• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of different degrees of processed ginger using GC-IMS combined with machine learning

    2024-03-21 05:51:16ShuangLiuHongjingDongMinminZhangWeiGengXiaoWang
    Journal of Pharmaceutical Analysis 2024年1期

    Shuang Liu , Hongjing Dong , Minmin Zhang , Wei Geng , Xiao Wang ,*

    a Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province,Shandong Analysis and Test Center,Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

    b Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China

    c Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China

    Ginger, the rhizomes of Zingiber officinale Roscoe, was a wellknown edible plant species commonly used in China, which has pungent flavor [1].Ginger has numerous chemical compounds,such as phenolic constituents, volatile compounds (VOCs), and polysaccharides [2].Among them, VOCs are considered one of the effective compounds in ginger due to their functional properties,including anti-inflammatory,antioxidant,and analgesic[3].Ginger has four different degrees of processed products, including fresh ginger(SJ),dried ginger(GJ),baked ginger(PJ),and ginger charcoal(JT), and they have different types and contents of VOCs [4].However, the processing process of ginger is difficult to control as the identification of different degrees of processed ginger mainly depends on the subjective evaluation of the pharmacists, such as appearance color,shape,and texture[4].Compared with subjective evaluation,instrument analysis is more objective and accurate.

    In this study, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and machine learning are employed to analyze VOCs and discriminate different degrees of processed ginger.We commenced by collecting different batches of SJ and making different degrees of processed ginger according to China pharmacopoeia 2020 Edition.The authenticity of these samples was evaluated by traditional Chinese medicine experts.The VOCs from different degrees of processed ginger were analyzed by HSGC-IMS.The analytical conditions are recorded in Table S1.A total of eighty VOCs were identified in the different degrees of processed ginger (Table S2).The abbreviation of VOCs is shown in Table S3.The 3D chromatograms and the top view of GC-IMS 3D chromatograms of VOCs in different degrees of processed ginger are shown in Figs.S1A and B, respectively.

    The heatmap of different degrees of processed ginger was formed based on the peak signal in the top view of 3D chromatograms.As shown in Fig.1, some aldehydes and esters were mainly divided in the blue box,and the higher content of these compounds indicated that they are primarily present in SJ.Some alcohols and acids were mainly divided in the purple box, and the higher content of these compounds indicated that they are primarily present in GJ.The above results may be caused by the oxidation of chemical compounds at high temperatures, wherein more aldehyde compounds are oxidized into acid compounds.Some alcohols,ketones and heterocyclic compounds were mainly divided in the green box,and the higher content of these compounds suggested that they are primarily present in PJ.The above results can be attributed to the Maillard reaction due to the ketones are the products of the fragmentation of hydroxyl and carbonyl groups in the second stage of the Maillard reaction[5].Some esters and ketones were mainly divided in the pink box, and the higher content of these compounds suggested that they are primarily present in JT.In a word,the oxidation and Maillard reaction may occur in the stir-frying process of ginger.

    Additionally, the principal component analysis (PCA) is performed in this work to further understand the differences in the VOCs of different degrees of processed ginger(Fig.S1C).The result of the classification distance suggested that PJ and JT were close to each other, which could be attributed to the bias between subjective judgment results and actual results (subjectively mistaking PJ for JT).Moreover, the classification distance between SJ and other groups was the furthest, which might be related to the types and content of VOCs.

    Fig.1.The heatmap of volatile compounds (VOCs) in the different degrees of processed ginger.

    Subsequently,machine learning algorithms were used to screen indicator compounds and to quickly discriminate different ginger processed products, including partial least squares-discriminant analysis (PLS-DA), ridge regression, and elastic network.The VIP>1, |coef| >0.1239, and coef >0.0734 were set as screening conditions of these algorithms, respectively (Figs.S2A-C).As shown in Fig.S2D, a total of nine indicator compounds were screened, and their content in different degrees of processed ginger was different,which suggested that these indicator compounds could be used for training machine learning models (Figs.S2E and S3).

