• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limit load and failure mechanisms of a vertical Hoek-Brown rock slope

    2024-03-25 11:06:58JimShiauWarayutDokueaSuraparKeawsawasvongPitthayaJamsawang

    Jim Shiau,Warayut Dokuea,Surapar Keawsawasvong,Pitthaya Jamsawang

    a School of Engineering, University of Southern Queensland, Toowoomba, 4350, QLD, Australia

    b Department of Civil Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

    c Research Unit in Sciences and Innovative Technologies for Civil Engineering Infrastructures, Department of Civil Engineering, Thammasat School of Engineering,Thammasat University, Pathumthani,12120, Thailand

    d Soil Engineering Research Center, Department of Civil Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok,10800, Thailand

    Keywords: Bearing capacity Rock slope Vertical slope Finite element limit analysis Hoek-Brown yield criterion

    ABSTRACT The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.

    1.The problem

    Hoek and Brown (1980) developed a failure criterion that is based on empirical approach for rock masses.It employed a series of triaxial test results of intact and jointed rocks.The impact of heavily fragmented rocks was further considered in the wellknown 2002 version of the Hoek-Brown (HB) rock material model(Hoek et al.,2022).It can be used to describe mathematically for the principal stresses(σ1and σ3),as shown in Eqs.(1)-(4).

    whereGSIrepresents the geological strength index,miis the parameter for yielding,σciis the uniaxial strength of the intact rock mass,andDdenotes the disturbance factor.The HB yield criterion has been recently formulated into the advanced finite element limit analysis (FELA) package,i.e.Optum G2 (Optum CE,2021),and it is employed as tool for the current study.

    Fig.1 shows the statement of the problem of a plane strain strip footing on a vertical HB rock slope.The slope has a vertical heightH.The rigid strip footing has a widthBand the distance from the edge of the slope to the edge of the footing isL.It follows that the proposed study has seven input variables,i.e.H,B,L,σci,GSI,mi,and the rock unit weight γ.Note thatDis assumed to be zero for undisturbed in situ rock masses.The footing is assumed to be very rigid so that the strength of the footing is large enough and would not fail before the underlying rock.The surface roughness of the footing is fully rough since we assumed that the underlying rock is fully connected to the footing.The theory of FELA is quite different from that of the displacement-based finite element method(FEM),as the former is a direct method for the perfectly plastic soil or rock model,and the elastic modulus plays no role in the computation.Therefore,the solution and output are only for stability prediction,but not displacement.

    Fig.1.Problem definition.

    To reduce these input parameters,dimensionless parameters were used throughout this paper.Consequently,for the output of bearing capacityqu,it is normalised with respect to γBand the relationship between the bearing capacity factorN=qu/(γB)and all five dimensionless input parameters can be stated as follows:

    whereL/Bis the dimensionless footing distance,H/Bis the dimensionless height of a vertical cut slope,and σci/(γB) is the dimensionless strength ratio.The selected ranges of the HB strength parameters would cover most practical ranges in design practice since we follow the suggested ranges ofGSIandmifrom Hoek et al.(2022).Note that the bearing capacity of a footing on a vertical rock slope is largely affected by its developed failure mechanism.In generally,there are three possible failure mechanisms for the problem,i.e.the toe failure,the face failure,and the Prandtl-type failure,as illustrated in Fig.1.

    Like most other numerical techniques,a finite element mesh is needed for the FELA analysis.Fig.2 shows a typical adaptive FELA mesh for the problem.The domain needs to have sufficient size to ensure that the overall velocity field is contained within the domain.Note that the left-handed,the right-handed,and the bottom boundaries have a distance of 2B,4Band 2B,respectively so that there is no intersection of the plastic zone at these boundaries.On the contrast,no boundary constraints are placed at the other surfaces,which are free to displace in all directions.The widthBof the footing is the boundary pressure to be optimized using the proposed FELA technique.It is interesting to note that,from the final adaptive mesh presented in Fig.2,the technique allows one to visually observing the locations of plastic zones and velocity discontinuities.All numerical simulations in this paper employed 5000 to 10,000 elements as the initial and the targeted number of elements with five adaptive iterations.This has been extensively tested and the accuracy of the results can be achieved with this proposed number of elements.

