• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of different degrees of processed ginger using GC-IMS combined with machine learning

    2024-03-21 05:51:16ShuangLiuHongjingDongMinminZhangWeiGengXiaoWang
    Journal of Pharmaceutical Analysis 2024年1期

    Shuang Liu , Hongjing Dong , Minmin Zhang , Wei Geng , Xiao Wang ,*

    a Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province,Shandong Analysis and Test Center,Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

    b Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

    c Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China

    Ginger, the rhizomes of Zingiber officinale Roscoe, was a wellknown edible plant species commonly used in China, which has pungent flavor [1].Ginger has numerous chemical compounds,such as phenolic constituents, volatile compounds (VOCs), and polysaccharides [2].Among them, VOCs are considered one of the effective compounds in ginger due to their functional properties,including anti-inflammatory,antioxidant,and analgesic[3].Ginger has four different degrees of processed products, including fresh ginger(SJ),dried ginger(GJ),baked ginger(PJ),and ginger charcoal(JT), and they have different types and contents of VOCs [4].However, the processing process of ginger is difficult to control as the identification of different degrees of processed ginger mainly depends on the subjective evaluation of the pharmacists, such as appearance color,shape,and texture[4].Compared with subjective evaluation,instrument analysis is more objective and accurate.

    In this study, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and machine learning are employed to analyze VOCs and discriminate different degrees of processed ginger.We commenced by collecting different batches of SJ and making different degrees of processed ginger according to China pharmacopoeia 2020 Edition.The authenticity of these samples was evaluated by traditional Chinese medicine experts.The VOCs from different degrees of processed ginger were analyzed by HSGC-IMS.The analytical conditions are recorded in Table S1.A total of eighty VOCs were identified in the different degrees of processed ginger (Table S2).The abbreviation of VOCs is shown in Table S3.The 3D chromatograms and the top view of GC-IMS 3D chromatograms of VOCs in different degrees of processed ginger are shown in Figs.S1A and B, respectively.

    The heatmap of different degrees of processed ginger was formed based on the peak signal in the top view of 3D chromatograms.As shown in Fig.1, some aldehydes and esters were mainly divided in the blue box,and the higher content of these compounds indicated that they are primarily present in SJ.Some alcohols and acids were mainly divided in the purple box, and the higher content of these compounds indicated that they are primarily present in GJ.The above results may be caused by the oxidation of chemical compounds at high temperatures, wherein more aldehyde compounds are oxidized into acid compounds.Some alcohols,ketones and heterocyclic compounds were mainly divided in the green box,and the higher content of these compounds suggested that they are primarily present in PJ.The above results can be attributed to the Maillard reaction due to the ketones are the products of the fragmentation of hydroxyl and carbonyl groups in the second stage of the Maillard reaction[5].Some esters and ketones were mainly divided in the pink box, and the higher content of these compounds suggested that they are primarily present in JT.In a word,the oxidation and Maillard reaction may occur in the stir-frying process of ginger.

    Additionally, the principal component analysis (PCA) is performed in this work to further understand the differences in the VOCs of different degrees of processed ginger(Fig.S1C).The result of the classification distance suggested that PJ and JT were close to each other, which could be attributed to the bias between subjective judgment results and actual results (subjectively mistaking PJ for JT).Moreover, the classification distance between SJ and other groups was the furthest, which might be related to the types and content of VOCs.

    Fig.1.The heatmap of volatile compounds (VOCs) in the different degrees of processed ginger.

    Subsequently,machine learning algorithms were used to screen indicator compounds and to quickly discriminate different ginger processed products, including partial least squares-discriminant analysis (PLS-DA), ridge regression, and elastic network.The VIP>1, |coef| >0.1239, and coef >0.0734 were set as screening conditions of these algorithms, respectively (Figs.S2A-C).As shown in Fig.S2D, a total of nine indicator compounds were screened, and their content in different degrees of processed ginger was different,which suggested that these indicator compounds could be used for training machine learning models (Figs.S2E and S3).

