毛片的网站| 18禁观看日本| 好男人电影高清在线观看| 女人高潮潮喷娇喘18禁视频| 在线视频色国产色| 一区二区日韩欧美中文字幕| 亚洲视频免费观看视频| 亚洲熟妇中文字幕五十中出 | x7x7x7水蜜桃| 国内久久婷婷六月综合欲色啪| 国产片内射在线| 国产成人av激情在线播放| 丁香六月欧美| 国产成+人综合+亚洲专区| 久久国产精品影院| 日本黄色视频三级网站网址| 日韩中文字幕欧美一区二区| 男人舔女人的私密视频| 精品久久久久久,| 日本 av在线| 亚洲av成人av| 99国产综合亚洲精品| av网站免费在线观看视频| 一区二区三区精品91| 久99久视频精品免费| 首页视频小说图片口味搜索| 欧美一级毛片孕妇| 最新美女视频免费是黄的| 午夜日韩欧美国产| 美女福利国产在线| 一级毛片女人18水好多| 国产熟女xx| 亚洲精品成人av观看孕妇| 悠悠久久av| 在线观看一区二区三区激情| 无遮挡黄片免费观看| 一区福利在线观看| 99在线人妻在线中文字幕| 日韩欧美免费精品| 最近最新免费中文字幕在线| 波多野结衣一区麻豆| 久久精品国产99精品国产亚洲性色 | 精品国产一区二区久久| 国产97色在线日韩免费| 一级片'在线观看视频| 伦理电影免费视频| 欧美日韩国产mv在线观看视频| 曰老女人黄片| 老汉色∧v一级毛片| 国产三级在线视频| 精品一品国产午夜福利视频| 久久精品影院6| 欧美激情高清一区二区三区| 青草久久国产| 亚洲熟女毛片儿| 国产高清视频在线播放一区| 色在线成人网| 国产蜜桃级精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 夜夜爽天天搞| 中文字幕人妻熟女乱码| 亚洲精品国产一区二区精华液| 免费观看精品视频网站| 欧美日韩瑟瑟在线播放| 在线观看www视频免费| 最好的美女福利视频网| 国产av一区二区精品久久| 亚洲熟妇中文字幕五十中出 | 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点 | 午夜精品国产一区二区电影| 天天影视国产精品| 日本精品一区二区三区蜜桃| 亚洲狠狠婷婷综合久久图片| 男女下面插进去视频免费观看| 黄片大片在线免费观看| 99久久国产精品久久久| 久久久国产一区二区| 亚洲情色 制服丝袜| 亚洲欧美一区二区三区久久| 九色亚洲精品在线播放| 人人妻,人人澡人人爽秒播| 国产av一区二区精品久久| 成在线人永久免费视频| 高清黄色对白视频在线免费看| 在线观看免费日韩欧美大片| 亚洲狠狠婷婷综合久久图片| 满18在线观看网站| 91麻豆精品激情在线观看国产 | 国产精品电影一区二区三区| 欧美精品啪啪一区二区三区| 日本免费一区二区三区高清不卡 | 91麻豆精品激情在线观看国产 | 久久国产亚洲av麻豆专区| 黄色成人免费大全| 新久久久久国产一级毛片| 亚洲精品一二三| 99精国产麻豆久久婷婷| 成人手机av| 大码成人一级视频| 欧美最黄视频在线播放免费 | 日本欧美视频一区| 国产一区二区激情短视频| 久久精品91无色码中文字幕| 最新在线观看一区二区三区| 亚洲精品久久午夜乱码| 国产精品乱码一区二三区的特点 | 亚洲精品中文字幕在线视频| 国产真人三级小视频在线观看| 亚洲第一青青草原| 日本a在线网址| 日韩有码中文字幕| 国产亚洲欧美精品永久| 精品国内亚洲2022精品成人| 99国产精品一区二区三区| 午夜精品国产一区二区电影| 亚洲精品一二三| 夜夜爽天天搞| 欧美黄色淫秽网站| 色综合婷婷激情| 国产一区二区三区视频了| 两个人免费观看高清视频| 91av网站免费观看| 国产麻豆69| 欧美久久黑人一区二区| 手机成人av网站| 新久久久久国产一级毛片| 在线天堂中文资源库| cao死你这个sao货| av片东京热男人的天堂| 国产在线精品亚洲第一网站| 老司机在亚洲福利影院| 国产三级在线视频| 黄色视频不卡| 日韩大码丰满熟妇| 亚洲欧美精品综合久久99| 91在线观看av| 纯流量卡能插随身wifi吗| 一进一出好大好爽视频| 久久99一区二区三区| 国产极品粉嫩免费观看在线| 欧美中文综合在线视频| 午夜91福利影院| 老司机靠b影院| 日本精品一区二区三区蜜桃| a在线观看视频网站| 午夜成年电影在线免费观看| a级毛片黄视频| 日韩精品青青久久久久久| 