• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and characterization of three new solid polyoxometalates based on Wells-Dawson-derived sandwich-type polyanions Co4(H2O)2(P2W15O56)2]16-

    2024-03-18 07:01:56JijieYEXuanXUChuandeWU
    關(guān)鍵詞:夾心雜化三明治

    Jijie YE, Xuan XU, Chuande WU

    Research Article

    Synthesis and characterization of three new solid polyoxometalates based on Wells-Dawson-derived sandwich-type polyanions Co4(H2O)2(P2W15O56)2]16-

    Department of Chemistry, Zhejiang University, Hangzhou 310058, China

    Three polyoxometalate-based hybrid coordination materials, [Co8(H2O)34(pz)2{Co4(H2O)2P4W30O112}]·16H2O (compound 1), [H3O]4[Co6(H2O)22(pz)2{Co4(H2O)2P4W30O112}]·21H2O (compound 2), and [H3O]4[Co6(H2O)22{Co4(H2O)2P4W30O112}]·29H2O (compound 3) (pz=pyrazine), were built from the linkage of [Co4(H2O)2(P2W15O56)2]16-(abbreviated as {Co4P4W30}) polyanions and pz and/or cobalt(II) cations. Although compounds 1 and 2 consisted of the same components, their lamellar networks were quite different. The inorganic lamellar network in compound 3 was constructed by connecting {Co4P4W30} units with cobalt(II) cations. This work demonstrates that the coordination modes of {Co4P4W30} are very sensitive to synthesis conditions, while the ring-belt tetrametals are easily substituted by different transition metal cations under mild reaction conditions.

    Cobalt; Crystal structure; Cyclic voltammetry; Hybrid; Polyoxometalate

    1 Introduction

    Polyoxometalates (POMs) are a unique class of nano-sized metal-oxygen clusters, which provide abundant oxygen donors to combine with transition metal cations for the construction of hybrid organic-inorganic coordination materials which exhibit distinctive topological framework structures and properties (Ma et al., 2019; Liu et al., 2020). Accompanying the development of synthesis strategy, the chemistry of POMs-based solid hybrid materials has been highly enriched by combining POMs, transition-metal cations, and organic moieties in organic-inorganic hybrid materials (Du et al., 2014; Ye and Wu, 2016; Li et al., 2021; Liao et al., 2021; Zhao et al., 2021).

    The Weakley-type POMs, [4(H2O)2(2W15O56)2]-(abbreviated as {44W30},=PV, SiIV, AsV, and GeIV,=MnII, CoII, CuII, and ZnII), consist of tetrametal ring belts between two {2W15O56} units, and have been used to modulate the properties of organic-inorganic hybrid materials for potential applications in different fields (Weakley and Finke, 1990; Gomez-Garcia et al., 1994; Kirby and Baker, 1995; Mbomekalle et al., 2003a, 2003b). The 30 {WO6} octahedra in the {44W30} polyanion can be classified into three types that are grouped in two sets, including six cape, 12 middle, and 12 waist {WO6} octahedra, which are readily available to coordinate to metal cations for the construction of solid-state coordination materials (Fig. 1). However, incorporation of {44W30} in a hybrid is not easily achieved with traditional synthesis methods, even using the most basic cluster [α-P2W15O56]12-as the starting material (Li et al., 2008, 2009). To understand the coordination ability of {44W30}, we report here on a "step-by-step aggregation" technology for rational fabrication of three {Co4P4W30}-based hybrid materials: [Co8(H2O)34(pz)2{Co4(H2O)2P4W30O112}] · 16H2O (compound 1), [H3O]4[Co6(H2O)22(pz)2{Co4(H2O)2P4W30O112}]·21H2O (compound 2), and [H3O]4[Co6(H2O)22{Co4(H2O)2P4W30O112}]·29H2O (compound 3) (pz=pyrazine). The results reveal the important role of synthesis conditions in the formation of different {Co44W30}-based hybrid coordination networks.

    Fig. 1 Schematic of the Weakley-type polyanion [M4(H2O)2(X2W15O56)2]n- and the classification of the 30 {WO6} octahedra in the polyanion

    2 Experimental

    2.1 Materials and methods

    All of the chemicals were obtained from commercial sources and were used without further purification, except for Na16[Co4(H2O)2P4W30O112] (abbreviated as {Co4P4W30}) and Na16[Zn4(H2O)2P4W30O112] (abbreviated as {Zn4P4W30}), which were synthesized as described by Finke et al. (1987). Infrared (IR) spectra were recorded from KBr pellets on an FTS-40 spectrophotometer (Bio-Rad, the USA) in the 4000–400 cm-1region. We carried out thermogravimetric analyses (TGA) in N2atmosphere on a NETZSCH STA 409 PC/PG instrument (NETZSCH, Germany) at a heating rate of 10 ℃/min. Powder X-ray diffraction (PXRD) data for Cu-Kα radiation were recorded on a RIGAKU D/MAX 2550/PC (=1.5406 ?) (Rigaku International Corporation, Japan). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed on an XSeries II instrument (Thermo Fisher Scientific, the USA) by dissolving the crystalline samples in concentrated nitric acid. Cyclic voltammograms were obtained at room temperature with a CHI 630 electrochemical workstation (Shanghai Chenhua Instruments Limited, China). Platinum gauze was used as a counter electrode, and a saturated calomel electrode (SCE) was used as the reference electrode. The chemically bulk-modified carbon-paste electrodes (CPEs) were used as working electrodes.

    2.2 Synthesis of compound 1

    We dissolved {Co4P4W30} (0.1 g, 0.012 mmol) in 20 mL distilled water and adjusted the pH value to 5.3 with dilute HCl aqueous solution (pH=1). Co(NO3)2·6H2O (0.2 g, 0.69 mmol) was added to the mixture, which was heated and stirred at 65 ℃ for 12 h. We added pz (5 mg, 0.063 mmol) in 5 mL hot water dropwise into the solution. After heating the mixture at 65 ℃ for 8 d, red crystals were isolated by filtration, washed with water, and dried at room temperature. The yield was 35% (based on {Co4P4W30}). Elemental analysis results were as follows. Analysis calculated for C8H112Co12N4O184P4W30(%) were 7.40 for Co and 57.72 for W. Found results (%) were 7.21 for Co and 56.33 for W. IR peaks (KBr pellet, cm-1) were found at 1635 (m), 1425 (w), 1162 (w), 1086 (s), 1050 (m), 935 (s), 907 (s), 770 (s), and 727 (s) (Fig. S1 of the electronic supplementary materials (ESM)).

