• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limit load and failure mechanisms of a vertical Hoek-Brown rock slope

    2024-03-25 11:06:58JimShiauWarayutDokueaSuraparKeawsawasvongPitthayaJamsawang

    Jim Shiau,Warayut Dokuea,Surapar Keawsawasvong,Pitthaya Jamsawang

    a School of Engineering, University of Southern Queensland, Toowoomba, 4350, QLD, Australia

    b Department of Civil Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

    c Research Unit in Sciences and Innovative Technologies for Civil Engineering Infrastructures, Department of Civil Engineering, Thammasat School of Engineering,Thammasat University, Pathumthani,12120, Thailand

    d Soil Engineering Research Center, Department of Civil Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok,10800, Thailand

    Keywords: Bearing capacity Rock slope Vertical slope Finite element limit analysis Hoek-Brown yield criterion

    ABSTRACT The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.

    1.The problem

    Hoek and Brown (1980) developed a failure criterion that is based on empirical approach for rock masses.It employed a series of triaxial test results of intact and jointed rocks.The impact of heavily fragmented rocks was further considered in the wellknown 2002 version of the Hoek-Brown (HB) rock material model(Hoek et al.,2022).It can be used to describe mathematically for the principal stresses(σ1and σ3),as shown in Eqs.(1)-(4).

    whereGSIrepresents the geological strength index,miis the parameter for yielding,σciis the uniaxial strength of the intact rock mass,andDdenotes the disturbance factor.The HB yield criterion has been recently formulated into the advanced finite element limit analysis (FELA) package,i.e.Optum G2 (Optum CE,2021),and it is employed as tool for the current study.

    Fig.1 shows the statement of the problem of a plane strain strip footing on a vertical HB rock slope.The slope has a vertical heightH.The rigid strip footing has a widthBand the distance from the edge of the slope to the edge of the footing isL.It follows that the proposed study has seven input variables,i.e.H,B,L,σci,GSI,mi,and the rock unit weight γ.Note thatDis assumed to be zero for undisturbed in situ rock masses.The footing is assumed to be very rigid so that the strength of the footing is large enough and would not fail before the underlying rock.The surface roughness of the footing is fully rough since we assumed that the underlying rock is fully connected to the footing.The theory of FELA is quite different from that of the displacement-based finite element method(FEM),as the former is a direct method for the perfectly plastic soil or rock model,and the elastic modulus plays no role in the computation.Therefore,the solution and output are only for stability prediction,but not displacement.

    Fig.1.Problem definition.

    To reduce these input parameters,dimensionless parameters were used throughout this paper.Consequently,for the output of bearing capacityqu,it is normalised with respect to γBand the relationship between the bearing capacity factorN=qu/(γB)and all five dimensionless input parameters can be stated as follows:

    whereL/Bis the dimensionless footing distance,H/Bis the dimensionless height of a vertical cut slope,and σci/(γB) is the dimensionless strength ratio.The selected ranges of the HB strength parameters would cover most practical ranges in design practice since we follow the suggested ranges ofGSIandmifrom Hoek et al.(2022).Note that the bearing capacity of a footing on a vertical rock slope is largely affected by its developed failure mechanism.In generally,there are three possible failure mechanisms for the problem,i.e.the toe failure,the face failure,and the Prandtl-type failure,as illustrated in Fig.1.

    Like most other numerical techniques,a finite element mesh is needed for the FELA analysis.Fig.2 shows a typical adaptive FELA mesh for the problem.The domain needs to have sufficient size to ensure that the overall velocity field is contained within the domain.Note that the left-handed,the right-handed,and the bottom boundaries have a distance of 2B,4Band 2B,respectively so that there is no intersection of the plastic zone at these boundaries.On the contrast,no boundary constraints are placed at the other surfaces,which are free to displace in all directions.The widthBof the footing is the boundary pressure to be optimized using the proposed FELA technique.It is interesting to note that,from the final adaptive mesh presented in Fig.2,the technique allows one to visually observing the locations of plastic zones and velocity discontinuities.All numerical simulations in this paper employed 5000 to 10,000 elements as the initial and the targeted number of elements with five adaptive iterations.This has been extensively tested and the accuracy of the results can be achieved with this proposed number of elements.

    Fig.2.A typical adaptive FELA mesh used in the study (L/B=3, H/B=4,σci/(γB)=100, mi=2, GSI=50).