    Fig.2.A typical adaptive FELA mesh used in the study (L/B=3, H/B=4,σci/(γB)=100, mi=2, GSI=50).

    Since both UB and LB solutions can bracket the true solutions to within a few percentages,it is imperative that results produced by other numerical methods in the future should be compared with our rigorous solutions for validation.Interestingly,it is “theoretically” unnecessary to compare the current results with other published solutions,if any available.The FELA technique has been recently applied to several other geotechnical applications(Ukritchon and Keawsawasvong,2018;Keawsawasvong and Ukritchon,2019;Shiau and Al-Asadi,2021;Keawsawasvong and Shiau,2022a,b;Lai et al.,2022,2023;Shiau et al.,2023).Due to the space limit,more detailed discussions can also be found in Sloan (2013) and Krabbenhoft and Lyamin (2015).

    2.Previous study and motivation to the research

    Assessing the stability of footings located near slopes is not uncommon for geotechnical engineers in their daily design routine.Several researchers have attempted to determine the bearing capacity solutions of soil slope by employing various numerical and analytical techniques such as limit equilibrium method (Azzouz and Baligh,1983),slip-line method (Graham et al.,1988),finite element analysis (Georgiadis,2010a;Griffiths and Martin,2020),discontinuity layout optimization approach (Leshchinsky,2015),upper bound limit analysis (Georgiadis,2010b),lower bound limit analysis (Bhattacharya and Dutta,2020),and FELA (Shiau et al.,2004,2006,2011).It was noted that very few works were linked to the study of footings on vertical rock slopes.

    The yield criterion developed by Hoek and Brown (1980) and later upgraded by Hoek et al.(2022) has been widely used to compute the limit load of vertically loaded foundations on level ground with rock masses (e.g.Serrano and Olalla,1994;Yang and Yin,2005;Keawsawasvong et al.,2022).Nevertheless,research on the effect of rock slopes on the bearing capacity solutions is quite limited(Zhou et al.,2018,2019).In this paper,the influences of rock characteristics as well as several other geometrical parameters on footing bearing capacity of vertical slopes are investigated by employing the FELA.Furthermore,the associated failure mechanisms are identified and grouped into three categories,i.e.the face,the toe,and the Prandtl-type failures.Finally,a set of useful design tables and charts are presented for practical uses.

    3.Results and discussion

    Fig.3 presents the variation of bearing capacity factorN(average of UB and LB) withL/Bfor the different values ofH/B,σci/(γB),miandGSI.In general,an increase inL/Byields a nonlinear increase inN.When the footing is located away from the vertical slope,the load transferring area becomes larger (potential failure zone),resulting in greater values of the bearing capacity factorN.Noting thatNbecomes a constant after a certainL/Bvalue,indicating a typical Prandtl-type ground failure mechanism.In Fig.3a,the larger the slope height ratio (H/B),the smaller theN.It follows that,in Fig.3b-d,the greater the values of σci/(γB),miandGSI,the less theN.No“face failure”is observed in Fig.3 since the height of vertical slope is considered as small (H/B=2).It was therefore decided to present Fig.4 using different parameters,in which face failure may be demonstrated.Interestingly,it is found that “face failure” only occurs at small values ofL/Band large values ofH/B(see the green dashed lines).More discussions on the type of potential failure mechanisms are discussed in a later section.

    Fig.3.Variations of N with L/B for different values of (a) H/B,(b) σci/(γB),(c) mi,and (d) GSI.

    Fig.4.Effect of L/B on N by considering different values of (a) H/B,(b) σci/(γB),(c) mi,and (d) GSI.

    Fig.5.Variations of N with mi for different values of H/B and σci/(γB): (a) GSI=30 and (b) GSI=90.