    2.3 Synthesis of compound 2

    The preparation procedure for compound 2 was similar to that for compound 1, except that we used {Zn4P4W30} (0.1 g, 0.012 mmol) instead of {Co4P4W30}. The yield was 28% (based on {Zn4P4W30}). Analysis calculated for C8H116Co9N4O156P4W30(%) were 5.94 for Co, and 61.73 for W. Found results (%) were 5.61 for Co, 0.35 for Zn, and 60.07 for W. IR peaks (KBr pellet, cm-1) were found at 1624 (m), 1421 (w), 1166 (w), 1084 (s), 1051 (w), 1015 (w), 935 (s), 905 (w), and 716 (s) (Fig. S2).

    2.4 Synthesis of compound 3

    The preparation procedure for compound 3 was also similar to that for compound 1, except that we used 4,4′-bipyridine (4,4′-bpy) (0.5 mg, 0.003 mmol) instead of pz. The yield was 10% (based on {Co4P4W30}). Analysis calculated for H114Co10O167P4W30(%) were 6.54 for Co and 61.18 for W. Found results (%) were 6.21 for Co and 60.73 for W. IR peaks (KBr pellet, cm-1) were found at 1617 (m), 1489 (w), 1435 (m), 1409 (w), 1223 (w), 1086 (s), 1047 (w), 935.6 (s), 907 (s), and 769 (s) (Fig. S3).

    2.5 Typical procedure for the preparation of CPEs based on compounds 1, 2, and 3

    The solid material-modified CPE was fabricated as follows: 0.05 g graphite powder and 0.02 g solid sample were mixed together with an agate mortar and pestle to achieve an even dried mixture. Next, 0.5 mL paraffin oil was added to the mixture and stirred with a glass rod. The resulting homogenized mixture was packed into a 3 mm inner diameter glass tube, and the surface was wiped with weighing paper. Electrical contact was established with a copper rod through the back of the electrode (Wang et al., 2010).

    2.6 Single-crystal X-ray data collection and structural determination

    We performed the determination of the unit cells and data collection for the crystals of each compound on an Oxford Xcalibur Gemini Ultra diffractometer with an Atlas detector. The data were collected using graphite-monochromatic Mo-Kradiation (=0.71073 ?) at 293 K and the datasets were corrected by empirical absorption correction (Oxford Diffraction Ltd., 2010). The structures were solved by direct methods, and refined by full-matrix least-square methods with the SHELX-97 program package (Sheldrick, 1997). All non-solvent atoms were located successfully from Fourier maps. The solvent molecules in compounds 1–3 were highly disordered, and we used the SQUEEZE subroutine of the PLATON software suit to remove the scattering from the highly disordered water molecules (Spek, 2003). The resulting new files were used to further refine the crystal structures. The relatively high1values for all three compounds should be ascribed to the relatively large system. The data-collection parameters, crystallographic data, and final agreement factors are collected in Table 1.

    Table 1 Crystal data and structure refinements for compounds 1–3

    ,,,,, and: unit cell parameters;: the number of molecules in a unit cell;: calculated density;(000): the total number of electrons in a unit cell;: absorption coefficient;Data/parameters: number of independent reflections/number of structure refinement parameters;int: closeness of agreement in intensities for supposedly equivalent reflections;1=∑(|o|-|c|)/∑|o|,=[∑(o2-c2)2/∑(o2)2]0.5;: intensity of the reflection;: standard uncertainty of a parameter;o: observed structure factor amplitude;c: calculated structure factor amplitude.

    3 Results and discussion

    The purity of the bulk samples of each compound was confirmed by comparing the PXRD diffraction peaks of simulated and experimental patterns (Figs. S4–S7). All of the typical vibrations were clearly visible in the IR spectra of the compounds. The IR spectra all exhibited strong bands around the peak of 1080 cm-1, which we attributed to the asymmetric stretching vibration of the P-O bond (Finke et al., 1987). The characteristic bands of the terminal W-O vibrations of the Wells-Dawson units appeared at 935 cm-1for compound 1, 934 cm-1for compound 2, and 936 cm-1for compound 3. The vibrations of the corner-sharing W-O-W moieties were found in the following bands: 906 cm-1for compound 1, 906 cm-1for compound 2, and 907 cm-1for compound 3. The vibrations of the edge-sharing W-O-W moieties presented at 769 cm-1for compound 1, 760 cm-1for compound 2, and 765 cm-1for compound 3 (Harmalker et al., 1983; Finke et al., 1987). We attribute the bands in the region of 1424–1162 cm-1to the pz ligand in compounds 1 and 2 (Kong et al., 2006).

    Heating a mixture of {Co4P4W30}, Co(NO3)2·6H2O, and pz in an acidified aqueous solution at 65 ℃ for 8 d afforded red crystals of compound 1. Single-crystal X-ray diffraction analysis revealed that compound 1 consisted of 2D lamellae based on {Co4P4W30}, cobalt(II) cations, and pz ligands in P-1 symmetry (Fig. 2). In compound 1, {Co4P4W30} was built from two B-type {α-P2W15O56} fragments and a sandwiched belt with four cobalt(II) cations, and all of the bond lengths and angles of {Co4P4W30} were within the normal ranges and consistent with those described in the literature (Finke et al., 1987).

