• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic geometry of the RN-AdS black hole and non-local observables

    2024-03-07 12:57:00ChaoWangBinWuZhenMingXuandWenLiYang
    Communications in Theoretical Physics 2024年2期

    Chao Wang ,Bin Wu ,Zhen-Ming Xu and Wen-Li Yang

    1 Institute of Physics,Shaanxi University of Technology,Hanzhong 723000,China

    2 School of Physics,Northwest University,Xi’an 710127,China

    3 Institute of Modern Physics,Northwest University,Xi’an 710127,China

    4 Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China

    5 Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China

    Abstract This paper studies the thermodynamic geometry of the Reissner–Nordstr?m-anti-de Sitter (RNAdS)black hole via detection of the non-local observables in the dual field theory,including the entanglement entropy and equal-time two-point correlation function.With the dimensional analysis,we construct the principle of corresponding states of black hole thermodynamics.As a result,our findings can be applied to black holes with different AdS backgrounds.In this sense,the probe of the thermodynamic geometry of the RN-AdS black hole though the non-local observables in dual field theory has been confirmed numerically.

    Keywords: black hole thermodynamic,thermodynamic geometry,phase transition,non-local observables

    1.Introduction

    The pioneering work by Hawking and Bekenstein on black hole temperature and entropy [1,2] made people realize that black holes are thermodynamic systems that exhibit phase transition behavior.The first black hole phase transition is the Hawking–Page phase transition [3],which is related to the confinement/deconfinement phase transition [4] in the dual field theory,and makes the anti-de Sitter (AdS) spacetime more charming.Next,the discovery of the van der Waals-like phase transition in charged AdS black holes [5] implied that the black hole will undergo second-order and first-order phase transition successively before it reaches the stable phase,which revealed the connection between black holes and ordinary thermodynamic systems.

    By treating the negative cosmological constant Λ=?(d ?1)(d ?2)/l2as the thermodynamic pressure P=?Λ/8πG [6–8],the extended phase space of the AdS black hole is established,in which the van der Waals-like phase transition was reconstructed [9].Within this framework,the phase transition and critical behavior of black holes have been extensively studied in [10–18].However,due to the importance of the AdS black hole in the AdS/conformal field theory (AdS/CFT) duality,which describes the fact that the correspondence between quantum gravity and gauge field theory resides on the boundary [19,20],the holographic interpretations of the variation of Λ have received significant attention.

    Several works in [21–23] have proposed that the variation of Λ corresponds to varying the number of color N:alternatively,the number of degrees of freedom N2of the dual field theory.In CFT,the number of degrees of freedom is denoted by the central charge with C=ld?2/Gd[24–26],where Gdis the Newtonian constant in d-dimensional spacetime.Therefore,the change in Λ corresponds to varying the central charge in CFT.In a fixed CFT,it is suggested that the central charge C should be constant[27].Recently,Visser derived the holographic thermodynamics in the dual field theory by applying the central charge as a thermal variable,which plays a similar role to the particle number in the thermodynamic system[28].Inspired by this,considerable work has been carried out to reveal the properties of the dual field theory in this context [27,29,30].Going a step further,in [31–35],by fixing the AdS radius l,the extensive black hole thermodynamics have been developed.

    While the development of black hole thermodynamics is in full swing,considerable interest has been paid to probing their thermodynamic behavior.To address this,holographic entanglement entropy (HEE) [36,37] in the dual field theory was employed to investigate the detection of the thermodynamic behavior of the Reissner–Nordstr?m-anti-de Sitter(RN-AdS) black hole in [38].The results demonstrated the existence of oscillating behavior in the temperature–HEE plane,resembling the van der Waals phase transition.Furthermore,the critical behavior and the Maxwell equal area law[39,40]were examined and found to be fulfilled.Further study suggested that the oscillating behavior was also observed in the coordinate space organized by the Hawking temperature and geodesic length on the AdS boundary,which is related to the equal-time two-point correlation function and Wilson loop [41,42].