    Secondly,as shown in Table S4,based on the screened indicator compounds,ten machine learning algorithms were used to predict different degrees of processed ginger.Machine learning algorithms can predict four possible results: true positive (TP), true negative(TN), false positive (FP), and false negative (FN).Predicted results including precision, recall,F1 score,and accuracy are calculated to evaluate model performance based on the number of predicted outcomes in each of the four categories,as defined by the following formulas:

    Before analysis,the data are divided into training set and testing set by random sampling process in a ratio of 8:2 (Table S5).Then,four performance metrics, namely precision, recall, F1 score, and accuracy, were assessed (Table S6).The accuracy of all machine learning algorithms was over 0.91,indicating that they all had good classification ability.Additionally, most machine learning models had good performance in classifying SJ and GJ.The top three machine learning algorithms(support vector machine with the linear kernel(SVM-L),logistic regression(LR)and quadratic discriminant analysis (QDA)) achieved high prediction accuracy due to their mathematical properties.Meanwhile, SVM-L tended to have a simpler decision boundary,which could make it easier to interpret and implement in practical applications.LR was a linear model that provides coefficients associated with each feature,allowing for easy interpretation.QDA required relatively few computational resources for training and prediction.Therefore, the influence of factors such as model complexity, interpretability and required computational resources were considered,these models were wellsuited for developing a prediction model to classify the different degrees of processed ginger.As shown in Fig.S4, the confusion matrix was displayed.The results of these machine learning algorithms showed satisfactory classification results, whereas some misclassifications occurred between PJ and JT in the confusion matrix.The results of these machine learning models were acceptable and they could be applied in the prediction of different degrees of processed ginger.

    Finally,the testing set was used to verify the predicted ability of these models.The confusion matrix of the predicted results for these models in the testing set is shown in Fig.S5.Similarly,some misclassifications also occurred between PJ and JT in the confusion matrix,which could be attributed to misclassification of the model for PJ and JT in the training set, leading to misclassification of the model for PJ and JT in the testing set.More data might be needed to assist the model in predicting these two classes and optimize the model.Furthermore, another reason was that PJ and JT were very similar in some features,which were not obvious and were difficult to distinguish.This behavior could be explained by the results of PCA.The accuracy of models in testing set is listed in Table 1.The SVM-L, LR, and QDA also showed high accuracy.These behaviors indicated that these machine learning models had high stability,reliability, and reproducibility, making them suitable for different degrees of processed ginger.

    In summary, this study identified different degrees of processed ginger based on HS-GC-IMS and machine learning.A total of eighty VOCs were identified using HS-GC-IMS.Among them,nine VOCs,such as hydroxyacetone and 2-hexanol,were regarded as indicator compounds.Additionally,based on the nine indicator compounds, ten machine learning models for identification of processed degrees showed good prediction ability.Among them,SVM-L, LR and QDA models can accurately identify different degrees of processed ginger, with accuracies of 0.9412, 0.9706, and 0.9412 in testing set, respectively.Meanwhile, these models showed many advantages,such as easy interpretation,low model complexity and few computational resources.Overall, threemodels, including SVM-L, LR and QDA, had obvious potential applications in the identification of different degrees of processed ginger.Meanwhile, the HS-GC-IMS combined with machine learning offers a simple, quick, and low-cost strategy for discriminating different degrees of processed ginger.

    Table 1 The accuracy of ten machine learning algorithms in testing set.

    CRediT author statement

    Shuang Liu: Methodology, Visualization, Writing - Original draft preparation, Reviewing and Editing;Hongjing Dong: Resources, Project administration;Minmin Zhang: Data curation,Writing - Reviewing and Editing;Wei Geng: Formal analysis, Resources;Xiao Wang: Project administration, Supervision.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This research was predominantly funded by Key R&D Program of Shandong Province (Program No.: 2021CXGC010508), Science,Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences)(Project No.: 2022JBZ02-04), The new innovative team of Jinan(Project No.: 202228020), Shandong Province Taishan Scholar Program(Project No.:tstp20221138).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2023.10.005.