    Secondly,as shown in Table S4,based on the screened indicator compounds,ten machine learning algorithms were used to predict different degrees of processed ginger.Machine learning algorithms can predict four possible results: true positive (TP), true negative(TN), false positive (FP), and false negative (FN).Predicted results including precision, recall,F1 score,and accuracy are calculated to evaluate model performance based on the number of predicted outcomes in each of the four categories,as defined by the following formulas:

    Before analysis,the data are divided into training set and testing set by random sampling process in a ratio of 8:2 (Table S5).Then,four performance metrics, namely precision, recall, F1 score, and accuracy, were assessed (Table S6).The accuracy of all machine learning algorithms was over 0.91,indicating that they all had good classification ability.Additionally, most machine learning models had good performance in classifying SJ and GJ.The top three machine learning algorithms(support vector machine with the linear kernel(SVM-L),logistic regression(LR)and quadratic discriminant analysis (QDA)) achieved high prediction accuracy due to their mathematical properties.Meanwhile, SVM-L tended to have a simpler decision boundary,which could make it easier to interpret and implement in practical applications.LR was a linear model that provides coefficients associated with each feature,allowing for easy interpretation.QDA required relatively few computational resources for training and prediction.Therefore, the influence of factors such as model complexity, interpretability and required computational resources were considered,these models were wellsuited for developing a prediction model to classify the different degrees of processed ginger.As shown in Fig.S4, the confusion matrix was displayed.The results of these machine learning algorithms showed satisfactory classification results, whereas some misclassifications occurred between PJ and JT in the confusion matrix.The results of these machine learning models were acceptable and they could be applied in the prediction of different degrees of processed ginger.

    Finally,the testing set was used to verify the predicted ability of these models.The confusion matrix of the predicted results for these models in the testing set is shown in Fig.S5.Similarly,some misclassifications also occurred between PJ and JT in the confusion matrix,which could be attributed to misclassification of the model for PJ and JT in the training set, leading to misclassification of the model for PJ and JT in the testing set.More data might be needed to assist the model in predicting these two classes and optimize the model.Furthermore, another reason was that PJ and JT were very similar in some features,which were not obvious and were difficult to distinguish.This behavior could be explained by the results of PCA.The accuracy of models in testing set is listed in Table 1.The SVM-L, LR, and QDA also showed high accuracy.These behaviors indicated that these machine learning models had high stability,reliability, and reproducibility, making them suitable for different degrees of processed ginger.

    In summary, this study identified different degrees of processed ginger based on HS-GC-IMS and machine learning.A total of eighty VOCs were identified using HS-GC-IMS.Among them,nine VOCs,such as hydroxyacetone and 2-hexanol,were regarded as indicator compounds.Additionally,based on the nine indicator compounds, ten machine learning models for identification of processed degrees showed good prediction ability.Among them,SVM-L, LR and QDA models can accurately identify different degrees of processed ginger, with accuracies of 0.9412, 0.9706, and 0.9412 in testing set, respectively.Meanwhile, these models showed many advantages,such as easy interpretation,low model complexity and few computational resources.Overall, threemodels, including SVM-L, LR and QDA, had obvious potential applications in the identification of different degrees of processed ginger.Meanwhile, the HS-GC-IMS combined with machine learning offers a simple, quick, and low-cost strategy for discriminating different degrees of processed ginger.

    Table 1 The accuracy of ten machine learning algorithms in testing set.

    CRediT author statement

    Shuang Liu: Methodology, Visualization, Writing - Original draft preparation, Reviewing and Editing;Hongjing Dong: Resources, Project administration;Minmin Zhang: Data curation,Writing - Reviewing and Editing;Wei Geng: Formal analysis, Resources;Xiao Wang: Project administration, Supervision.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This research was predominantly funded by Key R&D Program of Shandong Province (Program No.: 2021CXGC010508), Science,Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences)(Project No.: 2022JBZ02-04), The new innovative team of Jinan(Project No.: 202228020), Shandong Province Taishan Scholar Program(Project No.:tstp20221138).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2023.10.005.