    Fig. 2 (a) Ball-and-stick and polyhedral representations of the local structure for compound 1; (b) View of the 1D chain of {Co4P4W30} connected by the coordination connection between cobalt(II) cations and {WO6} octahedra in compound 1; (c) View of the 1D chain of {Co4P4W30} connected by the coordination connection between pz ligands and cobalt(II) cations; (d) Side view of the 2D lamellar coordination network in compound 1 (color codes: cyan: W; orange: P; purple and blue: Co; grey: C; yellow: N; red: O). References to color refer to the online version of this figure

    The {Co4P4W30} unit acted as a decadentate ligand to coordinate to 10 cobalt(II) cations with 10 terminal oxygen atoms of 10 {WO6} octahedra (Fig. 2a). According to the coordination environment, there were three kinds of octahedrally coordinated cobalt(II) cations in compound 1, besides the cobalt(II)cations in the sandwiched ring belt of {Co4P4W30}. The first cobalt(II) cation coordinates to one cape oxygen atom in {Co4P4W30}, one waist oxygen atom in the neighboring {Co4P4W30}, and four aqua ligands. Accordingly, two octahedrally coordinated cobalt(II) cations linked up two neighboring {Co4P4W30} units by coordinating to one cape and one waist {WO6} octahedron to extend into a linear network structure (Fig. 2b). The second cobalt(II) cation coordinated to one waist oxygen atom in {Co4P4W30}, four water molecules, and one pz ligand, which further propagated into a polymeric chain linked by pz-bridging ligands (Fig. 2c). As a result, the {Co4P4W30} units were linked by cobalt(II) cations and pz bridging ligands to form an interesting thick lamellar network (Fig. 2d). The remaining two cobalt(II) cations terminated on the {Co4P4W30} unit, with five water ligands to fulfil the octahedral coordination environment. The TGA curve shows that a weight loss of 9.8% occurred between 30 and 245 ℃, corresponding to the loss of water molecules (Fig. S8).

    When we used {Zn4P4W30} instead of {Co4P4W30} under the same synthesis conditions used for compound 1, a lamellar coordination network of compound 2 was isolated as red crystals. Elemental analysis revealed that most of the zinc cations had been replaced by cobalt(II) cations. Since there was no NaIcation in the crystal lattice, according to the elemental analysis results, we deduced that hydronium was maintaining the charge balance. Single-crystal X-ray structural analysis revealed that compound 2 was a lamellar network built from connecting cobalt(II) cations with {Co4P4W30} and pz units in P-1 symmetry (Fig. 3). It is worth noting that the coordination mode of a {Co4P4W30} unit in the lamellar network of compound 2 was different from that in compound 1. Each {Co4P4W30} acted as an octadentate ligand to coordinate to eight cobalt(II) cations by four middle and four waist oxygen atoms (Fig. 3a).

    Fig. 3 (a) Ball-and-stick and polyhedral representations of the local structure for compound 2; (b) View of the 1D chain of {Co4P4W30} connected by cobalt(II) cations coordinating to the middle {WO6} octahedra in compound 2; (c) View of the 1D chain of {Co4P4W30} connected by pz bridging cobalt(II) cations in compound 2; (d) Side view of the 2D lamellar coordination network in compound 2 (color codes: green: W; orange: P; purple and blue: Co; grey: C; yellow: N; red: O). References to color refer to the online version of this figure

    There are two kinds of cobalt(II) cations, classified according to their positions on {Co4P4W30}. The first kind is penta-coordinated to two middle oxygen atoms of two neighboring {Co4P4W30} units and three water molecules, which links up the {Co4P4W30} units so that they can propagate into a linear network (Fig. 3b). Similar to the coordination mode in compound 1, the pz ligand was bidentately coordinated to the second kind of cobalt(II) cation in the waist of different {Co4P4W30} clusters, propagating into the second kind of chain (Fig. 3c). As a result, the {Co4P4W30} units were linked in two different ways to form a thick lamellar network (Fig. 2d). The TGA curve shows that a weight loss of 10.0% occurred between 30 and 185 ℃, corresponding to the loss of water molecules (expected 9.9%) (Fig. S9).

    When we used 4,4′-bipyridine (4,4′-bpy) instead of pz ligand under the same synthesis conditions used for compound 1, an interesting inorganic lamellar coordination network of compound 3 was isolated as red crystals. In the absence of 4,4′-bpy ligand under the same reaction conditions, only pink powder was isolated. This result indicates that 4,4′-bpy might play a crucial role in the formation of the crystals of compound 3. As there was no NaIcation in the crystal lattice (according to elemental analysis results), the charge-balance cation should be hydronium. Single-crystal X-ray diffraction analysis revealed that compound 3 crystallized in the monoclinic2/space group, which consisted of 2D inorganic lamellae of {Co4P4W30} bridged by cobalt(II) cations (Fig. 4).

    Fig. 4 (a) Ball-and-stick and polyhedral representations of the local structure for compound 3; (b) Top view of the 2D sheet in compound 3 (color codes: cyan and green: W; orange: P; purple: Co; red: O). References to color refer to the online version of this figure

    There are four cobalt(II) cations located on the middle of {Co4P4W30}, while the remaining eight cobalt(II) atoms are around the waist (Fig. 4a). Each {Co4P4W30} unit acted as a twelve-dentate ligand to coordinate to 12 cobalt(II) cations, besides the ring belt cobalt(II) ions in {Co4P4W30}. The cobalt(II) cation octahedrally coordinated to one middle oxygen atom in {Co4P4W30} and one waist oxygen atom in the neighboring {Co4P4W30} unit on the apical sites, as well as four aqua ligands on the equatorial positions. As a result, each {Co4P4W30} cluster was bridged by 12 cobalt(II) cations to link up six neighboring {Co4P4W30} units, and further propagated into a lamellar network (Fig. 4b). The TGA curve shows that a weight loss of 11.1% occurred between 30 and 193 ℃, corresponding to the loss of water molecules (expected 11.4%) (Fig. S10).

    Because compounds 1–3 are insoluble in water and common organic solvents, these compounds have been used as modifiers to fabricate chemically modified CPE (Mbomekalle et al., 2003a, 2003b). We recorded the cyclic voltammetric behaviors for 1-, 2-, and 3-CPE in 1 mol/L H2SO4aqueous solution at different scan rates. Compounds 1?3 exhibited three pairs of redox peaks in the potential range of 800 to -800 mV (Fig. 5). There were three reversible redox peaks: I-I′, II-II′, and III-III′, which should be ascribed to three consecutive two-electron processes of W centers (Ruhlmann et al., 2002, 2004, 2007; Bi et al., 2005; Mbomekalle et al., 2005; Schaming et al., 2009; Ammam et al., 2010). The half-wave potential1/2was calculated by (pa+pc)/2 (mV), wherepaandpcare potential of oxidative peak and potential of reductive potential, respectively. They were -15.85 mV (I-I′), -220.1 mV (II-II′), and -397.1 mV (III-III′) for compound 1 (scan rate: 40 mV/s), 5.5 mV (I-I′), -221.5 mV (II-II′), and -391.5 mV (III-III′) for compound 2 (scan rate: 100 mV/s), and -13.1 mV (I-I′), -201.6 mV (II-II′), and -400 mV (III-III′) for compound 3 (scan rate: 200 mV/s). When the scan rate was gradually increased from 40 to 400 mV/s for these CPEs, the cathodic peak potentials were shifted in the negative direction and the corresponding anodic peak potentials were shifted in the positive direction. As shown in Fig. 5d, the cyclic peak currents are proportional to the scan rates (from 40 to 350 mV/s), suggesting that the redox process should be surface-controlled (Song et al., 1999; Ruhlmann et al., 2002, 2004, 2007; Schaming et al., 2009). It is worth noting that these CPEs were very stable after 20 manifold cyclic voltammetry cycles at a scan rate of 80 mV/s in the potential range of +0.8 to -0.6 V, revealing the high stability of these hybrid materials (Fig. S11).