精品一品国产午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美日韩综合在线一区二区| 精品第一国产精品| 麻豆成人av在线观看| 久热这里只有精品99| 国产成人精品久久二区二区91| 国产97色在线日韩免费| 久久精品国产综合久久久| 波多野结衣高清无吗| 免费高清视频大片| 国产成人影院久久av| 免费久久久久久久精品成人欧美视频| 亚洲专区字幕在线| 在线视频色国产色| 叶爱在线成人免费视频播放| 欧美精品亚洲一区二区| 免费在线观看影片大全网站| 精品国产一区二区三区四区第35| 叶爱在线成人免费视频播放| 久久久精品国产亚洲av高清涩受| 国产1区2区3区精品| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看| 久久久久九九精品影院| 国产精品1区2区在线观看.| 国产成人系列免费观看| 国产av精品麻豆| 日本wwww免费看| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 国产一区二区三区综合在线观看| 又大又爽又粗| 熟女少妇亚洲综合色aaa.| 欧美乱色亚洲激情| 99国产极品粉嫩在线观看| 91成年电影在线观看| 国产麻豆69| 热re99久久国产66热| 亚洲全国av大片| 亚洲熟妇熟女久久| 久久香蕉激情| www.熟女人妻精品国产| 一二三四在线观看免费中文在| 黄色女人牲交| 亚洲七黄色美女视频| 成人三级做爰电影| 久久精品亚洲精品国产色婷小说| 欧美一区二区精品小视频在线| 深夜精品福利| 后天国语完整版免费观看| 欧美最黄视频在线播放免费 | 黄色女人牲交| 99精国产麻豆久久婷婷| 午夜亚洲福利在线播放| 国产成人av教育| 精品久久久久久电影网| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费 | 亚洲一区二区三区色噜噜 | 日韩高清综合在线| 天堂影院成人在线观看| 午夜两性在线视频| 一二三四社区在线视频社区8| www.www免费av| av天堂久久9| 午夜两性在线视频| 亚洲精品美女久久av网站| 中文欧美无线码| 国产精品一区二区在线不卡| 国产精品免费视频内射| 免费av毛片视频| а√天堂www在线а√下载| 老司机福利观看| 国产精品1区2区在线观看.| av欧美777| 交换朋友夫妻互换小说| 午夜久久久在线观看| 亚洲专区字幕在线| 免费看a级黄色片| 免费观看人在逋| 性少妇av在线| 91九色精品人成在线观看| 久久欧美精品欧美久久欧美| 黑丝袜美女国产一区| 色综合欧美亚洲国产小说| 97人妻天天添夜夜摸| av欧美777| 99riav亚洲国产免费| 人人妻人人添人人爽欧美一区卜| 超碰97精品在线观看| 99精品欧美一区二区三区四区| 成人黄色视频免费在线看| 免费一级毛片在线播放高清视频 | 精品人妻1区二区| 岛国视频午夜一区免费看| 久久精品成人免费网站| xxx96com| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| 久久久久九九精品影院| 人人妻人人添人人爽欧美一区卜| 久久婷婷成人综合色麻豆| 五月开心婷婷网| 夜夜夜夜夜久久久久| 亚洲一区中文字幕在线| 亚洲第一av免费看| 亚洲黑人精品在线| 久久久久精品国产欧美久久久| 亚洲人成网站在线播放欧美日韩| 欧美老熟妇乱子伦牲交| 午夜精品久久久久久毛片777| 可以在线观看毛片的网站| 999久久久国产精品视频| 国产有黄有色有爽视频| 精品无人区乱码1区二区| 国产亚洲精品一区二区www| 日韩 欧美 亚洲 中文字幕| 一级片免费观看大全| 最新美女视频免费是黄的| 亚洲 欧美 日韩 在线 免费| 国产午夜精品久久久久久| 国产成人一区二区三区免费视频网站| 好看av亚洲va欧美ⅴa在| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 正在播放国产对白刺激| 黑人巨大精品欧美一区二区mp4| 亚洲精品美女久久av网站| 桃色一区二区三区在线观看| 久久精品亚洲熟妇少妇任你| av欧美777| 超色免费av| 真人做人爱边吃奶动态| 国产三级在线视频| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区蜜桃| 