    Since both UB and LB solutions can bracket the true solutions to within a few percentages,it is imperative that results produced by other numerical methods in the future should be compared with our rigorous solutions for validation.Interestingly,it is “theoretically” unnecessary to compare the current results with other published solutions,if any available.The FELA technique has been recently applied to several other geotechnical applications(Ukritchon and Keawsawasvong,2018;Keawsawasvong and Ukritchon,2019;Shiau and Al-Asadi,2021;Keawsawasvong and Shiau,2022a,b;Lai et al.,2022,2023;Shiau et al.,2023).Due to the space limit,more detailed discussions can also be found in Sloan (2013) and Krabbenhoft and Lyamin (2015).

    2.Previous study and motivation to the research

    Assessing the stability of footings located near slopes is not uncommon for geotechnical engineers in their daily design routine.Several researchers have attempted to determine the bearing capacity solutions of soil slope by employing various numerical and analytical techniques such as limit equilibrium method (Azzouz and Baligh,1983),slip-line method (Graham et al.,1988),finite element analysis (Georgiadis,2010a;Griffiths and Martin,2020),discontinuity layout optimization approach (Leshchinsky,2015),upper bound limit analysis (Georgiadis,2010b),lower bound limit analysis (Bhattacharya and Dutta,2020),and FELA (Shiau et al.,2004,2006,2011).It was noted that very few works were linked to the study of footings on vertical rock slopes.

    The yield criterion developed by Hoek and Brown (1980) and later upgraded by Hoek et al.(2022) has been widely used to compute the limit load of vertically loaded foundations on level ground with rock masses (e.g.Serrano and Olalla,1994;Yang and Yin,2005;Keawsawasvong et al.,2022).Nevertheless,research on the effect of rock slopes on the bearing capacity solutions is quite limited(Zhou et al.,2018,2019).In this paper,the influences of rock characteristics as well as several other geometrical parameters on footing bearing capacity of vertical slopes are investigated by employing the FELA.Furthermore,the associated failure mechanisms are identified and grouped into three categories,i.e.the face,the toe,and the Prandtl-type failures.Finally,a set of useful design tables and charts are presented for practical uses.

    3.Results and discussion

    Fig.3 presents the variation of bearing capacity factorN(average of UB and LB) withL/Bfor the different values ofH/B,σci/(γB),miandGSI.In general,an increase inL/Byields a nonlinear increase inN.When the footing is located away from the vertical slope,the load transferring area becomes larger (potential failure zone),resulting in greater values of the bearing capacity factorN.Noting thatNbecomes a constant after a certainL/Bvalue,indicating a typical Prandtl-type ground failure mechanism.In Fig.3a,the larger the slope height ratio (H/B),the smaller theN.It follows that,in Fig.3b-d,the greater the values of σci/(γB),miandGSI,the less theN.No“face failure”is observed in Fig.3 since the height of vertical slope is considered as small (H/B=2).It was therefore decided to present Fig.4 using different parameters,in which face failure may be demonstrated.Interestingly,it is found that “face failure” only occurs at small values ofL/Band large values ofH/B(see the green dashed lines).More discussions on the type of potential failure mechanisms are discussed in a later section.

    Fig.3.Variations of N with L/B for different values of (a) H/B,(b) σci/(γB),(c) mi,and (d) GSI.

    Fig.4.Effect of L/B on N by considering different values of (a) H/B,(b) σci/(γB),(c) mi,and (d) GSI.

    Fig.5.Variations of N with mi for different values of H/B and σci/(γB): (a) GSI=30 and (b) GSI=90.

    The effects ofmiandGSIon the bearing capacity factorNare shown in Figs.5 and 6,respectively.Since the parametermiis a representative of the mineralogy,composition,and grain size of the intact rock (Hoek et al.,2022),an increase inmiresults in a linear increase inN.The greater the σci/(γB),the larger theN.The exponential relationship betweenGSIandNis presented in Fig.6.An increase inGSIyields an increase inNnonlinearly.Indeed,this nonlinear increasing curve is a result of the function in the HB model(see the exponential equation in Eqs.(2)-(4)).Interestingly,a greaterGSIvalue represents a near undisturbed rock mass,and therefore it would yield a greaterNvalue,as shown in Fig.6.

