• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-Complexity Reconstruction of Covariance Matrix in Hybrid Uniform Circular Array

    2024-04-01 02:08:04FuZihaoLiuYinshengDuanHongtao
    China Communications 2024年3期

    Fu Zihao ,Liu Yinsheng ,Duan Hongtao

    1 Information School,Communication University of China,Beijing 100024,China

    2 Beijing Institute of Electronic System Engineering,Beijing 100854,China

    3 School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China

    4 Beijing Radio Monitoring Station of State Radio Monitoring Center(SRMC),Beijing 100037,China

    Abstract: Spatial covariance matrix (SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output (MIMO).For multi-antenna systems operating at millimeter-wave bands,hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation,signals received at the antennas are unavailable to the digital receiver,and as a consequence,traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems.To address this issue,beam sweeping algorithm (BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array,has been proposed in our previous works.However,direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden.To this end,a low-complexity approach is proposed in this paper.By exploiting the symmetry features of SCM for the UCA,the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly.Furthermore,an insightful analysis is also presented in this paper,showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM.Simulation results are also shown to demonstrate the proposed approach.

    Keywords: hybrid array;millimeter-wave;spatial covariance matrix;uniform circular array

    I.INTRODUCTION

    Spatial covariance matrix (SCM) have been widely used in many multi-antenna systems,such as cellular communications,radars,and direction finding systems[1].For example,massive multiple-input multipleoutput(MIMO)is one of the most important enabling technologies in 5G[2].Due to a large number of antennas,massive MIMO is essential to millimeter-wave bands because large array gain can compensate for the high path loss and frequency resources at millimeterwave bands can be exploited efficiently [3,4].Different from cellular systems where uniform linear arrays (ULA) are widely adopted,uniform circular arrays(UCA)are more popular in direction finding systems.Omni-directional feature of UCA can deliver the same estimation accuracy regardless of the direction of receiving signals,and it has been thereforede factorreference in practical direction finding systems[5][6].

    To reduce the cost caused by the radio frequency(RF) chains operating at millimeter-wave bands,hybrid analog-digital structure has been adopted in many multi-antenna systems [7-9].In hybrid massive MIMO,one RF chain is connected to multiple antennas,so that the number of RF chains can be much smaller than the number of antennas.In this case,however,received signals at the antennas are first fed to the analog devices and then combined before send to the digital receiver.Consequently,received signals at the antennas are unavailable to the digital receiver and thus traditional sample average approach cannot be used for SCM reconstruction [10].To address this issue,we have developed a beam sweeping algorithm (BSA) for SCM reconstruction in hybrid ULA[11,12].In this approach,beam sweeping results corresponding to a group of predetermined directionof-angles (DOA) are collected and then SCM can be reconstructed by solving a matrix equation.Predetermined DOAs are carefully selected in [13] so that matrix inverse can be completely avoided.A truncated BSA has also been proposed in[14]to accelerate the sweeping procedure.To reduce the complexity of solving matrix equation,analog switches are also considered in[15]to adjust the weights connected to each antenna.Furthermore,high computational complexity can be also addressed by adopting new computation platform,such as quantum computer[16].

    In spite of the success of BSA in SCM reconstruction for hybrid ULA,discussion on BSA in the case of hybrid UCA is still absent.A straightforward way is to use the basic BSA in [11] directly for SCM reconstruction in hybrid UCA.Although simple,direct extension of basic BSA to the hybrid UCA case will result in a huge computational burden.Moreover,as the steering vector of UCA is essentially different from that of ULA,the predetermined DOAs selected in[13]cannot be used in hybrid UCA either.To this end,we propose a low-complexity approach for SCM reconstruction in hybrid UCA in this paper.By exploiting the symmetry features of SCM for the UCA,the number of unknowns in the desired SCM can be reduced significantly and thus the complexity of reconstruction can be saved accordingly.Furthermore,an insightful analysis will show that the reduction of the number of unknowns causes a low-dimensional diagonal loading,and as a result,the reconstruction accuracy can be improved compared to the full-dimensional diagonal loading in[11].

    The rest of this paper is organized as follows.In Section II,signal model for hybrid UCA is introduced,followed by a review of SCM reconstruction issue.In Section III,basic BSA will be first reviewed in brief and then the low-dimensional reconstruction approach will be presented based on the symmetry feature of SCM.The performance analysis will be presented in in Section IV.Finally,simulation results and conclusions are in Section V and VI,respectively.