    The phase transition in classical thermodynamics originates from intermolecular interaction,but the microstructure of black holes is still a mystery.The introduction of the Ruppeiner geometry [43–45]provides some insight into that.By considering the fluctuation theory,line elements are proposed to measure the distance between fluctuation states,which take the form of

    Here,S is the entropy of the system,and Xμare the thermodynamic coordinates depending on the choice of the thermodynamic potential.The curvature scalar calculated from equation(1)describes the interaction within the system.Specifically,a positive(negative)value of the curvature scalar indicates a repulsive (attractive) interaction within the black hole domain,and the noninteracting system corresponding to the flat Ruppeiner metric [46–58].In this sense,the application of the Ruppeiner geometry is the reverse process of statistical physics,i.e.detecting the microstructure of a system with its thermodynamic behavior.It has also been observed that the divergent point of the curvature scalar corresponds to the phase transition point [59],which implied the phase structure will be exposed by the curvature scalar.In[60],the author constructed a new formalism of thermodynamic geometry(NTG)by changing the coordinates of the Ruppeiner metric equation (1) using Jacobian matrices.Therefore,the line element turns to

    Considering that the non-local variables have the same oscillating behavior as the black hole phase transition,it is natural to ask whether the information of the underlying microstructure depicted by the thermodynamic geometry can be read in a given CFT.Inspired by this,we explore the connection between the black hole entropy and the non-local observables in dual field theory,including the HEE and the equal-time two-point correlation function;the results specified that the observation of the quantities in CFT will expose the information of the black hole phase structure and thermodynamic geometry.

    The outline of this paper is as follows.In section 2,we review the phase structure and the thermodynamic geometry of the RN-AdS black hole.The numerical results to describe the thermodynamic geometry of the RN-AdS black hole with the HEE and two-point correlation function will be investigated in section 3.We end this paper with a conclusion in section 4.Throughout this paper,we adopt the units ?=c=kB=G=1 for convenience.

    2.RN-AdS black hole

    The RN-AdS black hole in four-dimensional spacetime is characterized by the action in the form of

    where l is the AdS radius,and the equation of motion is

    The metric function f(r) can be obtained easily

    The parameters M and Q in the metric function are the mass and charge of the black hole,respectively.The temperature and entropy are given by

    where rhis the position of the outer event horizon.The mass of the black hole can be deduced with the condition f(rh)=0

    where Φ=Q/rhis the electric potential difference between the horizon and infinity.

    Figure 1.The iso-q curves in {t,s} coordinate space.Here,we set q=0.6qc,qc and 2qc from top to bottom.The Maxwell equal area law is constructed by the black dashed line.

    In classical thermodynamics,the critical point of a van der Waals fluid is denoted by the model parameters,and the equation of state with reduced parameters is applicable for the system with different components,which is called the principle of corresponding states.In an AdS background,the cosmological constant plays the role of model parameter as that of van der Waals fluids.Consequently,by considering the dimensional analysis of the thermodynamic variables,the dimensionless thermal parameters are introduced as

    In this way,the equation of state with the dimensionless parameters will hold for charged black holes in different AdS backgrounds,which is the law of corresponding states.The equation of state can be redefined as follows

    in which the AdS radius l can be set as an arbitrary constant.The critical point decided byis marked as

    It is clear that the critical point is universal for the black hole in different AdS spacetime.After obtaining the principle of corresponding states,we would like to depict the van der Waals-like phase transition of the RN-AdS black hole.Based on equation (9),the iso-q process is shown in figure 1.