    Fig.6.Variations of N with GSI for different values of H/B and σci/(γB): (a) mi=5 and (b) mi=20.

    Several examples of potential failure mechanisms from the studies are presented in Fig.7.ForH/B=1 and 2 in Fig.7a and b,respectively,only two possible failure patterns are found in all values ofL/B(i.e.the toe and the Prandtl-type).The Prandtl-type failure occurs atL/B=8 and 10,respectively,forH/B=1 and 2.All others are for the toe failures.As the slope height ratioH/Bincreases(see for exampleH/B=4 in Fig.7c),a third possible failure surface is found at small values ofL/B,i.e.the face failure as shown in green colour.On the other note,the Prandtl-type failure occurs atL/B=12 (see Fig.7c,H/B=4).

    Fig.7.Potential failure mechanisms for various L/B and H/B (mi=5, GSI=70,σci/(γB)=100): (a) H/B=1,(b) H/B=2,and (b) H/B=4.

    A design chart is therefore developed to identify the various failure patterns of a vertical slope.This is shown in Fig.8 for practical uses.In this chart,one can quickly determine a failure type by knowing the values ofH/BandL/B(see Zones I-III in the figure).It is to be noted that Zone III(face failure)can only be identified for small values ofL/Band large values ofH/B,whilst in contrast,Zone I(Prandtl-type) can be found at large values ofL/B.Zone II (i.e.toe failure)occurs in between Zones I and III,and by a larger proportion of the design map,it is for moderate values ofL/BandH/B.

    Fig.8.Various types of failure mechanisms (mi=5, GSI=70,σci/(γB)=100).

    4.Example

    For a vertical rock slope with a strip footing sitting on the surface with a distance ofL=4 m from a slope cut,it has a height ofH=2 m.The footing has a width ofB=1 m,and the rock has aGSI=70,mi=5,σci=2500 kPa,and γ=25 kN/m3.The bearing capacity (qu) of the footing is determined as follows:

    (1) CalculateH/B=2/1=2,L/B=4/1=4,and σci/(γB)=2500/(25 ×1)=100.

    (2) The bearing capacity factorNcan be obtained using Fig.4a,whereN=115.

    (3) The bearing capacity (qu)is calculated as=115 × 25 ×1=2875 kPa.

    5.Conclusions

    A vertical rock slope has been investigated with respect to its stability under a strip footing using the HB failure criteria and the advance FELA of upper and lower bounds with adaptive meshing scheme.In this short technical note,both UB and LB solutions were confidently obtained within 3% accuracy,and they can be used to compare with new solutions from future research work.The current study has also successfully identified three distinct failure mechanisms for the problem,i.e.the toe,the face,and the Prandtltype.Practical design tables and charts for determining the limit load and identifying a corresponding failure type are presented.Finally,an application example was given to facilitate the determination of the ultimate capacity as well as the type of failure pattern of a given vertical rock slope.In view of the current lacking industry-based stability design procedures for a vertical rock slope,this novel short letter is of practical importance in assisting engineers in their daily design routine.A final note on the future work recommendation is an extension for studying various rock slope angles and the use of machine learning approach to provide a predictive model.Besides,the current work can be expanded to a full 3D analysis using rectangular or circular footings,as the current solutions are limited to the cases of planar footings on homogeneous rock slopes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was funded by National Science,Research and Innovation Fund (NSRF),and King Mongkut’s University of Technology North Bangkok with Contract No.KMUTNB-FF-66-12.