    II.SYSTEM MODEL

    2.1 Signal Model

    As in Figure 1,consider a hybrid UCA system which is composed ofMantennas on a circle with radiusR.To simplify the symbol notation,a single RF chain is considered in this paper.Using the approach in [12],the proposed algorithm in this paper can be also applied in the case of multiple RF chains.

    Figure 1.Hybrid UCA with a single RF chain. The number of antennas is M and the radius is R.

    Denoteym(t)(m=0,1,···,M-1)to be the received signal on them-th antenna,then the received signal vectory(t)=[y0(t),y1(t),···,yM-1(t)]Tcan be represented as

    wherexl(t)’s(l=0,1,···,L-1)areLsignals impinging from far field onto the array,θlis the DOA ofxl(t),andz(t)denotes the additive Gaussian noise vector with E{z(t)zH(t)}=N0IwithN0andIbeing the noise power and an identity matrix,respectively.In(1),a(θl)is theM×1 steering vector with them-th element given bywhereλindicates the wave length.

    If assumingLsignals are mutually independent with zero means and the power of thel-th signal is E{|xl(t)|2}=then the SCM,R=E{y(t)yH(t)},can be obtained as

    where the(m,n)-th element ofRcan be represetend,using(2),as

    2.2 SCM Reconstruction

    Denotey[n]=y(nT) to be then-th sample of received signal whereTdenotes the sampling period.If all elements ofy[n] are available to the digital receiver,SCM in(3)can be approximated using the sample average approach as[17]

    whereNdenotes the number of samples.In this approach,received signals at all antennas should be sent via RF chains to the digital receiver.In hybrid arrays,however,Figure 1 shows that only the combination of the elements ofy[n]can be seen by the digital receiver because there is only one RF chain.As a consequence,the sample average approach in(5)cannot be used in hybrid arrays.To address this issue,BSA and its improvement have been proposed for SCM reconstruction in hybrid ULA in our previous works[11,13,12].It has shown that BSA can reconstruct the SCM effectively and efficiently in the case of hybrid ULA.

    In spite of the success of BSA in SCM reconstruction for hybrid ULA,discussion on BSA in the case of hybrid UCA is still absent.In the subsequence of this paper,we will focus on the SCM reconstruction issue in hybrid UCA.

    III.LOW-COMPLEXITY RECONSTRUCTION

    In this section,the basic BSA will be first reviewed as a baseline.Then,the low-dimensional reconstruction algorithm will be shown by exploiting the symmetry feature of SCM.

    3.1 Review of Basic BSA

    As in[11],define{θ(0),θ(1),···,θ(Q-1)}to be a set of predetermined DOAs.Different from the case of ULA where-π/2<θ(q) <π/2,we have-π <θ(q) <πin the case of UCA.Then,the analog beamformers switch the beam directions to the predetermined DOAs in turn.For theq-th beam,the combination of the received signals can be represented by

    From Figure 1,the signal combination is sampled before sent to the receiver,and thus the samples of the signal combination can be given by

    DenotePq=E(|cq[n]|2) to be the average power ofcq[n],when the number of samples is large enough,we have

    Using vec(·)operator to(8),Pqcan be rewritten as

    wherer=vec(R)andaq=a(θ(q))?a*(θ(q))with?indicating Kronecker product.If taking allQpredetermined DOAs into account,we can derive that

    wherep=(P0,P1,···,PQ-1)Tcontains the estimated power on all predetermined beams andA=(a0,a1,···,aQ-1)T.As in [11],unknownrcan be obtained by solving(10)as

    whereσ2is a diagonal loading coefficient to avoid illconditioned solution.Then,the desired SCM can be reconstructed as=unvec

    The computational complexity of basic BSA main results from the matrix inverse in (11).As there areM2unknowns in,matrix inverse has to be conducted with respect to anM2×M2matrix,causing a huge computational burden.

    3.2 Low-Dimensional Reconstruction Algorithm

    3.2.1 Symmetry Feature of SCM

    AlthoughrcontainsM2elements,many elements inrare actually the same.Therefore,an efficient way to reduce the computational complexity is keeping only the elements that are different to each other while removing the same and repeated elements contained inr.This can be achieved by exploiting the symmetry features of SCM.