    In the figure,the charge was set as q=0.6qc,qcand 2qcfrom top to bottom.The box formed by the black dashed line corresponds to the Maxwell equal area law of the van der Waals-like phase transition,which implies that the area under the curve between the black dots is equal to the area under the dashed black line.The coexistence temperature t*and s1,2are the coordinates of the box vertices dividing the stable state from the metastable state,which can be obtained as

    While the charge is less than qc,the iso-q curve exhibits similar oscillatory behavior to that of the van der Waals phase transition.According to thermodynamic theory,a small stable state will directly transform into a large stable one when the temperature of the black hole exceeds t*.Together with the local extremal point painted in purple,the iso-q curve was divided into five segments.The red solid lines correspond to the small (SBH) and large black holes (LBH),which are thermodynamically stable.The black hole on the purple dashed line is unstable (SBH+LBH).The green solid lines are the metastable curves of the black hole,and they separate the stable and unstable states of the black hole,with the left part being the superheated SBH (SHSBH),while the right part corresponds to the supercooled LBH (SCLBH).As the charge reaches the critical value,these two local extremal points merge into one at the inflection point on the orange curve in figure 1.Upon further increasing the value of q,the curve is monotonic,and the black hole is in the supercritical phase (SCBH).

    To reveal the information of the underlying microstructure of the black hole,we adopt the Ruppeiner geometry of the RN-AdS black hole.In the {S,Q} space,from equation(2)with Ξ=M,the thermodynamic metric comes to

    Therefore,the thermodynamic curvature scalar arises

    and with the dimension [ R] =1[l]2we combine the equations in equations(5)and(6)to demonstrate the variation of the dimensionless curvature scalarin terms of entropy s with qqcin figure 2,respectively.

    From equation (5),we know that the scalar curvature starts from negative infinity caused by t=0,marked by the red dotted line,which describes the extremal black holes.When q

    Figure 3.The characteristic curve of scalar curvature in coordinate space{t,s}.The orange and red solid lines are the divergence curve and the variable sign curve of the curvature scalar,respectively.The blue solid line is the coexistence curve in equation (10).The blue dashed curve in the figure corresponds to the critical point temperature.

    As discussed above,the vanishing point and divergent point ofare helpful for us to learn about the underlying microstructure and the phase structure of the black hole;checking the characteristic curve,which includes the signchanging curve tscand the divergent curvetdiv,of scalar curvature is important.With equations (5),(6) and (12),the characteristic curves can be deduced as

    which are plotted in figure 3.

    The blue solid curve in the figure is the coexistence curve based on equations (10) and (11),which is divided into the saturated small phase and saturated large phase using the extreme point.The orange and red curves are the divergence curve and the sign-changing curve of,respectively.The area above the tsccurve that is painted in pink corresponds to the positive value of the curvature scalar,and the interaction is a repulsive domain.Meanwhile,other areas with<0 implied the interaction between the parts of the black hole is an attractive domain.The figure tells us that only the large black hole in low temperatures would show the repulsive interaction.The phase structure was also exhibited in the figure.Above the blue dashed line,the black hole is in the supercritical phase.

    3.Thermodynamic geometry and non-local variables

    As we have reviewed the thermodynamic geometry of the RN-AdS black hole,we will further investigate its relation to the non-local observables in a given CFT,including the(HEE) and the two-point correlation function.We would like to start this topic with HEE,which has been proven to show similar oscillation behavior as that of the van der Waals phase transition.In this sense,we will explore whether HEE can reflect the thermodynamic geometry of a black hole.

    The entanglement entropy (EE) denotes the relationship between two subsystems of a quantum system,which is denoted by A and Ac.When the quantum system lives in a CFT,the EE can be computed by the Ryu-Takayanagi (RT)recipe [36,37]

    Here,the ΓAis a codimension-2 minimal surface in bulk AdS space that has the same boundary conditions as A on the boundary CFT.According to the metric function equations(4)and(13),the area of the minimal surface ΓAcan be calculated as

    wherer′=drdθwith θ0as the boundary condition of HEE in the θ direction.Here,L is now introduced as the Lagrangian with θ.The only analytical solution of r(θ) is pure AdS spacetime in the bulk.In the study of HEE,we will solve the equation of motion in ordinary spacetime numerically with the conditions that

    Figure 4.The dimensionless curvature scalar for the RN-AdS black hole in terms of δS/l2.Here,we set(a)qqc from left to right.The entropy at the red line corresponds to the vanishing value of the reduced temperature t.