    国内精品宾馆在线| 一级片'在线观看视频| 久久精品久久久久久噜噜老黄| 99精国产麻豆久久婷婷| 欧美+日韩+精品| 精品一区二区三区视频在线| 美女内射精品一级片tv| 国产精品欧美亚洲77777| 欧美精品国产亚洲| 国产成人精品婷婷| 国产成人精品婷婷| 黑人高潮一二区| 欧美日韩视频精品一区| 亚洲欧美一区二区三区黑人 | a级毛片免费高清观看在线播放| 一级毛片 在线播放| 婷婷色综合大香蕉| 69精品国产乱码久久久| 久久精品久久久久久噜噜老黄| 亚洲一级一片aⅴ在线观看| 亚洲av福利一区| 久久久国产一区二区| 精品久久久久久久久av| 黑人猛操日本美女一级片| 国产精品免费大片| 精品久久蜜臀av无| av片东京热男人的天堂| av网站在线播放免费| 国产日韩一区二区三区精品不卡| 日日夜夜操网爽| 在线观看免费高清a一片| 欧美性长视频在线观看| 久久国产精品影院| 久热爱精品视频在线9| 一区二区三区激情视频| 中文字幕制服av| 精品一品国产午夜福利视频| 国产精品免费一区二区三区在线 | 亚洲欧美精品综合一区二区三区| 不卡一级毛片| 成人国产一区最新在线观看| 91字幕亚洲| 久久毛片免费看一区二区三区| 国产免费现黄频在线看| 久久精品成人免费网站| 99riav亚洲国产免费| 69av精品久久久久久 | 午夜激情av网站| 亚洲中文日韩欧美视频| 又黄又粗又硬又大视频| 一级a爱视频在线免费观看| 成年版毛片免费区| 亚洲五月色婷婷综合| 黄色成人免费大全| 建设人人有责人人尽责人人享有的| 蜜桃国产av成人99| 欧美+亚洲+日韩+国产| 国产精品久久久av美女十八| 老熟女久久久| 亚洲全国av大片| 国产成人系列免费观看| 考比视频在线观看| 黄片小视频在线播放| 99精品欧美一区二区三区四区| 国产欧美日韩精品亚洲av| 天天添夜夜摸| 纵有疾风起免费观看全集完整版| 久久午夜综合久久蜜桃| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 久久青草综合色| 黄网站色视频无遮挡免费观看| 精品亚洲成a人片在线观看| 99国产极品粉嫩在线观看| 极品少妇高潮喷水抽搐| 少妇粗大呻吟视频| av天堂在线播放| 国产又爽黄色视频| 久久亚洲精品不卡| 久久精品国产亚洲av香蕉五月 | 亚洲伊人色综图| 久久久久久久大尺度免费视频| 亚洲视频免费观看视频| 韩国精品一区二区三区| 国产亚洲一区二区精品| 亚洲全国av大片| 亚洲成人免费电影在线观看| 动漫黄色视频在线观看| 91字幕亚洲| 无遮挡黄片免费观看| 久久久欧美国产精品| 午夜福利在线免费观看网站| 成在线人永久免费视频| 亚洲人成77777在线视频| 人人妻人人澡人人爽人人夜夜| 国产精品av久久久久免费| 国产精品 国内视频| 国产熟女午夜一区二区三区| 免费在线观看黄色视频的| 夫妻午夜视频| 国产亚洲精品一区二区www | av线在线观看网站| 国产一区二区三区视频了| 好男人电影高清在线观看| av在线播放免费不卡| 精品亚洲成国产av| 淫妇啪啪啪对白视频| 国产精品久久电影中文字幕 | 日韩成人在线观看一区二区三区| 日本五十路高清| 91成人精品电影| 日韩视频在线欧美| 久久久久精品人妻al黑| 欧美激情高清一区二区三区| 性色av乱码一区二区三区2| 中文欧美无线码| 精品午夜福利视频在线观看一区 | 悠悠久久av| 欧美黄色片欧美黄色片| 久久99一区二区三区| 精品国产乱码久久久久久小说| 一区二区av电影网| 成人影院久久| 五月天丁香电影| 国产在线一区二区三区精| 波多野结衣av一区二区av| 日韩 欧美 亚洲 中文字幕| 亚洲成人免费av在线播放| 在线永久观看黄色视频| 欧美老熟妇乱子伦牲交| 国产午夜精品久久久久久| 一夜夜www| 嫁个100分男人电影在线观看| 亚洲天堂av无毛| 国产成人欧美在线观看 | 成人国产av品久久久| 精品久久久精品久久久| 老司机亚洲免费影院| 亚洲精品中文字幕在线视频| 亚洲伊人色综图| 亚洲色图综合在线观看| 欧美日韩国产mv在线观看视频| 国产亚洲av高清不卡| 国产精品电影一区二区三区 | 在线观看舔阴道视频| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 中文字幕人妻丝袜制服| 亚洲国产av影院在线观看| 精品一区二区三区av网在线观看 | 久久久水蜜桃国产精品网| 中文字幕人妻熟女乱码| 久久人妻av系列| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 电影成人av| 亚洲精品国产色婷婷电影| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| www.