    The effects ofmiandGSIon the bearing capacity factorNare shown in Figs.5 and 6,respectively.Since the parametermiis a representative of the mineralogy,composition,and grain size of the intact rock (Hoek et al.,2022),an increase inmiresults in a linear increase inN.The greater the σci/(γB),the larger theN.The exponential relationship betweenGSIandNis presented in Fig.6.An increase inGSIyields an increase inNnonlinearly.Indeed,this nonlinear increasing curve is a result of the function in the HB model(see the exponential equation in Eqs.(2)-(4)).Interestingly,a greaterGSIvalue represents a near undisturbed rock mass,and therefore it would yield a greaterNvalue,as shown in Fig.6.

    Fig.6.Variations of N with GSI for different values of H/B and σci/(γB): (a) mi=5 and (b) mi=20.

    Several examples of potential failure mechanisms from the studies are presented in Fig.7.ForH/B=1 and 2 in Fig.7a and b,respectively,only two possible failure patterns are found in all values ofL/B(i.e.the toe and the Prandtl-type).The Prandtl-type failure occurs atL/B=8 and 10,respectively,forH/B=1 and 2.All others are for the toe failures.As the slope height ratioH/Bincreases(see for exampleH/B=4 in Fig.7c),a third possible failure surface is found at small values ofL/B,i.e.the face failure as shown in green colour.On the other note,the Prandtl-type failure occurs atL/B=12 (see Fig.7c,H/B=4).

    Fig.7.Potential failure mechanisms for various L/B and H/B (mi=5, GSI=70,σci/(γB)=100): (a) H/B=1,(b) H/B=2,and (b) H/B=4.

    A design chart is therefore developed to identify the various failure patterns of a vertical slope.This is shown in Fig.8 for practical uses.In this chart,one can quickly determine a failure type by knowing the values ofH/BandL/B(see Zones I-III in the figure).It is to be noted that Zone III(face failure)can only be identified for small values ofL/Band large values ofH/B,whilst in contrast,Zone I(Prandtl-type) can be found at large values ofL/B.Zone II (i.e.toe failure)occurs in between Zones I and III,and by a larger proportion of the design map,it is for moderate values ofL/BandH/B.

    Fig.8.Various types of failure mechanisms (mi=5, GSI=70,σci/(γB)=100).

    4.Example

    For a vertical rock slope with a strip footing sitting on the surface with a distance ofL=4 m from a slope cut,it has a height ofH=2 m.The footing has a width ofB=1 m,and the rock has aGSI=70,mi=5,σci=2500 kPa,and γ=25 kN/m3.The bearing capacity (qu) of the footing is determined as follows:

    (1) CalculateH/B=2/1=2,L/B=4/1=4,and σci/(γB)=2500/(25 ×1)=100.

    (2) The bearing capacity factorNcan be obtained using Fig.4a,whereN=115.

    (3) The bearing capacity (qu)is calculated as=115 × 25 ×1=2875 kPa.

    5.Conclusions

    A vertical rock slope has been investigated with respect to its stability under a strip footing using the HB failure criteria and the advance FELA of upper and lower bounds with adaptive meshing scheme.In this short technical note,both UB and LB solutions were confidently obtained within 3% accuracy,and they can be used to compare with new solutions from future research work.The current study has also successfully identified three distinct failure mechanisms for the problem,i.e.the toe,the face,and the Prandtltype.Practical design tables and charts for determining the limit load and identifying a corresponding failure type are presented.Finally,an application example was given to facilitate the determination of the ultimate capacity as well as the type of failure pattern of a given vertical rock slope.In view of the current lacking industry-based stability design procedures for a vertical rock slope,this novel short letter is of practical importance in assisting engineers in their daily design routine.A final note on the future work recommendation is an extension for studying various rock slope angles and the use of machine learning approach to provide a predictive model.Besides,the current work can be expanded to a full 3D analysis using rectangular or circular footings,as the current solutions are limited to the cases of planar footings on homogeneous rock slopes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was funded by National Science,Research and Innovation Fund (NSRF),and King Mongkut’s University of Technology North Bangkok with Contract No.KMUTNB-FF-66-12.