    欧美日韩视频高清一区二区三区二| 免费黄色在线免费观看| 久久影院123| 精品国产乱码久久久久久小说| 久久午夜福利片| 国产真实伦视频高清在线观看| 中国美白少妇内射xxxbb| av专区在线播放| 女性被躁到高潮视频| 天堂8中文在线网| av免费观看日本| 国产精品久久久久久久电影| 色94色欧美一区二区| 欧美成人午夜免费资源| 春色校园在线视频观看| 2018国产大陆天天弄谢| 日韩av不卡免费在线播放| 国产欧美亚洲国产| 成人免费观看视频高清| 亚洲国产精品国产精品| 性色avwww在线观看| 亚洲熟女精品中文字幕| 亚洲第一区二区三区不卡| 国产永久视频网站| 国产成人freesex在线| 伦精品一区二区三区| 如何舔出高潮| 亚洲av在线观看美女高潮| 久热久热在线精品观看| 亚洲,一卡二卡三卡| 亚洲情色 制服丝袜| 国产成人精品婷婷| 九九久久精品国产亚洲av麻豆| 26uuu在线亚洲综合色| 国产极品天堂在线| .国产精品久久| 精品视频人人做人人爽| 久久精品国产亚洲网站| 亚洲国产精品成人久久小说| 最近中文字幕高清免费大全6| 一本色道久久久久久精品综合| 交换朋友夫妻互换小说| 久久久欧美国产精品| 国产高清三级在线| 免费观看的影片在线观看| 久久综合国产亚洲精品| 如日韩欧美国产精品一区二区三区 | 一级毛片我不卡| 91在线精品国自产拍蜜月| 蜜臀久久99精品久久宅男| 国产成人精品福利久久| 精品亚洲乱码少妇综合久久| 亚洲不卡免费看| 韩国av在线不卡| 国产精品嫩草影院av在线观看| 美女xxoo啪啪120秒动态图| 欧美精品国产亚洲| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 国产精品女同一区二区软件| 亚洲av.av天堂| 26uuu在线亚洲综合色| 久久久久久久久久久免费av| 乱码一卡2卡4卡精品| 天堂俺去俺来也www色官网| 老司机影院成人| 日本爱情动作片www.在线观看| 国产男人的电影天堂91| 国产亚洲5aaaaa淫片| 夜夜看夜夜爽夜夜摸| 欧美人与善性xxx| 国产一区有黄有色的免费视频| 欧美 日韩 精品 国产| 五月天丁香电影| 插阴视频在线观看视频| 亚洲,一卡二卡三卡| 少妇裸体淫交视频免费看高清| 日韩中文字幕视频在线看片| 五月伊人婷婷丁香| 大话2 男鬼变身卡| 九九在线视频观看精品| 性高湖久久久久久久久免费观看| 人人妻人人看人人澡| 久久久久久久亚洲中文字幕| 又黄又爽又刺激的免费视频.| 亚洲欧美中文字幕日韩二区| 久久精品久久精品一区二区三区| 亚洲精品国产成人久久av| 日本黄色片子视频| 亚洲天堂av无毛| 亚洲精品aⅴ在线观看| 国产精品一区二区三区四区免费观看| 久久久欧美国产精品| 国产免费又黄又爽又色| 亚洲美女搞黄在线观看| 99热6这里只有精品| 夜夜骑夜夜射夜夜干| 精品久久国产蜜桃| 日日撸夜夜添| 亚洲欧美成人综合另类久久久| 国产 一区精品| 少妇人妻一区二区三区视频| 欧美日韩精品成人综合77777| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久亚洲| 国产精品人妻久久久影院| 777米奇影视久久| 中文字幕av电影在线播放| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 亚洲人与动物交配视频| 国产深夜福利视频在线观看| 日本wwww免费看| 亚洲久久久国产精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精华国产精华液的使用体验| 国产深夜福利视频在线观看| 国产无遮挡羞羞视频在线观看| 色婷婷久久久亚洲欧美| 大码成人一级视频| 亚洲熟女精品中文字幕| 免费人妻精品一区二区三区视频| 成年美女黄网站色视频大全免费 | 免费大片黄手机在线观看| 一级爰片在线观看| 夜夜爽夜夜爽视频| 国产 精品1| av在线播放精品| 噜噜噜噜噜久久久久久91| 久久6这里有精品| 日韩亚洲欧美综合| 狠狠精品人妻久久久久久综合| 一个人免费看片子| 午夜影院在线不卡| 久久狼人影院| 久久久精品免费免费高清| 中文字幕制服av| 中文字幕制服av| 新久久久久国产一级毛片| 精品一品国产午夜福利视频| 国产在线一区二区三区精| 一本一本综合久久| 国产精品久久久久成人av| 18禁在线无遮挡免费观看视频| 日日爽夜夜爽网站| 久久韩国三级中文字幕| 亚洲成人手机| 卡戴珊不雅视频在线播放| 免费av中文字幕在线| 一级毛片电影观看| 国产精品无大码| 一区在线观看完整版| 桃花免费在线播放| 日韩中文字幕视频在线看片| 日本猛色少妇xxxxx猛交久久| 成人特级av手机在线观看| 免费大片18禁| 黄色怎么调成土黄色| 精品久久久精品久久久| 国产精品国产三级国产专区5o| 