精华液| 热99国产精品久久久久久7| 老熟妇仑乱视频hdxx| 午夜福利一区二区在线看| 老司机影院毛片| 久久久国产成人免费| 国产97色在线日韩免费| netflix在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产精品久久久不卡| 国产色视频综合| 国产日韩一区二区三区精品不卡| 九色亚洲精品在线播放| 午夜福利欧美成人| 男女免费视频国产| 两人在一起打扑克的视频| 丁香六月欧美| 久久久久久免费高清国产稀缺| 日韩欧美一区二区三区在线观看 | 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品久久久久5区| 免费观看a级毛片全部| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 女性生殖器流出的白浆| 久久久国产成人免费| 黄色丝袜av网址大全| 日日爽夜夜爽网站| 日韩一区二区三区影片| 国产在线观看jvid| 视频区欧美日本亚洲| 超色免费av| 国产精品久久电影中文字幕 | 亚洲人成伊人成综合网2020| 免费av中文字幕在线| 99久久99久久久精品蜜桃| 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 国产一区二区三区在线臀色熟女 | 日韩欧美国产一区二区入口| 亚洲精品粉嫩美女一区| 亚洲av日韩在线播放| aaaaa片日本免费| 国产精品一区二区免费欧美| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 精品免费久久久久久久清纯 | 男女高潮啪啪啪动态图| 亚洲精品成人av观看孕妇| 久久毛片免费看一区二区三区| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 曰老女人黄片| 国产成人系列免费观看| 精品国产一区二区三区久久久樱花| 香蕉国产在线看| √禁漫天堂资源中文www| 一本大道久久a久久精品| 男女午夜视频在线观看| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 深夜精品福利| cao死你这个sao货| 女人精品久久久久毛片| 一级毛片精品| 亚洲 国产 在线| 天堂动漫精品| 亚洲天堂av无毛| 精品国内亚洲2022精品成人 | 99精品在免费线老司机午夜| 成人av一区二区三区在线看| 涩涩av久久男人的天堂| 日韩三级视频一区二区三区| 国产精品 国内视频| 亚洲成国产人片在线观看| 不卡av一区二区三区| 精品一品国产午夜福利视频| 日韩人妻精品一区2区三区| 正在播放国产对白刺激| 亚洲精品成人av观看孕妇| 国产伦理片在线播放av一区| 免费人妻精品一区二区三区视频| 亚洲欧美日韩高清在线视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 丰满人妻熟妇乱又伦精品不卡| 又黄又粗又硬又大视频| kizo精华| 热99re8久久精品国产| 精品一区二区三区av网在线观看 | 日韩免费av在线播放| 亚洲精品一二三| 日韩欧美免费精品| 欧美成狂野欧美在线观看| 91麻豆av在线| 99国产精品99久久久久| 久久国产精品影院| 男女午夜视频在线观看| 高清视频免费观看一区二区| 天天添夜夜摸| 两性夫妻黄色片| 色视频在线一区二区三区| 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 人妻久久中文字幕网| 国产1区2区3区精品| 97人妻天天添夜夜摸| 一区二区日韩欧美中文字幕| 精品免费久久久久久久清纯 | 99热国产这里只有精品6| 国产一区二区 视频在线| 一边摸一边抽搐一进一出视频| 亚洲精品在线观看二区| 大香蕉久久网| 亚洲熟女精品中文字幕| 国产成人免费观看mmmm| 天堂中文最新版在线下载| 桃红色精品国产亚洲av| av网站在线播放免费| 国产精品久久久久久精品电影小说| 亚洲视频免费观看视频| 日韩大码丰满熟妇| 久久午夜综合久久蜜桃| 亚洲国产欧美日韩在线播放| 免费高清在线观看日韩| 大码成人一级视频| 午夜激情av网站| 亚洲成av片中文字幕在线观看| 久久香蕉激情| 两性午夜刺激爽爽歪歪视频在线观看 | 高清毛片免费观看视频网站 | 国产精品国产高清国产av | 99国产极品粉嫩在线观看| 大陆偷拍与自拍| tocl精华| av网站在线播放免费| 日韩免费高清中文字幕av| 涩涩av久久男人的天堂| 亚洲成av片中文字幕在线观看| cao死你这个sao货| 亚洲第一欧美日韩一区二区三区 | 老司机靠b影院| 久久久水蜜桃国产精品网| 日韩有码中文字幕| 亚洲午夜理论影院| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕一级| 午夜激情久久久久久久| 亚洲专区国产一区二区| 天堂动漫精品| 国产麻豆69| 久久热在线av| 