    给我免费播放毛片高清在线观看| 国产探花在线观看一区二区| 久久久久久久久免费视频了| 午夜两性在线视频| 国产蜜桃级精品一区二区三区| 久久久久久久久久黄片| 一本久久中文字幕| 欧美一级a爱片免费观看看| 国产黄片美女视频| 久久精品国产清高在天天线| 日韩三级视频一区二区三区| 久久99热这里只有精品18| 精品午夜福利视频在线观看一区| 亚洲精品粉嫩美女一区| 三级男女做爰猛烈吃奶摸视频| 国内精品久久久久精免费| 国产午夜精品论理片| 99视频精品全部免费 在线 | 国产成人精品久久二区二区免费| 亚洲午夜理论影院| 观看免费一级毛片| 两个人看的免费小视频| 亚洲国产精品久久男人天堂| 欧美极品一区二区三区四区| 免费在线观看成人毛片| 校园春色视频在线观看| 国内精品久久久久久久电影| 最近最新中文字幕大全免费视频| 国产精品一及| 欧美性猛交黑人性爽| а√天堂www在线а√下载| 男女之事视频高清在线观看| 久久精品影院6| 人妻丰满熟妇av一区二区三区| 99久久精品国产亚洲精品| 舔av片在线| 身体一侧抽搐| 免费在线观看日本一区| 久久中文字幕一级| 淫秽高清视频在线观看| 一区二区三区国产精品乱码| 久久这里只有精品19| 一个人免费在线观看电影 | 老司机午夜十八禁免费视频| e午夜精品久久久久久久| 精品欧美国产一区二区三| 一个人免费在线观看的高清视频| 99久久国产精品久久久| 日韩 欧美 亚洲 中文字幕| 又紧又爽又黄一区二区| 国产伦精品一区二区三区四那| 级片在线观看| 麻豆国产av国片精品| av片东京热男人的天堂| 久久热在线av| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕熟女人妻在线| 禁无遮挡网站| 黄色片一级片一级黄色片| 特大巨黑吊av在线直播| 一级毛片女人18水好多| 国产伦在线观看视频一区| 变态另类成人亚洲欧美熟女| 999久久久国产精品视频| 国产成人系列免费观看| 99热只有精品国产| 嫩草影院精品99| 香蕉丝袜av| 精品久久久久久久毛片微露脸| 欧美日韩精品网址| 亚洲电影在线观看av| 亚洲国产精品合色在线| 天堂av国产一区二区熟女人妻| 精品国产乱子伦一区二区三区| 国产成人欧美在线观看| 51午夜福利影视在线观看| 偷拍熟女少妇极品色| 国产av不卡久久| 欧美一区二区国产精品久久精品| 国产精品日韩av在线免费观看| 日韩免费av在线播放| 不卡一级毛片| 午夜福利高清视频| 三级国产精品欧美在线观看 | 久久性视频一级片| 最近最新免费中文字幕在线| 国产精品九九99| 国产精品日韩av在线免费观看| 国产高清视频在线观看网站| 午夜免费观看网址| 无遮挡黄片免费观看| 黄色 视频免费看| 中文资源天堂在线| 国产97色在线日韩免费| 国产成人影院久久av| 亚洲精品中文字幕一二三四区| 国产免费av片在线观看野外av| 人妻夜夜爽99麻豆av| 亚洲av五月六月丁香网| 久久久久久九九精品二区国产| 日韩 欧美 亚洲 中文字幕| 精品乱码久久久久久99久播| 国产精品自产拍在线观看55亚洲| 欧美成人一区二区免费高清观看 | 亚洲自偷自拍图片 自拍| 女同久久另类99精品国产91| 欧美乱色亚洲激情| 亚洲国产高清在线一区二区三| 久久国产乱子伦精品免费另类| 五月伊人婷婷丁香| 午夜亚洲福利在线播放| 成人性生交大片免费视频hd| 怎么达到女性高潮| 国产黄片美女视频| 亚洲国产看品久久| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 午夜成年电影在线免费观看| 午夜精品一区二区三区免费看| 手机成人av网站| 在线观看免费视频日本深夜| 欧美极品一区二区三区四区| 亚洲无线观看免费| 午夜福利成人在线免费观看| 欧美乱妇无乱码| 国产av在哪里看| 久久久久国产精品人妻aⅴ院| 女人被狂操c到高潮| 国产欧美日韩一区二区精品| 欧美激情在线99| 国产精华一区二区三区| e午夜精品久久久久久久| www日本在线高清视频| 国产熟女xx| 97碰自拍视频| 国产欧美日韩精品亚洲av| 欧美日韩乱码在线| 欧美在线黄色| 我要搜黄色片| 色av中文字幕| 亚洲自偷自拍图片 自拍| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 99热这里只有精品一区 | 亚洲avbb在线观看| 精品国内亚洲2022精品成人| 少妇熟女aⅴ在线视频| 黄色 视频免费看| 国产精品香港三级国产av潘金莲| 免费高清视频大片| 一本久久中文字幕| 天堂网av新在线| 国产免费男女视频| 午夜福利欧美成人| or卡值多少钱| 亚洲色图 男人天堂 中文字幕| 成年女人毛片免费观看观看9| 黑人欧美特级aaaaaa片| 制服人妻中文乱码| 国产精品亚洲美女久久久| 国产熟女xx| 国产乱人伦免费视频| 