    In particular,if denote[R]m,nto be the element on them-th row and then-th column ofR,then we can derive,from(4),that

    for 0≤m,n <M/2,and

    for 0≤m <M.Using(12)to(15),the desired SCMRcan be rewritten as

    wherea0(θ(q)) anda1(θ(q)) contain the first and the lastM/2 elements ofa(θ(q)),respectively,anda1(θ(q))=(θ(q)).

    3.2.2 Low-Dimensional Reconstruction

    Substituting (16) to (19) into (8),the beam sweeping result in(8)can be rewritten by

    where we have used the identity

    Substituting(17)and(18)into(20),we have

    where we have used the identities

    Then,if using vec(·)operator to both sides of(22),

    To rewrite (25) in a vector form,denoteγto be a column vector that contains all+1 non-repeated unknowns andb(θ(q))to be a column vector that contains the coefficients corresponding to all non-repeated unknowns,that is

    With(26),(25)can be rewritten in vector form as

    Note that(27)considers only one predetermined DOA,if allQpredetermined DOAs are taken into account,we have

    whereB=[b(θ(0)),b(θ(1)),···,b(θ(Q-1))]T.Then,theM2/2+1 non-repeated unknowns contained inγcan be obtained by solving(28)as

    whereσ2is a diagonal loading coefficient used to avoid ill-conditioned result.Onceγis obtained,the desired SCM can be reconstructed using the nonrepeated elements inγ.

    Similar to (11),the computational complexity mainly results from the matrix inverse in (29).However,as the number of unknowns is reduced fromM2toM2/2+1,matrix inverse is now conducted with respect to an(M2/2+1)×(M2/2+1)matrix.Therefore,compared to (11),the reduction of the number of unknowns has lead to a significant reduction in the computational complexity.

    IV.INSIGHTS

    In this section,we will first discuss the ranks of matricesAandB,then a performance analysis will be shown.

    4.1 Analysis of Ranks

    with 0≤m,n <M/2,and

    Therefore,we conclude that ifthen(θl)an1(θl)=(θl)an2(θl).In other words,the coefficients associated with the repeated unknowns inRare also the same.The above conclusion can be also applied ifQpredetermined DOAs are taken into account,that is,the columns ofAare the same if they corresponds to the repeated unknowns inr.In particular,if denoteA=[α1,α2,···,αM2]whereαiis aQ×1 vector,then we can obtain thatαi=αjif thei-th and thej-th elements ofrare the same.

    On the other hand,it shows in (27) that the elements inb(θ(q)) corresponds to non-repeated unknowns inr,and therefore the elements inb(θ(q))are not necessarily the same.Accordingly,if denoteB=[β1,β2,···whereβiis aQ×1 vector,thenβiandβjare also not necessarily the same for.In fact,Bcan be obtained by combing the repeated columns inA,as illustrated in Figure 2.Figure 2 shows that the repeated columns inAhave been combined while only the non-repeated columns are kept inB.Since combing the repeated columns has no impact on the column space spanned byA,we can therefore obtain that

    Figure 2.An example of relations between matrices A and B and corresponding unknowns in r and γ.

    4.2 Performance Analysis

    In[14],the squared-error(SE),‖R-has been used to evaluate the performance of BSA in the case of ULA.However,the geometry of UCA makes it difficult to derive a closed-form expression of SE.Even though,a rough performance analysis can be still derived using the fact that rank(A)=rank(B)=K.

    As there areM2/2+1 non-repeated unknowns in total,the SE can be rewritten,in terms of the nonrepeated unkowns,by

    Comparing to (41),additional error components are included into the upper bound in(36).As a result,the upper bound may get loose ifMis very large because more errors components are included.However,it can be very tight whenMis small because few error components are included into the upper bound.

    whereΛ=I-(Δ+σ2I)-1Δ.Since rank(B)=K,we havedm=0 whenm >K.Furthermore,to derive insightful results,a diaognal loading coefficient that is sufficiently small can be employed so thatdm ?σ2whenm ≤K.In this case,the (m,m)-th diagonal element ofΛcan be approximated as

    Therefore,‖γ-can be rewritten as

    Intuitively,as there areM2/2+1 non-repeated unknowns inγ,matrixBshould haveM2/2+1 independent columns so as to derive a unique solution for(28)and thereforeKshould be aroundM2/2+1 whenQis large enough.This intuition has been verified by the numerical results in Section IV.It shows thatK+1 can be as large asK+1≈+1 whenQis large enough.In this case,the approximation in(39)can be further simplified as

    Substituting(40)into(36),the upper bound in(36)can be rewritten by

    That is,the upper bound is composed of aboutMidentical error components.