曰老女人黄片| 色视频www国产| 亚洲第一av免费看| 黄色日韩在线| 在线天堂最新版资源| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 精品国产一区二区久久| 日日撸夜夜添| av天堂久久9| 精品少妇久久久久久888优播| 亚洲va在线va天堂va国产| 人妻系列 视频| 亚洲国产欧美日韩在线播放 | 你懂的网址亚洲精品在线观看| 国产成人精品无人区| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 免费播放大片免费观看视频在线观看| 日韩三级伦理在线观看| 777米奇影视久久| 国产亚洲最大av| 免费大片18禁| 丰满少妇做爰视频| 精品国产国语对白av| 大片免费播放器 马上看| 亚洲av免费高清在线观看| 丝袜脚勾引网站| 久久精品久久久久久久性| 九九爱精品视频在线观看| 99热这里只有精品一区| 老女人水多毛片| 在线观看一区二区三区激情| 三上悠亚av全集在线观看 | 亚洲人与动物交配视频| 成人特级av手机在线观看| 边亲边吃奶的免费视频| 国产精品一区二区三区四区免费观看| 三上悠亚av全集在线观看 | 蜜桃久久精品国产亚洲av| 99九九线精品视频在线观看视频| 久久久久精品久久久久真实原创| 亚洲第一区二区三区不卡| av专区在线播放| 晚上一个人看的免费电影| 欧美日韩国产mv在线观看视频| 免费久久久久久久精品成人欧美视频 | 国产一区亚洲一区在线观看| 欧美精品人与动牲交sv欧美| kizo精华| 精品国产一区二区三区久久久樱花| 两个人的视频大全免费| 69精品国产乱码久久久| 免费不卡的大黄色大毛片视频在线观看| 亚洲内射少妇av| 人人澡人人妻人| 好男人视频免费观看在线| 免费看av在线观看网站| 内地一区二区视频在线| 在线观看一区二区三区激情| 日韩电影二区| 久久人妻熟女aⅴ| 国产黄频视频在线观看| 日韩伦理黄色片| 黑人高潮一二区| 久久午夜综合久久蜜桃| 亚洲色图综合在线观看| 午夜老司机福利剧场| 老司机影院成人| 亚洲不卡免费看| 国产欧美日韩精品一区二区| av有码第一页| 亚洲欧美精品专区久久| 99久久中文字幕三级久久日本| 午夜免费鲁丝| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 观看免费一级毛片| 人妻一区二区av| 欧美三级亚洲精品| 最新中文字幕久久久久| 亚州av有码| 日本爱情动作片www.在线观看| 水蜜桃什么品种好| 成年女人在线观看亚洲视频| 99re6热这里在线精品视频| 色网站视频免费| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 国精品久久久久久国模美| 97在线视频观看| 久久精品久久精品一区二区三区| 中文字幕精品免费在线观看视频 | 夜夜爽夜夜爽视频| 黄色配什么色好看| 国产精品一区二区性色av| 欧美bdsm另类| 有码 亚洲区| 久久青草综合色| 亚洲精品成人av观看孕妇| 国产爽快片一区二区三区| 97超碰精品成人国产| 日韩av在线免费看完整版不卡| av播播在线观看一区| 亚洲成人av在线免费| 亚洲精品,欧美精品| 黑人猛操日本美女一级片| 一区二区三区免费毛片| 如何舔出高潮| 欧美一级a爱片免费观看看| 国产精品99久久久久久久久| 国产 一区精品| 成人18禁高潮啪啪吃奶动态图 | 女人精品久久久久毛片| 国产日韩一区二区三区精品不卡 | 亚洲伊人久久精品综合| 18禁在线播放成人免费| 秋霞在线观看毛片| 国产高清三级在线| av有码第一页| 日本av免费视频播放| 精品少妇久久久久久888优播| 三级国产精品片| 欧美变态另类bdsm刘玥| 熟女电影av网| 观看av在线不卡| 多毛熟女@视频| 亚洲情色 制服丝袜| 一二三四中文在线观看免费高清| 少妇熟女欧美另类| 国产av一区二区精品久久| 天天操日日干夜夜撸| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 午夜视频国产福利| 久久久久久久久久久久大奶| 亚洲国产精品专区欧美| 观看美女的网站| 性色av一级| 午夜福利,免费看| 午夜av观看不卡| 日韩成人av中文字幕在线观看| 欧美丝袜亚洲另类| 国产日韩欧美亚洲二区| 亚洲久久久国产精品| 久久免费观看电影| 国产欧美另类精品又又久久亚洲欧美| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 青春草视频在线免费观看| 国产男女超爽视频在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲精品,欧美精品| 精品国产一区二区久久| 国产亚洲5aaaaa淫片| 国产一级毛片在线| 亚洲情色 