又粗又爽又猛毛片免费看| 一进一出好大好爽视频| 男女之事视频高清在线观看| 亚洲第一欧美日韩一区二区三区| 日日夜夜操网爽| 午夜日韩欧美国产| 亚洲专区中文字幕在线| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 欧美日本视频| 成年女人看的毛片在线观看| 亚洲精品色激情综合| 18美女黄网站色大片免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲人与动物交配视频| 少妇的逼水好多| 国产精品久久久久久久电影 | 免费电影在线观看免费观看| 啪啪无遮挡十八禁网站| 最新在线观看一区二区三区| 一级毛片精品| 午夜久久久久精精品| 免费观看人在逋| 午夜免费成人在线视频| 欧美乱色亚洲激情| 欧美最黄视频在线播放免费| 亚洲男人的天堂狠狠| 两个人视频免费观看高清| 国产伦人伦偷精品视频| av在线天堂中文字幕| 精品久久久久久久毛片微露脸| 男人舔女人下体高潮全视频| 精华霜和精华液先用哪个| 嫩草影视91久久| av中文乱码字幕在线| 又粗又爽又猛毛片免费看| 大型黄色视频在线免费观看| 欧美日韩瑟瑟在线播放| 国产乱人视频| 岛国视频午夜一区免费看| 99久久无色码亚洲精品果冻| 欧美另类亚洲清纯唯美| 搡老熟女国产l中国老女人| 激情在线观看视频在线高清| 精品久久久久久,| 久久香蕉国产精品| 成年人黄色毛片网站| 午夜精品一区二区三区免费看| 熟女电影av网| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 久久久国产成人精品二区| 国产午夜精品论理片| 巨乳人妻的诱惑在线观看| 日本a在线网址| 亚洲av电影不卡..在线观看| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 床上黄色一级片| 后天国语完整版免费观看| 天堂网av新在线| 亚洲成av人片在线播放无| 久久久久国产精品人妻aⅴ院| 此物有八面人人有两片| 欧美激情久久久久久爽电影| 久久国产精品影院| 亚洲成人中文字幕在线播放| 久久久久久大精品| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全免费视频| 18美女黄网站色大片免费观看| 精品一区二区三区视频在线 | 午夜福利在线在线| 少妇人妻一区二区三区视频| 1024香蕉在线观看| 91av网一区二区| 99热只有精品国产| 日韩欧美国产一区二区入口| 老熟妇乱子伦视频在线观看| 一级毛片精品| 成人欧美大片| 中出人妻视频一区二区| 精品久久久久久成人av| xxx96com| 国产aⅴ精品一区二区三区波| 国产 一区 欧美 日韩| 久久久久性生活片| 高清毛片免费观看视频网站| 毛片女人毛片| a在线观看视频网站| 我要搜黄色片| 国产精品久久久久久人妻精品电影| 国产伦人伦偷精品视频| 最近在线观看免费完整版| 日韩免费av在线播放| 欧美最黄视频在线播放免费| 成人亚洲精品av一区二区| 国产又黄又爽又无遮挡在线| 色综合婷婷激情| 国产成人精品久久二区二区免费| 日韩精品中文字幕看吧| 一级毛片高清免费大全| 国产精品野战在线观看| 国产伦精品一区二区三区四那| 欧美日韩瑟瑟在线播放| 婷婷亚洲欧美| 亚洲中文字幕日韩| 成年女人看的毛片在线观看| 国产精品99久久99久久久不卡| 女同久久另类99精品国产91| 日韩人妻高清精品专区| 男女之事视频高清在线观看| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| 亚洲国产欧洲综合997久久,| 国产精品美女特级片免费视频播放器 | 婷婷丁香在线五月| 老司机在亚洲福利影院| 1024香蕉在线观看| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 97人妻精品一区二区三区麻豆| 亚洲精品中文字幕一二三四区| 首页视频小说图片口味搜索| 国产亚洲精品一区二区www| 又粗又爽又猛毛片免费看| 亚洲精品色激情综合| 51午夜福利影视在线观看| 18禁美女被吸乳视频| 欧美高清成人免费视频www| 在线国产一区二区在线| 亚洲一区高清亚洲精品| 久久久久九九精品影院| 久久久国产精品麻豆| 韩国av一区二区三区四区| 俺也久久电影网| av在线天堂中文字幕| 巨乳人妻的诱惑在线观看| 久久精品国产清高在天天线| 丁香欧美五月| 91九色精品人成在线观看| 成人特级黄色片久久久久久久| 午夜福利在线在线| 丰满人妻一区二区三区视频av | 午夜精品在线福利| 两个人视频免费观看高清| 午夜精品在线福利| 禁无遮挡网站| 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 午夜两性在线视频| 