    Notice that for the UV-divergent of the EE,we should regulate it by subtracting the area of the minimal surface in pure AdS,which we denote as δS.When calculating the EE with the RT formula,we ask θ0to be a small value to make sure the minimal surface can return to the subsystem continuously.Therefore,we set θ0=0.1 and the UV-cutoff in CFT with r(0.099).To check whether the HEE can be exploited to reflect the curvature scalar of the black hole,we study the relationship between the Ruppeiner geometry and HEE.The equation for HEE in equation (14) indicated the relation in rhand SA,with which we can establish a one-toone correspondence between the black hole phase transition and the oscillating behavior of non-local observables in the given CFT.The numerical results of the curvature scalar in terms of HEE with different charges is shown in figure 4.The behavior of the curvature scalar with respect to the dimensionless parameter δS/l2with qqcis shown from left to right.With the numerical method,there is a point-to-point correspondence to that in figure 2.As with the black hole entropy,the EE also reveals the phase structure of the RN-AdS black hole with a fixed charge,which is identical to that of the van der Waals fluid.Furthermore,with a glimpse of the value of the HEE,we can assert the interaction within the corresponding black hole.

    To show the relation between the thermodynamic properties of the RN-AdS black hole and the HEE,we plot the characteristic curves for the Hawking temperature and EE of CFT in figure 5.The blue dashed line denotes the critical value of t,beyond which the corresponding black hole is undergoing a first-order phase transition.When the temperature is at the critical value,the black hole will show a second-order phase transition.Furthermore,the black hole is in the superficial phase and 1/t exceeds the blue dashed line.The blue solid curve is the coexistence curve,which separates the saturated small and large black hole phases through the critical point.The EE δS with a small or large value indicates that the black hole is thermodynamically stable.The orange curve is the divergent curve of the scalar curvature,which distinguishes the unstable phase from the metastable phase.The red solid curve is the sign-changing curve,and the top area painted in red represents~R >0.Moreover,the correspondence of these characteristic curves between the black hole entropy and HEE announces that the thermodynamic information of the former can be read from the dual field theory.

    Figure 5.The characteristic curve of the curvature scalar in coordinate space{δS/l2,1/t}.The orange and red solid lines are the divergence curve and sign-changing curve of the curvature scalar,respectively.The blue solid curve is the coexistence curve.The blue dashed curve in the figure corresponds to the critical point temperature.

    Now,let us focus on the two-point correlation function in CFT.The AdS/CFT correspondence implies that the equaltime two-point correlation function with a large conformal dimension Δ of the scalar operatorO in the dual field theory is holographically approximated as [63]

    where L is the length between the points(t0,xi)and(t0,xj)on the AdS boundary measured by the metric of the bulk geodesic.Due to the spacetime symmetry,we can let xi=θ,and the boundary is marked as θ0.Therefore,the proper length can be parameterized as

    Figure 6.The dimensionless curvature scalar for the RN-AdS black hole in terms of δL/l.Here,we set(a)qqc from left to right.The entropy on the red line corresponds to the vanishing value of the reduced temperature t.