制服丝袜| 老司机影院成人| 51国产日韩欧美| 亚洲成人一二三区av| 亚洲图色成人| 亚洲不卡免费看| 久久久国产欧美日韩av| 国产伦精品一区二区三区四那| 久久久久久久久久成人| 久久女婷五月综合色啪小说| h日本视频在线播放| 成人亚洲欧美一区二区av| 国产有黄有色有爽视频| 色94色欧美一区二区| 国产精品久久久久久久电影| 久久免费观看电影| 最新中文字幕久久久久| 欧美性感艳星| 国产精品99久久99久久久不卡 | 哪个播放器可以免费观看大片| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 欧美丝袜亚洲另类| 国产免费又黄又爽又色| 天堂中文最新版在线下载| 777米奇影视久久| 乱系列少妇在线播放| 91精品一卡2卡3卡4卡| 日本av免费视频播放| 美女福利国产在线| tube8黄色片| 国产 一区精品| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av蜜桃| 人体艺术视频欧美日本| 九色成人免费人妻av| 99热全是精品| 人人妻人人看人人澡| 伊人亚洲综合成人网| 国产男女内射视频| 亚洲四区av| 蜜桃在线观看..| 99久久精品热视频| 99热6这里只有精品| 国产淫语在线视频| 伊人亚洲综合成人网| √禁漫天堂资源中文www| 99久国产av精品国产电影| 久久久a久久爽久久v久久| 亚洲国产精品一区二区三区在线| 亚洲自偷自拍三级| 亚洲精品国产av成人精品| 少妇精品久久久久久久| 人妻夜夜爽99麻豆av| 我要看日韩黄色一级片| av在线app专区| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 国产高清有码在线观看视频| 亚洲国产欧美日韩在线播放 | 亚洲精品日韩av片在线观看| 男男h啪啪无遮挡| 又爽又黄a免费视频| 成年美女黄网站色视频大全免费 | 精华霜和精华液先用哪个| 各种免费的搞黄视频| 激情五月婷婷亚洲| 久久久久网色| 99久久精品一区二区三区| 高清黄色对白视频在线免费看 | 午夜91福利影院| 成年av动漫网址| 熟女电影av网| 久久久久人妻精品一区果冻| 亚洲av综合色区一区| 国产精品一区二区三区四区免费观看| 久久久久久伊人网av| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 日韩中字成人| 久久久久精品性色| 免费av不卡在线播放| 久久久国产一区二区| 人妻系列 视频| 久久女婷五月综合色啪小说| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 国产精品麻豆人妻色哟哟久久| 在线天堂最新版资源| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 22中文网久久字幕| 18禁在线播放成人免费| 18禁动态无遮挡网站| 国产成人一区二区在线| 五月伊人婷婷丁香| 午夜91福利影院| 两个人免费观看高清视频 | 成人漫画全彩无遮挡| 亚洲人成网站在线播| 22中文网久久字幕| 少妇被粗大猛烈的视频| 91精品国产国语对白视频| 少妇精品久久久久久久| 久久99精品国语久久久| 国精品久久久久久国模美| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 国产国拍精品亚洲av在线观看| 少妇 在线观看| 国产一区二区三区综合在线观看 | 免费黄色在线免费观看| 国产午夜精品一二区理论片| av播播在线观看一区| 性色avwww在线观看| 午夜视频国产福利| 少妇人妻久久综合中文| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 一级a做视频免费观看| 欧美 日韩 精品 国产| 精品人妻偷拍中文字幕| 一二三四中文在线观看免费高清| 精品久久久噜噜| 日产精品乱码卡一卡2卡三| 国语对白做爰xxxⅹ性视频网站| 欧美老熟妇乱子伦牲交| 97超视频在线观看视频| 超碰97精品在线观看| 天堂中文最新版在线下载| 观看美女的网站| 老女人水多毛片| 亚洲激情五月婷婷啪啪| 啦啦啦视频在线资源免费观看| av在线老鸭窝| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 在线观看一区二区三区激情| 亚洲av国产av综合av卡| 六月丁香七月| 久久毛片免费看一区二区三区| 又大又黄又爽视频免费| 简卡轻食公司| 亚洲,欧美,日韩| 97超视频在线观看视频| 国产乱来视频区| 大陆偷拍与自拍| 男女国产视频网站| 中文字幕人妻熟人妻熟丝袜美| 肉色欧美久久久久久久蜜桃| 免费大片18禁| 在线观看一区二区三区激情| 午夜av观看不卡| 欧美 亚洲 国产 