    Similarly,if using the basic BSA directly,‖R-can be given by

    Since rank(A)=rank(B)=K,following a similar procedure as from(37)to(39),the SE in(42)can be rewritten as

    V.SIMULATION RESULTS

    In the simulation,we consider a hybrid UCA where the radius isR=Mλ/4πso that the distance between neighboring antennas is aboutλ/2.Two signals with unit power are impinging onto the UCA fromθ=180oand 300o,respectively.Qpredetermined DOAs are uniformly distributed from 0oto 360o,and different values ofQwill be considered in the simulation.

    Figure 3 shows the ranks ofAandBin the cases of different numbers of antennas.As expected in the analysis,AandBhave the same ranks.WhenQis small,the ranks of both matrices increase as the rising ofQ.WhenQis large enough,the ranks cannot increase further as the rising ofQand is fixed at aboutM2/2.This observation can be used to justify the performance analysis in Section IV.

    Figure 3.Ranks of A and B with different number of antennas.

    Figure 4 shows the reconstruction accuracy in terms of normalized SE,NSE=‖R-·‖R‖Direct application of the approach in [11] for hybrid UCA is considered in this figure as a baseline.As shown in this figure,whenQis large enough,the low-complexity approach proposed in this paper can achieve better performance than using the approach in [11] directly.This observation coincides with our performance analysis in Section IV.It also shows in Figure 4 that the reducing the diagonal loading coefficient can improve the reconstruction accuracy of the proposed approach,while it has little impact on the directly applied approach in [11].The derived upper bounds have also been shown in this figure for comparson.

    Figure 4.NSE performances of different algorithms where the SNR is-5 dB and the number of antennas is M=8.

    Figure 5 compares the computational complexity of different approaches.Matrix inverion required in(11) and (29) are conducted on a computer with Intel(R)Core(TM)i7 processor running at 2.6GHz.Figure 5 shows the average time durations of different approachs to complete one matrix inversion operation.It shows clearly that the low-complexity reconstrution algorithm proposed in this paper can outperform the basic BSA significantly.

    Figure 5.Comparison of computational complexity.

    VI.CONCLUSION

    In this paper,a low-complexity BSA has been proposed for SCM reconstruction in hybrid UCA.By exploiting the symmetry features of SCM for a UCA,the number of unknowns in the desired SCM can be reduced significantly and thus the complexity of reconstruction can be saved accordingly.Furthermore,insightful analysis have also shown that,in addition to the reduction of the computational complexity,the reconstruction accuracy can be also improved due to the reduction of the number of unknowns.Simulation results have also been presented in this paper to demonstrate the proposed approach.

    ACKNOWLEDGEMENT

    This work was supported by National Key Research and Development Program of China under Grant 2020YFB1804901,State Key Laboratory of Rail Traffic Control and Safety (Contract: No.RCS2022ZT 015),Special Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau(cstc2019jscx-fxydX0053).