少妇 在线观看| 男女无遮挡免费网站观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| 两个人免费观看高清视频| 黄频高清免费视频| av网站在线播放免费| 美女福利国产在线| 在线观看免费视频日本深夜| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 多毛熟女@视频| 黄色成人免费大全| 国产精品国产av在线观看| 午夜福利在线观看吧| 搡老乐熟女国产| 少妇粗大呻吟视频| 捣出白浆h1v1| 国产成人一区二区三区免费视频网站| 国产成人免费无遮挡视频| 日本五十路高清| 精品国产国语对白av| 成年女人毛片免费观看观看9 | 中文字幕人妻熟女乱码| 欧美国产精品va在线观看不卡| av在线播放免费不卡| 精品人妻1区二区| 免费观看av网站的网址| 十分钟在线观看高清视频www| 搡老熟女国产l中国老女人| 在线观看人妻少妇| 一级片免费观看大全| 伦理电影免费视频| 12—13女人毛片做爰片一| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品综合一区二区三区| 久久久水蜜桃国产精品网| aaaaa片日本免费| 免费日韩欧美在线观看| 亚洲视频免费观看视频| 欧美日韩视频精品一区| 亚洲国产欧美网| 一区二区日韩欧美中文字幕| 久9热在线精品视频| 久久 成人 亚洲| 日韩成人在线观看一区二区三区| 一级,二级,三级黄色视频| 91大片在线观看| 黄色 视频免费看| 视频区欧美日本亚洲| 久久精品国产99精品国产亚洲性色 | 宅男免费午夜| 在线观看免费日韩欧美大片| 青青草视频在线视频观看| 悠悠久久av| 视频区欧美日本亚洲| 菩萨蛮人人尽说江南好唐韦庄| 一本大道久久a久久精品| 两个人免费观看高清视频| 成人手机av| 丝袜美足系列| 在线观看免费视频网站a站| 一进一出抽搐动态| www日本在线高清视频| 久久中文看片网| 免费不卡黄色视频| 国产精品1区2区在线观看. | 亚洲精品国产区一区二| 国产午夜精品久久久久久| 大片电影免费在线观看免费| 国产成人欧美| 中文字幕另类日韩欧美亚洲嫩草| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| 国产福利在线免费观看视频| 日本av手机在线免费观看| 精品亚洲成a人片在线观看| 丝袜人妻中文字幕| 夜夜骑夜夜射夜夜干| 成年动漫av网址| 精品一区二区三区视频在线观看免费 | 美女午夜性视频免费| 欧美日韩视频精品一区| 国产日韩一区二区三区精品不卡| 美女国产高潮福利片在线看| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 国产日韩一区二区三区精品不卡| 日本五十路高清| 久久中文字幕人妻熟女| 成人影院久久| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩在线播放| 亚洲欧美日韩高清在线视频 | 日韩有码中文字幕| 欧美日韩av久久| videosex国产| 国产一区二区 视频在线| 国产亚洲精品第一综合不卡| 国产成人精品无人区| 两个人看的免费小视频| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 99国产精品99久久久久| 精品国产一区二区三区四区第35| 欧美亚洲 丝袜 人妻 在线| 国产免费视频播放在线视频| av欧美777| 精品国产一区二区久久| 成年人午夜在线观看视频| 99精品欧美一区二区三区四区| 一区二区av电影网| 757午夜福利合集在线观看| 国产91精品成人一区二区三区 | 欧美日韩精品网址| 99re6热这里在线精品视频| av天堂久久9| 欧美变态另类bdsm刘玥| 在线av久久热| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 青青草视频在线视频观看| 精品国产一区二区三区四区第35| 免费观看a级毛片全部| 欧美日韩精品网址| 香蕉丝袜av| 国产精品电影一区二区三区 | 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 99久久99久久久精品蜜桃| 人妻 亚洲 视频| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 午夜福利影视在线免费观看| 精品一品国产午夜福利视频| 久久久国产成人免费| 9热在线视频观看99| 老司机影院毛片| 丰满迷人的少妇在线观看| 日本欧美视频一区| 99热网站在线观看| 18禁观看日本| 亚洲色图 男人天堂 中文字幕| 在线 av 中文字幕| 国产精品.