    Figure 7.The characteristic curve of the curvature scalar in coordinate space {δL/l,1/t}.The orange and red solid lines are the divergence curve and the variable sign curve of the curvature scalar,respectively.The blue solid line is the coexistence curve.The blue dashed curve in the figure corresponds to the critical point temperature.

    where the dot denotest.=drdθ.The equation of motion is obtained from the Euler–Lagrange equation with the LagrangianL with respect to θ.By applying the boundary condition equation (15),r(θ) can be deduced by solving equation (16).We apply the numerical method to calculate the geodesic length,which is difficult to obtain in analytical similarly as long as they are in the same state described by the same dimensionless parameters.By considering the black hole mass,we obtain the thermodynamic scalar curvature equation (12) and show the thermodynamic behavior of the black hole,which implies thatcan be exploited to display the phase transition of the black hole,and the underlying microstructure.We then investigate the thermodynamic geometry of the black hole with the non-local observables in the given CFT.Interestingly,the HEE and equal-time two-point correlation function also show similar behavior in the form.Due to the divergence of the geodesic length at the boundary θ0,it should be regularized by subtracting the geodesic length in pure AdS with the same boundary conditions,denoted as δL.For that purpose,we choose θ0=0.1 and the UV-cutoff in the dual field theory as r(0.099).The relationship betweenand δL/l is shown in figure 6.

    4.Conclusion

    In this paper,we investigate the probe of the thermodynamic geometry of the RN-AdS black hole by the non-local observables in a given CFT.Through dimensional analysis,we introduce dimensionless thermodynamic variables and establish the corresponding state laws.This principle suggests that charged black holes in different AdS backgrounds behaveplanes,respectively,to the black hole.These results suggest that the HEE and equal-time twopoint correlation function in the given CFT can serve as good probes of the black hole’s thermodynamic geometry.

    In view of the invisibility of the black hole microstructure,if the holographic form of the thermodynamic geometry is established by the AdS/CFT dual theory,it may disclose the microscopic mechanism of the black hole thermodynamic behavior.We will focus on this issue in our future work.

    Acknowledgments

    This work is supported by financial support from the National Natural Science Foundation of China (Grant Nos.12275216,12105222,12247103).