    日韩av免费高清视频| 内射极品少妇av片p| 边亲边吃奶的免费视频| 国产亚洲午夜精品一区二区久久| 女性被躁到高潮视频| 国产欧美日韩一区二区三区在线 | av女优亚洲男人天堂| 又爽又黄a免费视频| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 狂野欧美激情性xxxx在线观看| 五月天丁香电影| 精品亚洲成a人片在线观看 | 久久久久性生活片| 熟女av电影| 日韩欧美 国产精品| 久久久久久伊人网av| 男男h啪啪无遮挡| 国产一级毛片在线| 欧美激情极品国产一区二区三区 | 中文在线观看免费www的网站| 伦理电影大哥的女人| 91aial.com中文字幕在线观看| 国产视频首页在线观看| 中文乱码字字幕精品一区二区三区| 在线观看人妻少妇| 亚洲成人av在线免费| 男女下面进入的视频免费午夜| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 亚洲色图av天堂| 黄片wwwwww| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 国产午夜精品一二区理论片| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 国产久久久一区二区三区| 久久鲁丝午夜福利片| 国产精品福利在线免费观看| 视频中文字幕在线观看| 久久久久久久大尺度免费视频| 亚洲,欧美,日韩| 国产极品天堂在线| 激情 狠狠 欧美| 国产美女午夜福利| 亚洲国产精品999| 蜜臀久久99精品久久宅男| 狂野欧美激情性xxxx在线观看| 最近的中文字幕免费完整| 秋霞伦理黄片| 国产精品无大码| 一级毛片久久久久久久久女| 欧美极品一区二区三区四区| 国产探花极品一区二区| 精品久久久久久久久亚洲| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 老司机影院毛片| 久久久久久伊人网av| 最后的刺客免费高清国语| 伊人久久国产一区二区| 肉色欧美久久久久久久蜜桃| 国产亚洲91精品色在线| 一级黄片播放器| kizo精华| 久久久久精品久久久久真实原创| 最近手机中文字幕大全| 人妻 亚洲 视频| 欧美精品人与动牲交sv欧美| 一级毛片久久久久久久久女| 直男gayav资源| av天堂中文字幕网| 2018国产大陆天天弄谢| 麻豆精品久久久久久蜜桃| 尾随美女入室| 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| 丰满乱子伦码专区| 免费看av在线观看网站| 亚洲成人av在线免费| 丰满人妻一区二区三区视频av| 夜夜骑夜夜射夜夜干| 丰满乱子伦码专区| 韩国av在线不卡| 久久av网站| 欧美日韩视频精品一区| 男男h啪啪无遮挡| 尤物成人国产欧美一区二区三区| 纵有疾风起免费观看全集完整版| 成人漫画全彩无遮挡| 性色av一级| 99国产精品免费福利视频| 亚洲美女黄色视频免费看| 校园人妻丝袜中文字幕| 精品亚洲乱码少妇综合久久| 国产免费福利视频在线观看| 中国国产av一级| 日本黄色片子视频| 黄色配什么色好看| 五月玫瑰六月丁香| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 99热国产这里只有精品6| 99久久综合免费| videos熟女内射| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 亚洲精品456在线播放app| 少妇高潮的动态图| 精品午夜福利在线看| 国产人妻一区二区三区在| 赤兔流量卡办理| 午夜日本视频在线| 一二三四中文在线观看免费高清| 午夜精品国产一区二区电影| 午夜免费观看性视频| 久久热精品热| 各种免费的搞黄视频| 亚洲va在线va天堂va国产| 青春草视频在线免费观看| 亚洲精品视频女| 一级毛片久久久久久久久女| 久久精品国产a三级三级三级| 高清午夜精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 久久99热这里只频精品6学生| 久久久久久久国产电影| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| av黄色大香蕉| av网站免费在线观看视频| 久久久久人妻精品一区果冻| 中文字幕免费在线视频6| 最近中文字幕2019免费版| 大码成人一级视频| 久热久热在线精品观看| 国产成人精品久久久久久| 久久久精品94久久精品| 高清毛片免费看| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 久久久久久人妻| 免费观看在线日韩| 日韩强制内射视频| 