    99久久国产精品久久久| 一边摸一边做爽爽视频免费| 国产成人系列免费观看| 亚洲九九香蕉| 性少妇av在线| 欧美日韩国产mv在线观看视频| 天堂俺去俺来也www色官网| 国产一区在线观看成人免费| 满18在线观看网站| 首页视频小说图片口味搜索| 国产成+人综合+亚洲专区| 好男人电影高清在线观看| 亚洲精品美女久久久久99蜜臀| a级毛片在线看网站| 成年女人毛片免费观看观看9 | 悠悠久久av| 日本欧美视频一区| 亚洲av欧美aⅴ国产| 操美女的视频在线观看| 色综合婷婷激情| 每晚都被弄得嗷嗷叫到高潮| 99精品欧美一区二区三区四区| 久久久久国内视频| 国产精品永久免费网站| 麻豆成人av在线观看| 日韩精品免费视频一区二区三区| 夜夜爽天天搞| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| avwww免费| 精品免费久久久久久久清纯 | 久久亚洲精品不卡| 国产黄色免费在线视频| 国产精品久久电影中文字幕 | 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 夜夜躁狠狠躁天天躁| 午夜两性在线视频| 日本黄色日本黄色录像| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 亚洲中文字幕日韩| 久久久久精品人妻al黑| 午夜精品在线福利| 国产成人av激情在线播放| 国产亚洲一区二区精品| av有码第一页| 夜夜夜夜夜久久久久| 亚洲欧美一区二区三区久久| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 国产精品久久电影中文字幕 | 国产亚洲精品久久久久5区| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看 | 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 女人爽到高潮嗷嗷叫在线视频| 乱人伦中国视频| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 亚洲午夜理论影院| 精品一品国产午夜福利视频| 久久精品亚洲av国产电影网| 亚洲中文日韩欧美视频| 国产一区有黄有色的免费视频| 欧美日韩乱码在线| 黑人猛操日本美女一级片| av免费在线观看网站| 久热这里只有精品99| 69av精品久久久久久| 国产亚洲欧美精品永久| 老司机在亚洲福利影院| 深夜精品福利| 老司机午夜十八禁免费视频| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 日本a在线网址| 精品午夜福利视频在线观看一区| 久热爱精品视频在线9| 亚洲视频免费观看视频| 国产极品粉嫩免费观看在线| 无限看片的www在线观看| 亚洲欧美色中文字幕在线| 51午夜福利影视在线观看| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看 | 成年人午夜在线观看视频| avwww免费| 久久精品91无色码中文字幕| 国产精品电影一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品va在线观看不卡| 国产一区在线观看成人免费| 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 精品电影一区二区在线| 男女之事视频高清在线观看| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 国产精品欧美亚洲77777| 在线观看66精品国产| 亚洲第一青青草原| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 久久国产精品影院| 国产精品.久久久| 亚洲欧美激情综合另类| 九色亚洲精品在线播放| 日韩三级视频一区二区三区| 亚洲人成伊人成综合网2020| 精品久久久精品久久久| 他把我摸到了高潮在线观看| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区激情| 国产精品久久视频播放| 免费一级毛片在线播放高清视频 | 老熟妇仑乱视频hdxx| 国产免费现黄频在线看| 国产成人免费观看mmmm| 一级黄色大片毛片| 久久久国产精品麻豆| 国产97色在线日韩免费| 国产亚洲精品久久久久久毛片 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人欧美| 极品教师在线免费播放| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| 国产免费现黄频在线看| 欧美成人免费av一区二区三区 | 18禁美女被吸乳视频| 亚洲精品国产一区二区精华液| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜一区二区| 久久久久视频综合| 侵犯人妻中文字幕一二三四区| 亚洲熟妇中文字幕五十中出 | 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 国产精华一区二区三区| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区 | 一级a爱片免费观看的视频| 中国美女看黄片| xxxhd国产人妻xxx| 免费少妇av软件| 国产黄色免费在线视频| 91在线观看av| 国产一卡二卡三卡精品| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| xxx96com| 久久国产乱子伦精品免费另类| 久久久久久久久久久久大奶| 亚洲中文日韩欧美视频| 久久狼人影院| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 天堂√8在线中文| 亚洲精品乱久久久久久| 国产99白浆流出| 极品教师在线免费播放| 我的亚洲天堂| 精品一品国产午夜福利视频| 很黄的视频免费| a级毛片黄视频| 欧美黑人欧美精品刺激| 大片电影免费在线观看免费| 男人舔女人的私密视频| 午夜福利在线观看吧| 久久 成人 亚洲| 精品一区二区三卡| 日本一区二区免费在线视频| 国产精品亚洲一级av第二区| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 悠悠久久av| а√天堂www在线а√下载 | 国产成人精品无人区| 淫妇啪啪啪对白视频| 91成人精品电影| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频 | 久久久国产欧美日韩av| 老鸭窝网址在线观看| 一级毛片精品| 黄片小视频在线播放| 操美女的视频在线观看| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 欧美性长视频在线观看| av有码第一页| 国产精品欧美亚洲77777| 精品电影一区二区在线| 高清毛片免费观看视频网站 | 亚洲色图av天堂| 亚洲精品美女久久av网站| 777米奇影视久久| 久久婷婷成人综合色麻豆| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 国产又爽黄色视频| 最新美女视频免费是黄的| 日韩制服丝袜自拍偷拍| 99riav亚洲国产免费| 在线国产一区二区在线| 日韩欧美三级三区| 久久久国产一区二区| 悠悠久久av| 亚洲一码二码三码区别大吗| 免费观看精品视频网站| 两个人免费观看高清视频| 日韩有码中文字幕| 侵犯人妻中文字幕一二三四区| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 在线观看66精品国产| 天天添夜夜摸| 久久青草综合色| 色在线成人网| 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费 | 久久久水蜜桃国产精品网| 大码成人一级视频| 亚洲少妇的诱惑av| 久99久视频精品免费| 国产精品1区2区在线观看. | 精品高清国产在线一区| 一二三四社区在线视频社区8| 久久久久视频综合| 日本五十路高清| a在线观看视频网站| 午夜福利影视在线免费观看| 亚洲精品美女久久av网站| 亚洲国产中文字幕在线视频| 国产成人系列免费观看| 99久久精品国产亚洲精品| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| 美女高潮喷水抽搐中文字幕| 国产成人啪精品午夜网站| 人人妻,人人澡人人爽秒播| 一区二区三区精品91| 午夜日韩欧美国产| av有码第一页| 精品国内亚洲2022精品成人 | 狂野欧美激情性xxxx| 国产精品久久久久久精品古装| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 99re6热这里在线精品视频| 亚洲avbb在线观看| 午夜福利视频在线观看免费| 国产成人一区二区三区免费视频网站| 成人av一区二区三区在线看| 成人手机av| 欧美日韩瑟瑟在线播放| 免费高清在线观看日韩| 黄色a级毛片大全视频| 亚洲国产看品久久| 精品欧美一区二区三区在线| 午夜福利视频在线观看免费| 亚洲成a人片在线一区二区| 丝袜在线中文字幕| tocl精华| 亚洲中文字幕日韩| av超薄肉色丝袜交足视频| 在线观看舔阴道视频| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 乱人伦中国视频| 国产熟女午夜一区二区三区| 不卡一级毛片| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡| 亚洲av电影在线进入| 亚洲在线自拍视频| 99热只有精品国产| 夫妻午夜视频| av在线播放免费不卡| 免费在线观看亚洲国产| 99久久人妻综合| 久9热在线精品视频| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 亚洲欧美一区二区三区久久| 天天添夜夜摸| 