亚洲精品美女久久av网站| 色视频www国产| 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 欧美黄色淫秽网站| 国产精品国产高清国产av| 国产成人系列免费观看| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 老汉色∧v一级毛片| 日本精品一区二区三区蜜桃| 日本 欧美在线| 亚洲欧洲精品一区二区精品久久久| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 亚洲人成伊人成综合网2020| 国产aⅴ精品一区二区三区波| 亚洲国产高清在线一区二区三| 床上黄色一级片| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| 成人三级黄色视频| 一夜夜www| 午夜成年电影在线免费观看| 午夜福利高清视频| 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| 国产三级在线视频| 黄色视频,在线免费观看| 美女高潮喷水抽搐中文字幕| 国产高清三级在线| 成人一区二区视频在线观看| 婷婷亚洲欧美| 一区二区三区激情视频| 日韩欧美精品v在线| 视频区欧美日本亚洲| 后天国语完整版免费观看| 久久热在线av| 久久久久国产精品人妻aⅴ院| 久久久久久人人人人人| 亚洲电影在线观看av| 一a级毛片在线观看| 麻豆国产97在线/欧美| 成年免费大片在线观看| 一区二区三区激情视频| 在线观看美女被高潮喷水网站 | 成熟少妇高潮喷水视频| 一级黄色大片毛片| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 中文字幕人成人乱码亚洲影| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| 亚洲成人中文字幕在线播放| 男女视频在线观看网站免费| 国产成+人综合+亚洲专区| 午夜福利18| 欧美成人一区二区免费高清观看 | 18禁观看日本| 欧美成人性av电影在线观看| 99热这里只有精品一区 | 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网| 国产精品女同一区二区软件 | 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 亚洲av五月六月丁香网| 美女高潮喷水抽搐中文字幕| 国产97色在线日韩免费| 色哟哟哟哟哟哟| or卡值多少钱| 中出人妻视频一区二区| 亚洲 欧美 日韩 在线 免费| 久久久久久国产a免费观看| 亚洲男人的天堂狠狠| 亚洲精品一卡2卡三卡4卡5卡| 国产免费av片在线观看野外av| 亚洲色图 男人天堂 中文字幕| 岛国在线观看网站| 国产精品一及| 国产日本99.免费观看| 亚洲精品在线美女| 国产精品女同一区二区软件 | 黄片小视频在线播放| 淫妇啪啪啪对白视频| 香蕉av资源在线| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 在线国产一区二区在线| a级毛片a级免费在线| 99久久99久久久精品蜜桃| 久久香蕉国产精品| 特大巨黑吊av在线直播| 亚洲色图 男人天堂 中文字幕| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 久久伊人香网站| 99久久久亚洲精品蜜臀av| 国产高清videossex| 九九在线视频观看精品| 国产高清视频在线播放一区| 成人欧美大片| 99精品在免费线老司机午夜| 亚洲男人的天堂狠狠| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久久久毛片| 夜夜看夜夜爽夜夜摸| 2021天堂中文幕一二区在线观| 一进一出好大好爽视频| 黄频高清免费视频| 一本久久中文字幕| 国产97色在线日韩免费| 9191精品国产免费久久| 久久欧美精品欧美久久欧美| 亚洲精品美女久久av网站| 国产真实乱freesex| 亚洲国产欧美网| 午夜福利18| 成人午夜高清在线视频| 校园春色视频在线观看| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看| 久久久色成人| 国产亚洲av高清不卡| 视频区欧美日本亚洲| 久久人妻av系列| 亚洲真实伦在线观看| 九九热线精品视视频播放| 成年女人毛片免费观看观看9| 日韩欧美在线乱码| 亚洲av美国av| 蜜桃久久精品国产亚洲av| 亚洲精品一区av在线观看| 精品国产三级普通话版| 国产精品爽爽va在线观看网站| 狂野欧美激情性xxxx| 日本黄大片高清| 国产私拍福利视频在线观看| 国产精品久久视频播放| 国产免费男女视频| 