    Fig. 5 Cyclic voltammetric behaviors (I-E) in 1 mol/L H2SO4 solution at different scan rates V (from inner to outer: 40, 80, 120, 160, 200, 240, 280, and 320 mV/s) for (a) 1-CPE, (b) 2-CPE, and (c) 3-CPE; (d) Dependences of cathodic peak (II) and anodic peak (II′) currents (Ip) for 1-CPE on scan rates from 40 to 350 mV/s

    4 Conclusions

    In summary, we successfully synthesized three {Co4P4W30} cluster-supported hybrid coordination materials under ambient reaction conditions. The slight differences in metal cations in the ring belt of {M4P4W30} are responsible for the formation of different hybrid materials with distinctive framework structures. Moreover, this work demonstrates for the first time that ring-belt tetrametals are easily replaced by environmental transition metal cations under ambient conditions. We believe that this work provides valuable information for the rational design and assembly of POM-based organic-inorganic hybrids for various potential applications.

    This work is supported by the National Natural Science Foundation of China (Nos. 21525312 and 21872122).

    Chuande WU designed the research. Jijie YE and Xuan XU processed the corresponding data, and wrote the first draft of the manuscript. Chuande WU revised and edited the final version.

    Jijie YE, Xuan XU, and Chuande WU declare that they have no conflict of interest.

    Ammam M, Mbomekalle IM, Keita B, et al., 2010. Electrochemical behavior and electrocatalytic properties towards hydrogen peroxide, dioxygen and nitrate of the polyanions [(NiIIOH2)2(FeIII)2(X2W15O56)2]14-(X=PV or AsV): a comparative study., 647(2):97-102. https://doi.org/10.1016/j.jelechem.2010.06.014

    Bi LH, Shen Y, Jiang JG, et al., 2005. Electrochemical behavior and assembly of tetranuclear Dawson-derived sandwich compound [Cd4(H2O)2(As2W15O56)2]16-on 4-aminobenzoic acid modified glassy carbon electrode., 534(2):343-351. https://doi.org/10.1016/j.aca.2004.11.040

    Du DY, Qin JS, Li SL, et al., 2014. Recent advances in porous polyoxometalate-based metal-organic framework materials., 43(13):4615-4632. https://doi.org/10.1039/C3CS60404G

    Finke RG, Droege MW, Domaille PJ, 1987. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810-and P4W30M4(H2O)2O11216-(M=Co, Cu, Zn)., 26(23):3886-3896. https://doi.org/10.1021/ic00270a014

    Gomez-Garcia CJ, Borras-Almenar JJ, Coronado E, et al., 1994. Single-crystal X-ray structure and magnetic properties of the polyoxotungstate complexes Na16[M4(H2O)2(P2W15O56)2]·H2O (M=MnⅡ,=53; M=NiⅡ,=52): an antiferromagnetic MnⅡtetramer and a ferromagnetic NiⅡtetramer., 33(18):4016-4022. https://doi.org/10.1021/ic00096a028

    Harmalker SP, Leparulo MA, Pope MT, 1983. Mixed-valence chemistry of adjacent vanadium centers in heteropolytungstate anions. 1. Synthesis and electronic structures of mono-, di-, and trisubstituted derivatives of α-[P2W18O62]6-., 105(13):4286-4292. https://doi.org/10.1021/ja00351a028

    Kirby JF, Baker LCW, 1995. Evaluations of a general NMR method, based on properties of heteropoly blues, for determining rates of electron transfer through various bridges. New mixed-mixed valence complexes., 117(40):10010-10016. https://doi.org/10.1021/ja00145a011

    Kong XJ, Ren YP, Zheng PQ, et al., 2006. Construction of polyoxometalates-based coordination polymers through direct incorporation between polyoxometalates and the voids in a 2D network., 45(26):10702-10711. https://doi.org/10.1021/ic061664y

    Li B, Zhao D, Zheng ST, et al., 2008. Hydrothermal synthesis and structural characterization of two organic-inorganic hybrids based on sandwich-type polyoxometalates., 19(4):641-650. https://doi.org/10.1007/s10876-008-0218-1

    Li B, Zhao D, Yang GY, 2009. Hydrothermal synthesis and structural characterization of three one-dimensional heteropolytungstates formed by mono-copperII-substituted Dawson or Keggin cluster units., 20(3):629-639. https://doi.org/10.1007/s10876-009-0264-3

    Li Z, Zhang JH, Jing XT, et al., 2021. A polyoxometalate@covalent triazine framework as a robust electrocatalyst for selective benzyl alcohol oxidation coupled with hydrogen production., 9(10):6152-6159. https://doi.org/10.1039/D0TA09421H

    Liao MY, Wang TM, Zuo T, et al., 2021. Design and solvothermal synthesis of polyoxometalate-based Cu(II)-pyrazolate photocatalytic compounds for solar-light-driven hydrogen evolution., 60(17):13136-13149. https://doi.org/10.1021/acs.inorgchem.1c01540

    Liu JX, Zhang XB, Li YL, et al., 2020. Polyoxometalate functionalized architectures., 414:213260. https://doi.org/10.1016/j.ccr.2020.213260

    Ma PT, Hu F, Wang JP, et al., 2019. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications., 378:281-309. https://doi.org/10.1016/j.ccr.2018.02.010

    Mbomekalle IM, Keita B, Nadjo L, et al., 2003a. Lacunary Wells-Dawson sandwich complexes-synthesis, characterization, and stability studies of multi-iron species., 2003(21):3924-3928. https://doi.org/10.1002/ejic.200300345