咕卡用的链子| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 女人久久www免费人成看片| 最近最新中文字幕大全电影3 | 精品欧美一区二区三区在线| 欧美av亚洲av综合av国产av| 国产成人免费观看mmmm| 精品亚洲成国产av| 成人国语在线视频| 男女午夜视频在线观看| e午夜精品久久久久久久| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影免费在线| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 亚洲精品在线美女| 最新的欧美精品一区二区| 亚洲国产精品合色在线| 大型av网站在线播放| 欧美人与性动交α欧美软件| 黄频高清免费视频| 国产免费男女视频| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 日本黄色日本黄色录像| 国精品久久久久久国模美| 十八禁网站免费在线| xxx96com| 十八禁网站免费在线| 两个人看的免费小视频| 国产精品香港三级国产av潘金莲| 中文欧美无线码| 欧美日韩瑟瑟在线播放| 一边摸一边抽搐一进一出视频| ponron亚洲| 夜夜爽天天搞| 国精品久久久久久国模美| 国产高清激情床上av| 久久香蕉激情| 一区二区三区国产精品乱码| 天天躁夜夜躁狠狠躁躁| 免费人成视频x8x8入口观看| 精品国产乱子伦一区二区三区| 亚洲精品在线观看二区| 大型av网站在线播放| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 久久久久久久精品吃奶| 人人妻人人添人人爽欧美一区卜| 精品久久久久久,| 男人的好看免费观看在线视频 | 免费观看a级毛片全部| 欧美性长视频在线观看| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 亚洲熟女毛片儿| 国产精品av久久久久免费| 91大片在线观看| 亚洲成人免费av在线播放| 中国美女看黄片| 又黄又粗又硬又大视频| 久久精品国产亚洲av高清一级| 午夜91福利影院| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 嫁个100分男人电影在线观看| 亚洲色图综合在线观看| 精品视频人人做人人爽| 黄片大片在线免费观看| 中文字幕av电影在线播放| 国产又色又爽无遮挡免费看| 国产精品成人在线| 欧美国产精品va在线观看不卡| 三级毛片av免费| 国产精品免费视频内射| 成人亚洲精品一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 又大又爽又粗| 午夜福利影视在线免费观看| 一本一本久久a久久精品综合妖精| 精品欧美一区二区三区在线| 亚洲专区中文字幕在线| 午夜福利在线观看吧| 美国免费a级毛片| 99精品欧美一区二区三区四区| 国产亚洲欧美98| 身体一侧抽搐| 色精品久久人妻99蜜桃| 欧美成人午夜精品| 久久午夜亚洲精品久久| 自线自在国产av| 99久久精品国产亚洲精品| 色在线成人网| 午夜成年电影在线免费观看| 99热只有精品国产| 少妇猛男粗大的猛烈进出视频| 成人免费观看视频高清| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 亚洲色图av天堂| 久久久久国内视频| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 99re在线观看精品视频| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 在线国产一区二区在线| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 大型av网站在线播放| 国产精品免费视频内射| 亚洲熟女精品中文字幕| www.自偷自拍.com| 久久久国产成人精品二区 | 一进一出好大好爽视频| 免费在线观看日本一区| videosex国产| 成人永久免费在线观看视频| av网站免费在线观看视频| 一二三四在线观看免费中文在| 久久精品成人免费网站| 12—13女人毛片做爰片一| 两性夫妻黄色片| 侵犯人妻中文字幕一二三四区| 亚洲熟妇熟女久久| 五月开心婷婷网| 久99久视频精品免费| 午夜激情av网站| 精品人妻熟女毛片av久久网站| 欧美成人免费av一区二区三区 | 国产91精品成人一区二区三区| 亚洲第一欧美日韩一区二区三区| 好男人电影高清在线观看| 两性夫妻黄色片| 午夜激情av网站| 狠狠狠狠99中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 久久这里只有精品19| 丝袜在线中文字幕| 超色免费av| 国产精品1区2区在线观看. | 丰满人妻熟妇乱又伦精品不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美在线观看 | 露出奶头的视频| 18禁裸乳无遮挡动漫免费视频| 