国产乱人偷精品视频| 人妻夜夜爽99麻豆av| 伦理电影免费视频| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 能在线免费看毛片的网站| 精品一品国产午夜福利视频| 26uuu在线亚洲综合色| 插阴视频在线观看视频| 亚洲性久久影院| 少妇人妻 视频| 老司机影院成人| 熟女av电影| 国产精品av视频在线免费观看| 国产精品久久久久成人av| 久久久精品免费免费高清| 久久国产乱子免费精品| 女性被躁到高潮视频| 亚洲无线观看免费| 国产一区亚洲一区在线观看| a级毛色黄片| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 婷婷色av中文字幕| 国内少妇人妻偷人精品xxx网站| 午夜激情久久久久久久| 麻豆成人午夜福利视频| 成人美女网站在线观看视频| 成人亚洲欧美一区二区av| 亚洲国产欧美在线一区| 欧美极品一区二区三区四区| 男女边摸边吃奶| 日日摸夜夜添夜夜爱| 国产成人a区在线观看| av在线观看视频网站免费| 久久韩国三级中文字幕| a级一级毛片免费在线观看| 日本色播在线视频| 乱系列少妇在线播放| 麻豆成人av视频| 亚洲国产精品专区欧美| 成年免费大片在线观看| 男女免费视频国产| 天美传媒精品一区二区| 亚洲人成网站高清观看| 久久精品国产自在天天线| 国产精品熟女久久久久浪| 国产毛片在线视频| 亚洲内射少妇av| 蜜桃亚洲精品一区二区三区| 欧美xxⅹ黑人| 欧美性感艳星| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| 日韩av在线免费看完整版不卡| 麻豆国产97在线/欧美| 亚洲欧美一区二区三区国产| 国产在线视频一区二区| 97在线视频观看| 久久久久久人妻| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 九草在线视频观看| 日韩av免费高清视频| 中文字幕制服av| av网站免费在线观看视频| 免费观看无遮挡的男女| 日韩欧美一区视频在线观看 | 久久99热这里只频精品6学生| 国产日韩欧美在线精品| 久久国产乱子免费精品| 一级黄片播放器| 大陆偷拍与自拍| 91久久精品国产一区二区三区| 久久精品国产亚洲av天美| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 99国产精品免费福利视频| 亚洲av福利一区| 在线亚洲精品国产二区图片欧美 | 全区人妻精品视频| 在线观看免费高清a一片| 99久久精品一区二区三区| 亚洲欧美成人综合另类久久久| 精品久久久久久久久av| 久久精品国产亚洲av天美| 这个男人来自地球电影免费观看 | 日本爱情动作片www.在线观看| 夜夜爽夜夜爽视频| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 国产成人精品久久久久久| 一级毛片久久久久久久久女| 少妇的逼水好多| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 亚洲欧洲国产日韩| 国产成人aa在线观看| 成人亚洲欧美一区二区av| 亚洲国产毛片av蜜桃av| 成人18禁高潮啪啪吃奶动态图 | 妹子高潮喷水视频| 国产精品人妻久久久久久| 1000部很黄的大片| 精品久久久久久久久av| 麻豆成人午夜福利视频| 啦啦啦啦在线视频资源| av天堂中文字幕网| 这个男人来自地球电影免费观看 | 亚洲欧美成人精品一区二区| 深夜a级毛片| 春色校园在线视频观看| 欧美人与善性xxx| 亚州av有码| 欧美精品亚洲一区二区| 乱码一卡2卡4卡精品| 国产免费福利视频在线观看| 国产亚洲最大av| 丝瓜视频免费看黄片| 中文字幕av成人在线电影| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单| 国产精品三级大全| 国产无遮挡羞羞视频在线观看| 国产伦在线观看视频一区| 国产精品国产三级专区第一集| 免费av中文字幕在线| 欧美xxxx性猛交bbbb| 黄色一级大片看看| 日韩av免费高清视频| 纯流量卡能插随身wifi吗| 纵有疾风起免费观看全集完整版| 深爱激情五月婷婷| 纯流量卡能插随身wifi吗| 99视频精品全部免费 在线| 黑人猛操日本美女一级片| 久久精品国产亚洲av天美| 久久热精品热| 欧美性感艳星| av线在线观看网站| 久久久午夜欧美精品| 插阴视频在线观看视频| 国产在线男女| 美女主播在线视频| 最近手机中文字幕大全| 久久精品熟女亚洲av麻豆精品| 日韩av不卡免费在线播放| 国产精品精品国产色婷婷| 国产精品久久久久久精品电影小说 | 内射极品少妇av片p| 日韩中字成人| 男男h啪啪无遮挡| 