    Mbomekalle IM, Keita B, Nadjo L, et al., 2003b. Manganous heteropolytungstates. Synthesis and heteroatom effects in Wells-Dawson-derived sandwich complexes., (13):2646-2650. https://doi.org/10.1039/B304255C

    Mbomekalle IM, Cao R, Hardcastle KI, et al., 2005. Synthesis, structural characterization, and electrocatalytic studies of αββα-(ZnIIOH2)2(FeIII)2(X2W15O56)214-(X=P or As)., 8(6-7):1077-1086. https://doi.org/10.1016/j.crci.2004.10.010

    Oxford Diffraction Ltd., 2010. CrysAlisPro, Version 1.171.33.56. Oxford Diffraction Ltd., UK. https://www.agilent.com/cs/library/usermanuals/public/CrysAlis_Pro_User_Manual.pdf

    Ruhlmann L, Canny J, Contant R, et al., 2002. Di- and tricobalt Dawson sandwich complexes: synthesis, spectroscopic characterization, and electrochemical behavior of Na18[(NaOH2)2Co2(P2W15O56)2] and Na17[(NaOH2)Co3(H2O)(P2W15O56)2]., 41(15):3811-3819. https://doi.org/10.1021/ic020146u

    Ruhlmann L, Canny J, Vaissermann J, et al., 2004. Mixed-metal sandwich complexes [MII2(H2O)2FeIII2(P2W15O56)2]14-(MII=Co, Mn): synthesis and stability. The molecular structure of [MII2(H2O)2FeIII2(P2W15O56)2]14-., (5): 794-800. https://doi.org/10.1039/B315088G

    Ruhlmann L, Costa-Coquelard C, Canny J, et al., 2007. Mixed-metal Dawson sandwich complexes: synthesis, spectroscopic characterization and electrochemical behaviour of Na16[MIICo3(H2O)2(P2W15O56)2] (M=Mn, Co, Ni, Zn and Cd)., 2007(11):1493-1500. https://doi.org/10.1002/ejic.200600942

    Schaming D, Canny J, Boubekeur K, et al., 2009. An unprecedented trinuclear Dawson sandwich complex with internal lacuna: synthesis and31P NMR spectroscopic analysis of the symmetrical [NaNi3(H2O)2(P2W15O56)2]17-and [CoNi3(H2O)2(P2W15O56)2]16-anions., 2009(33):5004-5009. https://doi.org/10.1002/ejic.200900738

    Sheldrick GM, 1997. SHELXL-97: Program for the Refinement of Crystal Structures. University of G?ttingen, G?ttingen, Germany.

    Song WB, Wang XH, Liu Y, et al., 1999. Electrochemical and electrocatalytic properties of tetra-iron substituted sandwich-type pentadecatungstodiphosphate heteropolyanions., 476(1):85-89. https://doi.org/10.1016/S0022-0728(99)00363-0

    Spek AL, 2003. Single-crystal structure validation with the program PLATON., 36(1):7-13. https://doi.org/10.1107/S0021889802022112

    Wang XL, Hu HL, Tian AX, 2010. Influence of transition metal coordination nature on the assembly of multinuclear subunits in polyoxometalates-based compounds., 10(11):4786-4794. https://doi.org/10.1021/cg1006742

    Weakley TJR, Finke RG, 1990. Single-crystal X-ray structures of the polyoxotungstate salts K8.3Nal.7[Cu4(H2O)2(PW9O34)2]·24H2O and Na14Cu[Cu4(H2O)2(P2Wl5O56)2]·53H2O., 29(6):1235-1241. https://doi.org/10.1021/ic00331a025

    Ye JJ, Wu CD, 2016. Immobilization of polyoxometalates in crystalline solids for highly efficient heterogeneous catalysis., 45(25):10101-10112. https://doi.org/10.1039/C6DT01378C

    Zhao HY, Li YZ, Zhao JW, et al., 2021. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials., 443:213966. https://doi.org/10.1016/j.ccr.2021.213966

    Electronic supplementary materials

    Figs. S1–S11

    制備與表征基于Wells-Dawson三明治型多酸陰離子[Co4(H2O)2(P2W15O56)2]16?的三種新型固態(tài)雜多酸材料

    葉吉接,胥璇,吳傳德

    浙江大學(xué),化學(xué)系,中國(guó)杭州,310058
    目的:本文旨在研究Wells-Dawson三明治型雜多酸陰離子[Co4(H2O)2(P2W15O56)2]16?的配位能力、夾心金屬離子的穩(wěn)定性以及氧化還原性質(zhì),以拓展有機(jī)-無(wú)機(jī)雜化材料的種類。
    創(chuàng)新點(diǎn):1. 首次以Wells-Dawson三明治型雜多酸陰離子[Co4(H2O)2(P2W15O56)2]16?制備了有機(jī)-無(wú)機(jī)雜化材料;2. 首次實(shí)現(xiàn)在溫和條件下取代Wells-Dawson三明治型雜多酸陰離子中的夾心金屬離子。

    1.在溫和條件下合成[Co8(H2O)34(pz)2{Co4(H2O)2P4W30O112}]·16H2O,[H3O]4[Co6(H2O)22(pz)2{Co4(H2O)2P4W30O112}]·21H2O和[H3O]4[Co6(H2O)22{Co4(H2O)2P4W30O112}]·29H2O三種雜多酸固態(tài)材料;2. 利用X-射線單晶衍射、傅里葉紅外譜圖、X-射線粉末衍射、熱重分析和循環(huán)伏安曲線等測(cè)試與表征方法對(duì)合成的三種雜多酸固態(tài)材料進(jìn)行結(jié)構(gòu)和性質(zhì)分析。

    在溫和條件下制備由Wells-Dawson三明治型{Co4P4W30}雜多酸構(gòu)筑的三種固態(tài)配位材料,發(fā)現(xiàn)夾心環(huán)帶中的金屬陽(yáng)離子能夠影響雜化材料的骨架結(jié)構(gòu)。此外,首次證明夾心環(huán)帶中的金屬陽(yáng)離子在相對(duì)溫和的條件下容易被環(huán)境中的過(guò)渡金屬離子取代。本研究為合理設(shè)計(jì)和組裝具有潛在應(yīng)用前景的有機(jī)-無(wú)機(jī)雜化材料提供了有益參考。