九九久久精品国产亚洲av麻豆 | 亚洲无线在线观看| 国产美女午夜福利| 麻豆成人av在线观看| 一个人免费在线观看的高清视频| 欧美国产日韩亚洲一区| www日本黄色视频网| 亚洲成av人片免费观看| 日本成人三级电影网站| 天天添夜夜摸| 中文字幕高清在线视频| 亚洲片人在线观看| 成年免费大片在线观看| av福利片在线观看| 最近最新中文字幕大全免费视频| 国产高清三级在线| 精品国产三级普通话版| 色视频www国产| 国产乱人视频| 久久久色成人| 一本综合久久免费| 色综合站精品国产| 亚洲第一电影网av| 五月伊人婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| 又大又爽又粗| xxx96com| 丁香欧美五月| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 欧美在线一区亚洲| 中文在线观看免费www的网站| av国产免费在线观看| 天天躁日日操中文字幕| 免费在线观看视频国产中文字幕亚洲| 一二三四社区在线视频社区8| 操出白浆在线播放| 人妻夜夜爽99麻豆av| 高清毛片免费观看视频网站| 黄色日韩在线| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9| 999久久久国产精品视频| 麻豆国产av国片精品| 中文亚洲av片在线观看爽| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 国产精品九九99| 久久国产精品人妻蜜桃| 精品乱码久久久久久99久播| 国产精品久久电影中文字幕| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 免费观看人在逋| 国产成人av激情在线播放| 午夜视频精品福利| 精品国产亚洲在线| 黄色成人免费大全| 精品久久久久久,| 国产av不卡久久| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品| 日韩有码中文字幕| 国产欧美日韩精品一区二区| 精品电影一区二区在线| 中文字幕熟女人妻在线| 成年女人毛片免费观看观看9| 超碰成人久久| 88av欧美| 午夜激情福利司机影院| 亚洲午夜理论影院| 此物有八面人人有两片| 日本 av在线| 久久久久久国产a免费观看| 一级作爱视频免费观看| 国产亚洲欧美98| 熟妇人妻久久中文字幕3abv| 在线永久观看黄色视频| 香蕉av资源在线| 精品99又大又爽又粗少妇毛片 | 亚洲av片天天在线观看| 国产91精品成人一区二区三区| 亚洲一区高清亚洲精品| 男女午夜视频在线观看| 美女高潮的动态| 美女午夜性视频免费| svipshipincom国产片| 久久中文看片网| 最新美女视频免费是黄的| 亚洲,欧美精品.| 欧美乱码精品一区二区三区| 久久性视频一级片| 亚洲自拍偷在线| 在线播放国产精品三级| 国产一区二区激情短视频| 日韩国内少妇激情av| 两性夫妻黄色片| 国产一区在线观看成人免费| 怎么达到女性高潮| 日本a在线网址| 国产精品综合久久久久久久免费| www.精华液| 天天添夜夜摸| 亚洲中文字幕一区二区三区有码在线看 | 国产午夜福利久久久久久| 亚洲第一欧美日韩一区二区三区| 美女高潮喷水抽搐中文字幕| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| 嫩草影视91久久| 国产综合懂色| 少妇裸体淫交视频免费看高清| 两个人的视频大全免费| 亚洲av电影不卡..在线观看| 午夜福利免费观看在线| 在线观看免费视频日本深夜| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩一区二区三| 亚洲av中文字字幕乱码综合| 国产精品久久视频播放| 久久久久亚洲av毛片大全| 久久伊人香网站| 露出奶头的视频| 精品不卡国产一区二区三区| 又爽又黄无遮挡网站| 19禁男女啪啪无遮挡网站| av福利片在线观看| 性欧美人与动物交配| 天堂动漫精品| 免费在线观看视频国产中文字幕亚洲| 香蕉国产在线看| 国产主播在线观看一区二区| 小蜜桃在线观看免费完整版高清| 男人的好看免费观看在线视频| 亚洲欧美日韩无卡精品| 怎么达到女性高潮| 69av精品久久久久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一电影网av| 一个人免费在线观看电影 | 欧美成人免费av一区二区三区| 天堂√8在线中文| 老司机在亚洲福利影院| 两人在一起打扑克的视频| 天堂√8在线中文| 亚洲av五月六月丁香网| 中文字幕精品亚洲无线码一区| 岛国视频午夜一区免费看| 亚洲va日本ⅴa欧美va伊人久久| av女优亚洲男人天堂 | 国产激情偷乱视频一区二区| 一本久久中文字幕|