高清在线视频一区二区三区| 久久婷婷青草| 国产成人精品福利久久| 亚洲精品久久久久久婷婷小说| 偷拍熟女少妇极品色| 日本黄色片子视频| 成人午夜精彩视频在线观看| 亚洲经典国产精华液单| 欧美xxⅹ黑人| 亚洲精品色激情综合| 欧美性感艳星| 国产无遮挡羞羞视频在线观看| 人人妻人人看人人澡| 美女主播在线视频| 精品久久久久久久末码| 新久久久久国产一级毛片| 亚洲丝袜综合中文字幕| 国产免费福利视频在线观看| 久久久久久久久大av| 免费观看性生交大片5| 成年免费大片在线观看| 午夜视频国产福利| freevideosex欧美| 久久国产亚洲av麻豆专区| 干丝袜人妻中文字幕| 久久久久久久久久成人| 亚洲精品,欧美精品| 国产成人a∨麻豆精品| 亚洲av中文字字幕乱码综合| 少妇丰满av| 亚洲va在线va天堂va国产| 欧美成人午夜免费资源| 人人妻人人爽人人添夜夜欢视频 | 国内少妇人妻偷人精品xxx网站| 美女国产视频在线观看| 简卡轻食公司| 免费人成在线观看视频色| 我的老师免费观看完整版| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 一本—道久久a久久精品蜜桃钙片| 国产人妻一区二区三区在| 亚洲久久久国产精品| 五月伊人婷婷丁香| 国产成人aa在线观看| 伦理电影大哥的女人| 亚洲欧洲日产国产| 建设人人有责人人尽责人人享有的 | 国产伦在线观看视频一区| 欧美bdsm另类| 日韩强制内射视频| 一区二区三区乱码不卡18| 91精品一卡2卡3卡4卡| 少妇丰满av| 最近2019中文字幕mv第一页| 网址你懂的国产日韩在线| 一级a做视频免费观看| 精品一区二区三区视频在线| 久久久久久久久久成人| av国产免费在线观看| 亚洲精品国产av成人精品| 欧美97在线视频| h日本视频在线播放| 精品久久国产蜜桃| 国产一级毛片在线| 久久国产精品大桥未久av | 舔av片在线| 国产精品一区www在线观看| 联通29元200g的流量卡| 在线看a的网站| 免费不卡的大黄色大毛片视频在线观看| 久久青草综合色| 色视频www国产| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 免费看av在线观看网站| 看十八女毛片水多多多| 久久久国产一区二区| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 成年免费大片在线观看| 深夜a级毛片| 特大巨黑吊av在线直播| 久久久成人免费电影| 久久久久久久久久久丰满| 精品一区二区免费观看| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 国产av一区二区精品久久 | 亚洲美女搞黄在线观看| 成人国产av品久久久| 建设人人有责人人尽责人人享有的 | 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添av毛片| 精品少妇久久久久久888优播| 人妻制服诱惑在线中文字幕| 好男人视频免费观看在线| 美女脱内裤让男人舔精品视频| 中文字幕精品免费在线观看视频 | 嘟嘟电影网在线观看| 看非洲黑人一级黄片| 亚洲精品乱码久久久v下载方式| 少妇人妻久久综合中文| 夜夜爽夜夜爽视频| 久久ye,这里只有精品| 伦精品一区二区三区| av国产精品久久久久影院| 成人免费观看视频高清| 国产亚洲精品久久久com| 大话2 男鬼变身卡| 韩国av在线不卡| 亚洲欧美日韩无卡精品| 蜜桃久久精品国产亚洲av| 99热网站在线观看| 免费人成在线观看视频色| 国产视频首页在线观看| 久久鲁丝午夜福利片| 亚洲高清免费不卡视频| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| 日韩伦理黄色片| 国产日韩欧美亚洲二区| 一级a做视频免费观看| 91精品一卡2卡3卡4卡| 嫩草影院新地址| 国产精品一区二区在线观看99| 春色校园在线视频观看| 亚洲精品乱码久久久久久按摩| 成年免费大片在线观看| 草草在线视频免费看| 国产高清三级在线| 欧美国产精品一级二级三级 | 久久99蜜桃精品久久| 晚上一个人看的免费电影| 精品久久久久久电影网| 免费人成在线观看视频色| 中国国产av一级| 国产欧美亚洲国产| 高清欧美精品videossex| 国产爱豆传媒在线观看| 亚洲精品456在线播放app| 草草在线视频免费看| 成人美女网站在线观看视频| 噜噜噜噜噜久久久久久91| 一个人看视频在线观看www免费| 日本爱情动作片www.