    鈷;晶體結(jié)構(gòu);循環(huán)伏安曲線;雜多酸

    https://doi.org/10.1631/jzus.A2300250

    https://doi.org/10.1631/jzus.A2300250

    *Chuande WU, cdwu@zju.edu.cn

    Chuande WU, ORCID:https://orcid.org/0000-0001-8128-134X

    Received May 9, 2023;

    Revision accepted July 12, 2023;

    Crosschecked Jan. 17, 2024

    ? Zhejiang University Press 2024

    猜你喜歡
    夾心雜化三明治
    三明治
    中老年保健(2021年2期)2021-08-22 07:29:38
    不同形狀的三明治
    幼兒園(2019年8期)2019-09-09 16:04:00
    α-細(xì)辛腦脂質(zhì)聚合物雜化納米粒的制備及表征
    “夾心”的生日蛋糕
    紐約市最著名的三明治
    海外星云(2016年15期)2016-12-01 04:18:27
    中藥夾心面條
    元素雜化阻燃丙烯酸樹(shù)脂的研究進(jìn)展
    化學(xué)教學(xué)中的分子雜化軌道學(xué)習(xí)
    元素雜化阻燃聚苯乙烯的研究進(jìn)展
    新型夾心雙核配和物[Zn2(ABTC)(phen)2(H2O)6·2H2O]的合成及其熒光性能
    午夜福利免费观看在线| 又爽又黄无遮挡网站| 国产成人a区在线观看| 老司机深夜福利视频在线观看| 久久热精品热| 99热只有精品国产| 亚洲最大成人手机在线| 啦啦啦观看免费观看视频高清| 婷婷亚洲欧美| 男人舔女人下体高潮全视频| 男女之事视频高清在线观看| 国产v大片淫在线免费观看| 看片在线看免费视频| 身体一侧抽搐| 少妇的逼好多水| 午夜免费激情av| 色综合欧美亚洲国产小说| 国产熟女xx| 91字幕亚洲| 免费高清视频大片| 久久久国产成人免费| www.熟女人妻精品国产| 欧美日韩综合久久久久久 | 九九久久精品国产亚洲av麻豆| 90打野战视频偷拍视频| 国产美女午夜福利| 免费av观看视频| 大型黄色视频在线免费观看| 亚洲最大成人av| 亚洲人成电影免费在线| 中文字幕av在线有码专区| 1000部很黄的大片| 女生性感内裤真人,穿戴方法视频| 一本一本综合久久| 国产精品电影一区二区三区| 男人舔奶头视频| 精品久久国产蜜桃| 99久久精品国产亚洲精品| 精品久久久久久久人妻蜜臀av| 不卡一级毛片| 亚州av有码| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 亚洲综合色惰| 麻豆国产av国片精品| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 亚洲av一区综合| 久久99热6这里只有精品| 日韩欧美在线乱码| 亚洲精品日韩av片在线观看| 免费观看人在逋| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 国产不卡一卡二| 69av精品久久久久久| 如何舔出高潮| 国产乱人伦免费视频| 国产主播在线观看一区二区| 午夜免费激情av| 国产高清三级在线| 99久久久亚洲精品蜜臀av| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 日日摸夜夜添夜夜添av毛片 | 亚洲最大成人av| 很黄的视频免费| 少妇的逼水好多| 国产乱人视频| а√天堂www在线а√下载| 国产单亲对白刺激| 免费av不卡在线播放| 婷婷六月久久综合丁香| 国产亚洲av嫩草精品影院| 久久国产精品人妻蜜桃| 午夜福利在线观看免费完整高清在 | 免费搜索国产男女视频| 国产 一区 欧美 日韩| 国产亚洲精品久久久久久毛片| 亚洲综合色惰| 国产成人aa在线观看| 看片在线看免费视频| 日韩精品青青久久久久久| or卡值多少钱| 欧美中文日本在线观看视频| 亚洲av二区三区四区| 亚洲av.av天堂| 国产亚洲精品久久久com| 天堂网av新在线| 成人av一区二区三区在线看| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区 | 国产v大片淫在线免费观看| 黄色一级大片看看| 国产91精品成人一区二区三区| 男人的好看免费观看在线视频| 亚洲人成网站高清观看| 午夜福利在线在线| 色精品久久人妻99蜜桃| 成人欧美大片| 美女大奶头视频| 久久久久久久精品吃奶| 男女那种视频在线观看| 我的老师免费观看完整版| 午夜a级毛片| 亚洲精品久久国产高清桃花| 日日夜夜操网爽| 大型黄色视频在线免费观看| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 麻豆成人av在线观看| 日韩欧美三级三区| 久久99热6这里只有精品| 一本综合久久免费| 中文字幕人成人乱码亚洲影| 禁无遮挡网站| 亚洲成av人片在线播放无| 日韩成人在线观看一区二区三区| www.www免费av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一夜夜www| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产国拍精品亚洲av在线观看| 三级毛片av免费| 中文资源天堂在线| 婷婷六月久久综合丁香| 一进一出抽搐动态| 黄色日韩在线| 深夜精品福利| 国产亚洲欧美98| 搞女人的毛片| www.色视频.com| 午夜免费激情av| 国产av麻豆久久久久久久| av天堂在线播放| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 深爱激情五月婷婷| av在线老鸭窝| 国产野战对白在线观看| 99riav亚洲国产免费| 中文字幕久久专区| av天堂在线播放| 丝袜美腿在线中文| 真人做人爱边吃奶动态| 97人妻精品一区二区三区麻豆| 老鸭窝网址在线观看| 天堂网av新在线| 午夜免费成人在线视频| 中国美女看黄片| 看免费av毛片| 欧美在线黄色| 久久久久九九精品影院| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 国产精华一区二区三区| 欧美乱色亚洲激情| 婷婷六月久久综合丁香| 99久久精品国产亚洲精品| 白带黄色成豆腐渣| 久久久久久国产a免费观看| 性欧美人与动物交配| 一个人看的www免费观看视频| 88av欧美| 久久草成人影院| 一级黄色大片毛片| 超碰av人人做人人爽久久| 久久久久精品国产欧美久久久| 久久久久久九九精品二区国产| 免费大片18禁| 日韩欧美国产在线观看| 美女大奶头视频| 日本一二三区视频观看| 欧美激情国产日韩精品一区| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 亚洲第一电影网av| 日韩欧美精品v在线| 一区二区三区免费毛片| 国产午夜精品论理片| 国产精品av视频在线免费观看| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 97碰自拍视频| 俄罗斯特黄特色一大片| 免费av毛片视频| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 少妇人妻精品综合一区二区 | 在线看三级毛片| 亚洲av中文字字幕乱码综合| 久久久久久九九精品二区国产| 琪琪午夜伦伦电影理论片6080| 麻豆成人午夜福利视频| 日本一本二区三区精品| .