香蕉丝袜av| 搡老乐熟女国产| 国产精品影院久久| 51午夜福利影视在线观看| 中文字幕色久视频| 欧美不卡视频在线免费观看 | 久久草成人影院| 曰老女人黄片| 男女床上黄色一级片免费看| 人人妻人人澡人人看| 成人永久免费在线观看视频| 久久亚洲精品不卡| 91国产中文字幕| av国产精品久久久久影院| 亚洲专区中文字幕在线| 久久中文字幕一级| 伦理电影免费视频| 欧美日韩亚洲高清精品| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 国产精品亚洲一级av第二区| 天堂√8在线中文| 日本wwww免费看| 变态另类成人亚洲欧美熟女 | 亚洲精品美女久久久久99蜜臀| 视频区图区小说| 久久精品亚洲精品国产色婷小说| 黄色女人牲交| 亚洲人成电影观看| 人妻丰满熟妇av一区二区三区| 老司机在亚洲福利影院| 一本综合久久免费| 欧美乱色亚洲激情| 一级毛片女人18水好多| 亚洲精品国产一区二区精华液| 18美女黄网站色大片免费观看| 国产免费av片在线观看野外av| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 一进一出抽搐gif免费好疼 | 免费日韩欧美在线观看| 亚洲av美国av| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 黑丝袜美女国产一区| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 欧美日韩视频精品一区| 日韩国内少妇激情av| 亚洲精品美女久久av网站| 欧美另类亚洲清纯唯美| 亚洲精品中文字幕在线视频| 国产精品爽爽va在线观看网站 | 自拍欧美九色日韩亚洲蝌蚪91| 久久精品91蜜桃| 久久精品人人爽人人爽视色| 色综合欧美亚洲国产小说| 动漫黄色视频在线观看| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 国产无遮挡羞羞视频在线观看| 国产成人精品在线电影| 精品欧美一区二区三区在线| 亚洲专区国产一区二区| www.999成人在线观看| 亚洲成a人片在线一区二区| 九色亚洲精品在线播放| 五月开心婷婷网| 校园春色视频在线观看| 国产精品98久久久久久宅男小说| 久久精品影院6| 性少妇av在线| 精品少妇一区二区三区视频日本电影| 美女高潮到喷水免费观看| 在线av久久热| 欧美激情久久久久久爽电影 | 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女 | 久久人人精品亚洲av| 国产黄色免费在线视频| 99国产精品99久久久久| 亚洲国产看品久久| 国产成人影院久久av| 国产亚洲精品一区二区www| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 中出人妻视频一区二区| 亚洲中文字幕日韩| 成人亚洲精品一区在线观看| 成人三级做爰电影| 色哟哟哟哟哟哟| 国产亚洲精品久久久久5区| 最近最新中文字幕大全电影3 | 欧美日本亚洲视频在线播放| 中亚洲国语对白在线视频| 看黄色毛片网站| av视频免费观看在线观看| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| 亚洲av日韩精品久久久久久密| 中文字幕人妻丝袜制服| 久久久久久久久免费视频了| 精品久久久久久,| 成年人黄色毛片网站| 欧美日韩av久久| 欧美日韩中文字幕国产精品一区二区三区 | 三上悠亚av全集在线观看| 一个人观看的视频www高清免费观看 | 韩国精品一区二区三区| 久久久久国内视频| 51午夜福利影视在线观看| 操出白浆在线播放| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 日韩三级视频一区二区三区| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| 欧美成人性av电影在线观看| 丝袜美足系列| 国产精品国产av在线观看| 久久草成人影院| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 国产精品av久久久久免费| 国产精品一区二区免费欧美| 