在线观看| av福利片在线观看| 人妻少妇偷人精品九色| 日本色播在线视频| 久久久a久久爽久久v久久| 多毛熟女@视频| 亚洲在久久综合| 97热精品久久久久久| 男女免费视频国产| 黄片wwwwww| 亚洲av在线观看美女高潮| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 丰满人妻一区二区三区视频av| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜 | 天堂8中文在线网| 国产精品.久久久| 中文字幕精品免费在线观看视频 | 亚洲av在线观看美女高潮| 777米奇影视久久| 在线播放无遮挡| 亚洲,一卡二卡三卡| 你懂的网址亚洲精品在线观看| 国产黄色视频一区二区在线观看| 精品人妻视频免费看| 精品人妻一区二区三区麻豆| 免费av中文字幕在线| 国产在线视频一区二区| 毛片女人毛片| 蜜臀久久99精品久久宅男| 熟妇人妻不卡中文字幕| 国产精品免费大片| 国产一区二区三区综合在线观看 | 免费高清在线观看视频在线观看| 中文字幕免费在线视频6| 日韩中文字幕视频在线看片 | 午夜福利视频精品| 国产高潮美女av| 一级av片app| av免费在线看不卡| 亚洲欧美成人精品一区二区| 王馨瑶露胸无遮挡在线观看| 久久久亚洲精品成人影院| 超碰97精品在线观看| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| 国产女主播在线喷水免费视频网站| 久久精品久久久久久久性| 亚洲综合色惰| 免费看不卡的av| 卡戴珊不雅视频在线播放| 午夜福利网站1000一区二区三区| 国产精品伦人一区二区| 国产精品人妻久久久影院| 亚洲性久久影院| 国语对白做爰xxxⅹ性视频网站| 亚洲一区二区三区欧美精品| 老熟女久久久| 亚洲精品国产色婷婷电影| 网址你懂的国产日韩在线| 国产精品一区www在线观看| 精品久久久久久久久亚洲| 国产免费又黄又爽又色| 综合色丁香网| 久久人妻熟女aⅴ| 美女高潮的动态| 丰满人妻一区二区三区视频av| 国产精品不卡视频一区二区| 久久午夜福利片| 日韩人妻高清精品专区| 蜜桃久久精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲av片在线观看秒播厂| 国国产精品蜜臀av免费| 亚洲成色77777| 久久久久国产精品人妻一区二区| 九九久久精品国产亚洲av麻豆| 午夜视频国产福利| 亚洲婷婷狠狠爱综合网| 日日啪夜夜撸| 中文在线观看免费www的网站| 久久影院123| 国产熟女欧美一区二区| 建设人人有责人人尽责人人享有的 | 欧美日韩国产mv在线观看视频 | 精品亚洲乱码少妇综合久久| 狂野欧美激情性xxxx在线观看| 国产男女超爽视频在线观看| 秋霞在线观看毛片| 国产精品一及| 高清视频免费观看一区二区| 男人和女人高潮做爰伦理| 欧美精品一区二区免费开放| 久久久久久久亚洲中文字幕| 黄色怎么调成土黄色| 高清黄色对白视频在线免费看 | h日本视频在线播放| 最近的中文字幕免费完整| av播播在线观看一区| 18禁动态无遮挡网站| 亚洲综合色惰| 日韩电影二区| 在线观看国产h片| 欧美激情国产日韩精品一区| 久久99热这里只频精品6学生| 久久久久久久久久久免费av| 18禁在线无遮挡免费观看视频| 你懂的网址亚洲精品在线观看| 国产精品熟女久久久久浪| 日韩人妻高清精品专区| 青春草国产在线视频| 日本色播在线视频| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 国产淫语在线视频| 我要看日韩黄色一级片| 黄色配什么色好看| 插阴视频在线观看视频| 午夜福利网站1000一区二区三区| 一级黄片播放器| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 五月玫瑰六月丁香| 18+在线观看网站| av在线播放精品| 插逼视频在线观看| 国产 精品1| 亚洲美女黄色视频免费看| 欧美成人午夜免费资源| 在线观看三级黄色| 国产精品人妻久久久久久| 欧美日韩视频高清一区二区三区二| 女人久久www免费人成看片| 能在线免费看毛片的网站| 永久网站在线| 少妇人妻精品综合一区二区| 91aial.com中文字幕在线观看| 特大巨黑吊av在线直播| 亚洲国产精品专区欧美| 精品一区二区三卡| 深爱激情五月婷婷| 久久女婷五月综合色啪小说| 五月天丁香电影| 一区二区三区精品91| 欧美成人午夜免费资源| 自拍欧美九色日韩亚洲蝌蚪91 | 精品酒店卫生间| 亚洲综合精品二区| 91午夜精品亚洲一区二区三区| 国产一级毛片在线| 99久久中文字幕三级久久日本| 成人午夜精彩视频在线观看| 日本爱情动作片www.在线观看| 欧美区成人在线视频| 国产精品久久久久久精品电影小说 | 中国国产av一级| 亚洲色图av天堂| 国产淫片久久久久久久久| 久久99蜜桃精品久久| 亚洲av在线观看美女高潮| 九色成人免费人妻av|