久久久| 久久影院123| 少妇精品久久久久久久| 高清毛片免费观看视频网站 | 男女午夜视频在线观看| 青草久久国产| av免费在线观看网站| 国内毛片毛片毛片毛片毛片| 国产日韩一区二区三区精品不卡| 国产成人系列免费观看| 久久香蕉激情| 水蜜桃什么品种好| 黄色视频,在线免费观看| 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 日韩大片免费观看网站| 999精品在线视频| 男女边摸边吃奶| 又黄又粗又硬又大视频| 国产精品.久久久| 国产精品一区二区在线不卡| 亚洲美女黄片视频| 久9热在线精品视频| 亚洲一区中文字幕在线| 国产精品九九99| 丰满迷人的少妇在线观看| 午夜福利欧美成人| 国产精品秋霞免费鲁丝片| 在线观看免费视频日本深夜| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 国产亚洲欧美在线一区二区| 久久人人爽av亚洲精品天堂| 极品少妇高潮喷水抽搐| 一区在线观看完整版| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 老司机福利观看| 在线观看人妻少妇| 国产国语露脸激情在线看| 国产成人欧美| 嫁个100分男人电影在线观看| 亚洲自偷自拍图片 自拍| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 亚洲视频免费观看视频| 国产97色在线日韩免费| 悠悠久久av| a在线观看视频网站| 国产精品免费视频内射| 久久精品国产亚洲av高清一级| 午夜福利视频精品| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 久久久久久久国产电影| a在线观看视频网站| 一边摸一边抽搐一进一出视频| 老司机影院毛片| 亚洲色图综合在线观看| kizo精华| av网站在线播放免费| 日本五十路高清| 午夜精品久久久久久毛片777| 又紧又爽又黄一区二区| 免费观看人在逋| 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 国产亚洲精品第一综合不卡| 久久香蕉激情| 建设人人有责人人尽责人人享有的| 男女之事视频高清在线观看| 色综合婷婷激情| 99在线人妻在线中文字幕 | av片东京热男人的天堂| 国产亚洲欧美在线一区二区| 久久人妻av系列| 人妻 亚洲 视频| 老司机福利观看| 亚洲国产毛片av蜜桃av| 精品一区二区三区四区五区乱码| 午夜视频精品福利| 久久精品亚洲av国产电影网| 又紧又爽又黄一区二区| 久久天躁狠狠躁夜夜2o2o| 手机成人av网站| 男女免费视频国产| 中文字幕精品免费在线观看视频| 在线天堂中文资源库| av天堂久久9| 久热这里只有精品99| 91麻豆av在线| 乱人伦中国视频| 成年人黄色毛片网站| 久热爱精品视频在线9| 日本a在线网址| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 亚洲五月色婷婷综合| 欧美日韩成人在线一区二区| 在线观看免费视频日本深夜| 亚洲av国产av综合av卡| av免费在线观看网站| 男女边摸边吃奶| 水蜜桃什么品种好| 十八禁人妻一区二区| 欧美日韩av久久| 国产成人精品久久二区二区91| 亚洲一区中文字幕在线| 久久人妻福利社区极品人妻图片| 久久人妻av系列| 成年动漫av网址| svipshipincom国产片| 女人高潮潮喷娇喘18禁视频| 嫁个100分男人电影在线观看| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 亚洲一区中文字幕在线| 国产成人精品无人区| 一级黄色大片毛片| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 免费看十八禁软件| 亚洲欧美激情在线| 黄片大片在线免费观看| 一区二区三区激情视频| 久久九九热精品免费| 12—13女人毛片做爰片一| 精品国产乱码久久久久久小说| 18禁观看日本| 亚洲国产av新网站| 精品亚洲成国产av| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| 亚洲精品国产一区二区精华液| 日韩欧美一区视频在线观看| 久久久精品94久久精品| 国产精品免费一区二区三区在线 | 免费女性裸体啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 满18在线观看网站| 黄色视频在线播放观看不卡| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 一进一出抽搐动态| 免费看a级黄色片| 色综合欧美亚洲国产小说| 两个人免费观看高清视频| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具|