黄色成人免费大全| 亚洲精品国产精品久久久不卡| 久久久久国产一级毛片高清牌| 日本五十路高清| 1024视频免费在线观看| 男男h啪啪无遮挡| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 热99久久久久精品小说推荐| av网站在线播放免费| 乱人伦中国视频| 日韩有码中文字幕| 飞空精品影院首页| 99精品久久久久人妻精品| 婷婷成人精品国产| 国产av又大| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片 | 亚洲三区欧美一区| 午夜福利在线观看吧| 午夜激情av网站| 夜夜爽天天搞| 国产精品1区2区在线观看. | 久久青草综合色| 亚洲精品美女久久av网站| 怎么达到女性高潮| 19禁男女啪啪无遮挡网站| 91大片在线观看| 久久天堂一区二区三区四区| svipshipincom国产片| 国产av一区二区精品久久| 国产成人啪精品午夜网站| 日韩欧美一区视频在线观看| 欧美国产精品一级二级三级| 另类亚洲欧美激情| 91大片在线观看| 高清视频免费观看一区二区| 午夜免费鲁丝| 精品人妻熟女毛片av久久网站| 国产99久久九九免费精品| 日韩三级视频一区二区三区| 看免费av毛片| 亚洲精品美女久久av网站| 热re99久久国产66热| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美精品.| 欧美精品av麻豆av| 亚洲视频免费观看视频| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 成年女人毛片免费观看观看9 | 啪啪无遮挡十八禁网站| 国产精品国产高清国产av | 欧美日韩精品网址| 久久精品国产亚洲av高清一级| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯 | 老汉色av国产亚洲站长工具| 精品久久久久久久久久免费视频 | 亚洲精品在线美女| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院 | 色婷婷久久久亚洲欧美| 久久久久久久精品吃奶| 777久久人妻少妇嫩草av网站| 这个男人来自地球电影免费观看| 欧美 亚洲 国产 日韩一| 99国产综合亚洲精品| 亚洲专区字幕在线| 天堂中文最新版在线下载| 香蕉久久夜色| 老司机影院毛片| 精品国产国语对白av| 黑丝袜美女国产一区| 色播在线永久视频| 日韩熟女老妇一区二区性免费视频| 亚洲成人手机| 极品教师在线免费播放| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 在线十欧美十亚洲十日本专区| 国产单亲对白刺激| 波多野结衣av一区二区av| 精品欧美一区二区三区在线| 亚洲国产看品久久| 欧洲精品卡2卡3卡4卡5卡区| 80岁老熟妇乱子伦牲交| 欧美大码av| 亚洲成av片中文字幕在线观看| 精品国内亚洲2022精品成人 | 视频区图区小说| 午夜影院日韩av| 久久人妻av系列| 久久中文字幕人妻熟女| 精品一区二区三区视频在线观看免费 | 日韩大码丰满熟妇| 国产野战对白在线观看| 国产在线精品亚洲第一网站| 一夜夜www| 建设人人有责人人尽责人人享有的| 操美女的视频在线观看| 亚洲av美国av| 高清欧美精品videossex| tocl精华| 在线观看免费视频网站a站| 中文字幕高清在线视频| 最新的欧美精品一区二区| 色在线成人网| 免费观看精品视频网站| 夜夜爽天天搞| 人人妻,人人澡人人爽秒播| 欧美大码av| 久久人妻熟女aⅴ| 女人被躁到高潮嗷嗷叫费观| 欧美国产精品一级二级三级| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费 | 男人操女人黄网站| 成年动漫av网址| 看片在线看免费视频| 亚洲精华国产精华精| 免费看a级黄色片| 淫妇啪啪啪对白视频| 69av精品久久久久久| 黑人巨大精品欧美一区二区蜜桃| 国产片内射在线| 国产av精品麻豆| 身体一侧抽搐| 多毛熟女@视频| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 国产精品 欧美亚洲| 露出奶头的视频| 精品国产超薄肉色丝袜足j| 中出人妻视频一区二区| 五月开心婷婷网| 午夜两性在线视频| 777米奇影视久久| 国产免费现黄频在线看| 精品国产亚洲在线| 91麻豆av在线| 91成年电影在线观看| 欧美成人午夜精品| 自拍欧美九色日韩亚洲蝌蚪91| 视频区欧美日本亚洲| 不卡av一区二区三区| 亚洲精品自拍成人| 欧美亚洲日本最大视频资源| 99re在线观看精品视频| 色婷婷av一区二区三区视频| 亚洲成人免费av在线播放| 国产精品亚洲av一区麻豆| 日韩精品免费视频一区二区三区| 精品久久久久久久久久免费视频 | 中文字幕制服av| 老司机午夜福利在线观看视频| 1024香蕉在线观看| 一区二区三区国产精品乱码| 亚洲av日韩在线播放| 动漫黄色视频在线观看| 日本撒尿小便嘘嘘汇集6|