在线永久观看黄色视频| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 一区在线观看完整版| 黄网站色视频无遮挡免费观看| 久久亚洲真实| 欧美国产精品va在线观看不卡| 一个人免费在线观看的高清视频| 两个人看的免费小视频| 男女做爰动态图高潮gif福利片 | 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 91字幕亚洲| 91国产中文字幕| 国产视频一区二区在线看| 男女下面插进去视频免费观看| 国产亚洲精品一区二区www| 久久久精品欧美日韩精品| 脱女人内裤的视频| 午夜福利,免费看| 最新美女视频免费是黄的| 在线观看免费视频网站a站| 久久草成人影院| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 国产99白浆流出| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 国产亚洲精品久久久久5区| 国产成人精品久久二区二区免费| 国产午夜精品久久久久久| 人妻丰满熟妇av一区二区三区| 午夜福利,免费看| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| 国产高清国产精品国产三级| 国产免费av片在线观看野外av| 欧洲精品卡2卡3卡4卡5卡区| 美女午夜性视频免费| 国产单亲对白刺激| 成人三级黄色视频| 99久久综合精品五月天人人| 亚洲国产精品999在线| 精品欧美一区二区三区在线| 久久国产精品男人的天堂亚洲| 女人精品久久久久毛片| 亚洲国产精品999在线| www国产在线视频色| 丁香欧美五月| 亚洲avbb在线观看| av欧美777| 亚洲国产中文字幕在线视频| 80岁老熟妇乱子伦牲交| www.熟女人妻精品国产| 男女下面进入的视频免费午夜 | 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 日本免费一区二区三区高清不卡 | 精品一区二区三区四区五区乱码| 日本免费一区二区三区高清不卡 | 国产精品亚洲av一区麻豆| 国产成人系列免费观看| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 欧美成人午夜精品| 制服诱惑二区| 黄色 视频免费看| 在线观看日韩欧美| 神马国产精品三级电影在线观看 | 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 国内久久婷婷六月综合欲色啪| 1024香蕉在线观看| 精品久久久久久久久久免费视频 | 波多野结衣一区麻豆| 国产欧美日韩一区二区三区在线| 欧美日韩福利视频一区二区| 久久欧美精品欧美久久欧美| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色 | 色综合欧美亚洲国产小说| 一a级毛片在线观看| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久 | 精品人妻在线不人妻| 亚洲男人的天堂狠狠| 久久中文看片网| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 国产精品电影一区二区三区| 90打野战视频偷拍视频| 亚洲专区字幕在线| 大型av网站在线播放| 一二三四在线观看免费中文在| 国产精华一区二区三区| 纯流量卡能插随身wifi吗| 日本wwww免费看| 99国产极品粉嫩在线观看| av网站在线播放免费| 午夜福利一区二区在线看| 久久人妻av系列| 亚洲熟妇中文字幕五十中出 | 久久精品影院6| 色播在线永久视频| 免费观看人在逋| 国产精品99久久99久久久不卡| 国产精品成人在线| 欧美+亚洲+日韩+国产| 欧美丝袜亚洲另类 | 午夜亚洲福利在线播放| 国产成人免费无遮挡视频| av有码第一页| 丝袜美足系列| 欧美激情高清一区二区三区| 欧美精品啪啪一区二区三区| 一个人观看的视频www高清免费观看 | 日韩 欧美 亚洲 中文字幕| 黑人猛操日本美女一级片| 国产精品二区激情视频| 亚洲色图综合在线观看| 叶爱在线成人免费视频播放| 成年版毛片免费区| 在线观看免费日韩欧美大片| 黄网站色视频无遮挡免费观看| 国产精品美女特级片免费视频播放器 |