国产精品久久| 搡女人真爽免费视频火全软件 | 欧洲精品卡2卡3卡4卡5卡区| 欧美+日韩+精品| 国产精品影院久久| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 日韩大尺度精品在线看网址| 成人特级黄色片久久久久久久| 久久久成人免费电影| 欧美激情在线99| 男人狂女人下面高潮的视频| 欧美激情国产日韩精品一区| 亚洲成人精品中文字幕电影| 亚洲七黄色美女视频| 亚洲av电影不卡..在线观看| 成年版毛片免费区| www.色视频.com| 69av精品久久久久久| 欧美潮喷喷水| 婷婷六月久久综合丁香| 成年女人毛片免费观看观看9| 亚洲电影在线观看av| 18禁在线播放成人免费| 免费人成在线观看视频色| 免费看a级黄色片| 国产精华一区二区三区| 国产探花极品一区二区| 久久人人爽人人爽人人片va | 波多野结衣高清无吗| 欧美黑人巨大hd| 丁香六月欧美| 久久久成人免费电影| 欧美色欧美亚洲另类二区| 亚洲国产高清在线一区二区三| 我要搜黄色片| 午夜免费男女啪啪视频观看 | www日本黄色视频网| 青草久久国产| av福利片在线观看| 男女之事视频高清在线观看| 小蜜桃在线观看免费完整版高清| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 欧美不卡视频在线免费观看| 舔av片在线| 精品久久久久久久久久免费视频| 精品一区二区免费观看| 成熟少妇高潮喷水视频| 午夜福利高清视频| 美女cb高潮喷水在线观看| 国产精品乱码一区二三区的特点| 色哟哟·www| 色尼玛亚洲综合影院| 成人国产一区最新在线观看| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 午夜日韩欧美国产| 国产精品三级大全| 午夜精品一区二区三区免费看| 少妇被粗大猛烈的视频| 男人狂女人下面高潮的视频| 自拍偷自拍亚洲精品老妇| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲最大成人av| 夜夜躁狠狠躁天天躁| 少妇丰满av| 免费在线观看亚洲国产| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 露出奶头的视频| av在线老鸭窝| 我的女老师完整版在线观看| 色尼玛亚洲综合影院| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 在线播放无遮挡| 变态另类丝袜制服| 真实男女啪啪啪动态图| 日韩欧美一区二区三区在线观看| 亚洲美女搞黄在线观看 | 99久久久亚洲精品蜜臀av| 一区二区三区免费毛片| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 亚洲在线观看片| 国产伦精品一区二区三区视频9| 成年女人毛片免费观看观看9| 亚洲精品亚洲一区二区| 熟女人妻精品中文字幕| 每晚都被弄得嗷嗷叫到高潮| 1024手机看黄色片| 午夜两性在线视频| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 日本a在线网址| 人人妻人人看人人澡| 哪里可以看免费的av片| 亚洲在线自拍视频| 亚洲18禁久久av| 日本在线视频免费播放| avwww免费| 两人在一起打扑克的视频| 国内少妇人妻偷人精品xxx网站| 日本一二三区视频观看| 亚洲电影在线观看av| 国产精品久久视频播放| 成人高潮视频无遮挡免费网站| 午夜福利免费观看在线| 免费人成在线观看视频色| 99热只有精品国产| 精品一区二区三区av网在线观看| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 国产伦精品一区二区三区视频9| 中出人妻视频一区二区| 成人三级黄色视频| 亚洲精品456在线播放app | 欧美性感艳星| 成人永久免费在线观看视频| 偷拍熟女少妇极品色| 免费一级毛片在线播放高清视频| 国产黄a三级三级三级人| 国产精品一区二区免费欧美| 国产精品,欧美在线| 亚洲精品乱码久久久v下载方式| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 亚洲专区中文字幕在线| 国产美女午夜福利| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 国产高潮美女av| 久久午夜亚洲精品久久| 99久久久亚洲精品蜜臀av| 男人和女人高潮做爰伦理| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 免费无遮挡裸体视频| 成人午夜高清在线视频| 黄色一级大片看看| 天天躁日日操中文字幕| 又紧又爽又黄一区二区| 久久久久九九精品影院| 国产一级毛片七仙女欲春2| www.www免费av| 麻豆成人av在线观看| 色精品久久人妻99蜜桃| 午夜两性在线视频| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 一本一本综合久久| 日韩免费av在线播放| 精品欧美国产一区二区三| 不卡一级毛片| 久99久视频精品免费| 午夜福利高清视频| 久久久久性生活片| 亚洲精品日韩av片在线观看| 欧美另类亚洲清纯唯美| 国产主播在线观看一区二区| av黄色大香蕉| 黄片小视频在线播放| 日韩欧美国产在线观看| 波多野结衣高清作品| 怎么达到女性高潮| 国产精品三级大全| 中文资源天堂在线| 最近中文字幕高清免费大全6 | 熟女电影av网| 亚洲欧美日韩高清专用| 91久久精品电影网| x7x7x7水蜜桃| 亚洲美女黄片视频| 欧美日韩亚洲国产一区二区在线观看| 黄色女人牲交| 久久国产精品人妻蜜桃| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看 | 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 成人特级av手机在线观看| 在线国产一区二区在线| 