日韩一| 国产伦在线观看视频一区| 成人国产av品久久久| 丰满乱子伦码专区| 中文字幕制服av| 老女人水多毛片| 久久精品久久久久久噜噜老黄| 亚洲国产日韩一区二区| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| av专区在线播放| 十分钟在线观看高清视频www | 在线观看一区二区三区激情| 欧美日韩在线观看h| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 精品一区二区免费观看| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 国产av一区二区精品久久| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 日韩人妻高清精品专区| 午夜91福利影院| 中文资源天堂在线| 一级片'在线观看视频| 国产在线一区二区三区精| 午夜av观看不卡| 欧美精品亚洲一区二区| 久久国产精品大桥未久av | 亚洲三级黄色毛片| 成人国产麻豆网| 亚洲精品中文字幕在线视频 | 又粗又硬又长又爽又黄的视频| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 在现免费观看毛片| 最近中文字幕2019免费版| 国模一区二区三区四区视频| 久久久国产精品麻豆| 狂野欧美激情性xxxx在线观看| 中文在线观看免费www的网站| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 寂寞人妻少妇视频99o| 午夜91福利影院| 女人久久www免费人成看片| 久久人人爽av亚洲精品天堂| 人妻 亚洲 视频| 五月玫瑰六月丁香| 亚洲图色成人| 欧美日韩在线观看h| 狂野欧美激情性bbbbbb| 永久网站在线| videossex国产| 成年人免费黄色播放视频 | 亚洲四区av| 欧美区成人在线视频| 精品少妇内射三级| 亚洲欧美日韩东京热| 成人18禁高潮啪啪吃奶动态图 | 久久国内精品自在自线图片| 伦理电影大哥的女人| 一级二级三级毛片免费看| 国产淫语在线视频| 亚洲国产欧美在线一区| 伊人久久国产一区二区| 少妇人妻 视频| 一级av片app| 这个男人来自地球电影免费观看 | 久久久久久久久久久久大奶| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 国产免费一区二区三区四区乱码| 少妇高潮的动态图| 丰满迷人的少妇在线观看| 少妇被粗大的猛进出69影院 | 婷婷色综合www| 成人亚洲欧美一区二区av| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频 | 欧美丝袜亚洲另类| 国产亚洲5aaaaa淫片| 免费在线观看成人毛片| 亚洲av中文av极速乱| 亚洲精品第二区| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区国产| 一级,二级,三级黄色视频| 少妇 在线观看| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 插逼视频在线观看| 中文字幕精品免费在线观看视频 | 免费看日本二区| 久久久久精品久久久久真实原创| 如何舔出高潮| 日本wwww免费看| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 亚洲av成人精品一区久久| 成人国产av品久久久| 黄色欧美视频在线观看| 中国三级夫妇交换| 在线观看人妻少妇| √禁漫天堂资源中文www| 中国美白少妇内射xxxbb| 免费观看无遮挡的男女| 美女脱内裤让男人舔精品视频| 亚洲精品日本国产第一区| 久久久久久久久久久久大奶| 水蜜桃什么品种好| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 在线观看免费日韩欧美大片 | 亚洲av不卡在线观看| 欧美日韩视频精品一区| 亚洲av不卡在线观看| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 一区二区av电影网| 国产一区有黄有色的免费视频| 国产亚洲欧美精品永久| 少妇的逼水好多| 青青草视频在线视频观看| 人妻制服诱惑在线中文字幕| 啦啦啦视频在线资源免费观看| av.在线天堂| 国产成人aa在线观看| 日日啪夜夜撸| 日本黄色片子视频| 国产精品偷伦视频观看了| 99热这里只有精品一区| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 一级毛片 在线播放| 午夜影院在线不卡| 国产亚洲欧美精品永久| 久热这里只有精品99| 久久ye,这里只有精品|