日本免费a在线| 少妇熟女aⅴ在线视频| 亚洲av第一区精品v没综合| 内射极品少妇av片p| 69人妻影院| 99久久九九国产精品国产免费| 久久亚洲真实| 亚洲人成网站在线播放欧美日韩| 久9热在线精品视频| 国内少妇人妻偷人精品xxx网站| 日韩 亚洲 欧美在线| 成人国产一区最新在线观看| 女人被狂操c到高潮| www日本黄色视频网| 欧洲精品卡2卡3卡4卡5卡区| 97超视频在线观看视频| 免费一级毛片在线播放高清视频| 国产精品女同一区二区软件 | 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 日本免费一区二区三区高清不卡| 热99在线观看视频| 午夜福利免费观看在线| 日韩欧美在线二视频| 国产真实伦视频高清在线观看 | 成年女人毛片免费观看观看9| 午夜福利18| 麻豆av噜噜一区二区三区| 精品人妻1区二区| 在线看三级毛片| 午夜免费成人在线视频| 非洲黑人性xxxx精品又粗又长| 国产乱人视频| 无人区码免费观看不卡| 国产三级中文精品| 精品无人区乱码1区二区| 国产精品影院久久| 亚洲欧美激情综合另类| av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 国产午夜福利久久久久久| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院| 90打野战视频偷拍视频| 国产大屁股一区二区在线视频| 成人三级黄色视频| 午夜激情欧美在线| 99久久精品热视频| 久久99热6这里只有精品| 12—13女人毛片做爰片一| 精品久久久久久久末码| 特级一级黄色大片| 久久精品综合一区二区三区| 99热这里只有是精品50| 久久国产乱子免费精品| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区性色av| 午夜免费激情av| 国内精品一区二区在线观看| 欧美性感艳星| 一本综合久久免费| 久久午夜福利片| 1000部很黄的大片| 女人被狂操c到高潮| 热99在线观看视频| 亚洲欧美日韩高清在线视频| 我要看日韩黄色一级片| 国产乱人伦免费视频| 午夜精品在线福利| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 十八禁网站免费在线| 在线播放无遮挡| 亚洲黑人精品在线| 国产精品野战在线观看| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 久久久国产成人免费| 亚洲精品一区av在线观看| 精品午夜福利视频在线观看一区| 我的女老师完整版在线观看| 中文字幕高清在线视频| 亚洲国产精品成人综合色| 亚洲精品在线美女| 99热6这里只有精品| 色噜噜av男人的天堂激情| 国产大屁股一区二区在线视频| 亚洲国产欧美人成| 国产精品国产高清国产av| 青草久久国产| 亚洲乱码一区二区免费版| 直男gayav资源| 亚洲精品粉嫩美女一区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久视频播放| 大型黄色视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 欧美成狂野欧美在线观看| 亚洲精品在线观看二区| 直男gayav资源| 国产精品三级大全| 少妇高潮的动态图| 午夜精品久久久久久毛片777| 好男人电影高清在线观看| 如何舔出高潮| 亚洲,欧美精品.| 国产亚洲精品综合一区在线观看| 欧美黑人巨大hd| av天堂中文字幕网| 中国美女看黄片| 国产精品久久久久久久电影| 很黄的视频免费| 精品久久久久久,| 久久久国产成人精品二区| 91av网一区二区| 亚洲人成网站高清观看| 少妇裸体淫交视频免费看高清| 九九在线视频观看精品| 少妇人妻精品综合一区二区 | 欧美黄色淫秽网站| 亚洲av.av天堂| 人人妻人人看人人澡| 天天躁日日操中文字幕| 成人国产一区最新在线观看| 别揉我奶头 嗯啊视频| 精品久久国产蜜桃| 白带黄色成豆腐渣| 亚洲人与动物交配视频| av欧美777| 国产在线精品亚洲第一网站| 俄罗斯特黄特色一大片| 国产精品久久久久久久电影| 国产69精品久久久久777片| 久久久久久久久大av| 人妻丰满熟妇av一区二区三区| 国产精品女同一区二区软件 | 男女床上黄色一级片免费看| 欧美绝顶高潮抽搐喷水| 日韩亚洲欧美综合| 日韩中字成人| 免费观看精品视频网站| av视频在线观看入口| 两个人的视频大全免费| 亚洲av电影不卡..在线观看| 国产精品三级大全| 亚洲精品一卡2卡三卡4卡5卡| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区视频9| 成人精品一区二区免费| 成人无遮挡网站| 99国产极品粉嫩在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲性夜色夜夜综合| 亚洲人成网站在线播放欧美日韩| 最新在线观看一区二区三区| 五月玫瑰六月丁香| 国产免费男女视频| 久9热在线精品视频| 男人舔女人下体高潮全视频| 亚洲av中文字字幕乱码综合| 久久午夜福利片| 精品人妻1区二区| 老女人水多毛片| 午夜亚洲福利在线播放| 亚洲一区二区三区色噜噜| 国产精品伦人一区二区| 国产精品一区二区三区四区久久| 亚洲国产精品合色在线| 国产成人aa在线观看| 久久久成人免费电影| 91在线观看av| 美女cb高潮喷水在线观看| 久久国产乱子免费精品| 日日夜夜操网爽| 欧美成人a在线观看| 神马国产精品三级电影在线观看| 黄色丝袜av网址大全| 国产一区二区三区在线臀色熟女| 成人特级黄色片久久久久久久| 国产精品伦人一区二区| 麻豆国产97在线/欧美| 波野结衣二区三区在线| 老司机午夜十八禁免费视频| 88av欧美| 99久久九九国产精品国产免费| 午夜激情欧美在线| 在线免费观看的www视频| 伊人久久精品亚洲午夜| 国产美女午夜福利| 高清日韩中文字幕在线| 99国产精品一区二区三区| 精品一区二区三区视频在线| 亚洲片人在线观看| 国产亚洲精品av在线| 免费观看的影片在线观看| 3wmmmm亚洲av在线观看| 久久久久久久久中文| 午夜老司机福利剧场| 久久国产乱子免费精品| a级一级毛片免费在线观看| 国产精品久久久久久人妻精品电影| 大型黄色视频在线免费观看| 国产大屁股一区二区在线视频| 69人妻影院| 又粗又爽又猛毛片免费看| 观看免费一级毛片| 亚洲av第一区精品v没综合| 大型黄色视频在线免费观看| 久久人妻av系列| 欧美zozozo另类| 人人妻,人人澡人人爽秒播| 国产成人a区在线观看| 亚洲黑人精品在线| 人人妻人人澡欧美一区二区| 免费在线观看日本一区| 日本 欧美在线| 精品人妻视频免费看| 成人一区二区视频在线观看| 最近最新免费中文字幕在线| 亚洲成人精品中文字幕电影| 免费一级毛片在线播放高清视频| 嫁个100分男人电影在线观看|