    ORCID iDs

    欧美成人一区二区免费高清观看| 少妇裸体淫交视频免费看高清| 亚洲,欧美精品.| 丰满乱子伦码专区| 久9热在线精品视频| 日本撒尿小便嘘嘘汇集6| 国产精品免费一区二区三区在线| 亚洲人成网站在线播| 国产成人aa在线观看| 女警被强在线播放| 男人和女人高潮做爰伦理| 十八禁人妻一区二区| 1024手机看黄色片| 国产欧美日韩一区二区精品| 国产真实乱freesex| 国产精品嫩草影院av在线观看 | 黄色视频,在线免费观看| 精品乱码久久久久久99久播| 国产一区二区在线av高清观看| 在线免费观看的www视频| 国产精品免费一区二区三区在线| 床上黄色一级片| 51午夜福利影视在线观看| 男人的好看免费观看在线视频| 亚洲欧美日韩高清专用| aaaaa片日本免费| 亚洲欧美激情综合另类| 婷婷丁香在线五月| 久久伊人香网站| 国产av一区在线观看免费| 国产伦精品一区二区三区四那| 99久久精品一区二区三区| 国产精品一区二区免费欧美| 国产97色在线日韩免费| xxxwww97欧美| 一级黄片播放器| 国产欧美日韩一区二区精品| 亚洲成a人片在线一区二区| 午夜福利视频1000在线观看| 精品欧美国产一区二区三| 国产真实乱freesex| 非洲黑人性xxxx精品又粗又长| 亚洲国产中文字幕在线视频| 国产av一区在线观看免费| 国产成人a区在线观看| 日日摸夜夜添夜夜添小说| 岛国在线观看网站| 在线a可以看的网站| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 日韩欧美国产在线观看| 成人精品一区二区免费| 久久久久久九九精品二区国产| 黄片小视频在线播放| 俺也久久电影网| 亚洲精品乱码久久久v下载方式 | 国产精品久久久人人做人人爽| 69av精品久久久久久| 99久久综合精品五月天人人| 99久久九九国产精品国产免费| eeuss影院久久| 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式 | x7x7x7水蜜桃| 小蜜桃在线观看免费完整版高清| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 亚洲精品成人久久久久久| 18禁在线播放成人免费| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 国产不卡一卡二| 亚洲av熟女| 人妻久久中文字幕网| 国内精品一区二区在线观看| 丰满的人妻完整版| 99在线视频只有这里精品首页| 国产激情欧美一区二区| 精品人妻1区二区| 亚洲性夜色夜夜综合| 色视频www国产| 搞女人的毛片| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 成年人黄色毛片网站| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| 欧美性猛交黑人性爽| 三级毛片av免费| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 国产高清videossex| 国产视频一区二区在线看| 18禁国产床啪视频网站| 别揉我奶头~嗯~啊~动态视频| 国产av麻豆久久久久久久| 午夜福利高清视频| 叶爱在线成人免费视频播放| 欧美极品一区二区三区四区| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 99热6这里只有精品| 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 男人的好看免费观看在线视频| 脱女人内裤的视频| 午夜影院日韩av| 69人妻影院| 法律面前人人平等表现在哪些方面| 在线a可以看的网站| 男女床上黄色一级片免费看| 99精品久久久久人妻精品| 免费av观看视频| 成人三级黄色视频| a在线观看视频网站| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看| 欧美在线一区亚洲| 久久久久国内视频| 国产精品亚洲av一区麻豆| 成人精品一区二区免费| 精品国产亚洲在线| 国产私拍福利视频在线观看| 听说在线观看完整版免费高清| 男人的好看免费观看在线视频| 欧美黄色淫秽网站| 亚洲国产精品久久男人天堂| 精品久久久久久久人妻蜜臀av| 成人高潮视频无遮挡免费网站| 亚洲中文字幕一区二区三区有码在线看| 村上凉子中文字幕在线| 九色成人免费人妻av| 国产精品 国内视频| 欧美色欧美亚洲另类二区| 欧美大码av| 无限看片的www在线观看| 日韩欧美 国产精品| 色噜噜av男人的天堂激情| 精品久久久久久久毛片微露脸| 黄片大片在线免费观看| 色综合欧美亚洲国产小说| 一区二区三区国产精品乱码| 午夜a级毛片| 性色avwww在线观看| 免费在线观看日本一区| 美女大奶头视频| a在线观看视频网站| 国产激情偷乱视频一区二区| 男女下面进入的视频免费午夜| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| 在线视频色国产色| 久久性视频一级片| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点| 老汉色av国产亚洲站长工具| 99久国产av精品| 欧美区成人在线视频| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 午夜亚洲福利在线播放| 精品一区二区三区av网在线观看| 最好的美女福利视频网| 欧美乱妇无乱码| netflix在线观看网站| 午夜a级毛片| 久9热在线精品视频| 老司机深夜福利视频在线观看| 国产欧美日韩一区二区三| 国产精品美女特级片免费视频播放器| 国产精品国产高清国产av| 国产成年人精品一区二区| e午夜精品久久久久久久| 波野结衣二区三区在线 | 18禁黄网站禁片午夜丰满| 国产精品乱码一区二三区的特点| АⅤ资源中文在线天堂| 欧美最新免费一区二区三区 | 琪琪午夜伦伦电影理论片6080| 亚洲第一欧美日韩一区二区三区| 老熟妇仑乱视频hdxx| 一个人免费在线观看电影| 中文字幕人妻熟人妻熟丝袜美 | 精品99又大又爽又粗少妇毛片 | 国产亚洲精品久久久久久毛片| 国产精品日韩av在线免费观看| 熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼| 日本a在线网址| 国产色爽女视频免费观看| 波多野结衣高清无吗| 欧美成人一区二区免费高清观看| 国产成+人综合+亚洲专区| 99热只有精品国产| 亚洲欧美精品综合久久99| 国产极品精品免费视频能看的| 超碰av人人做人人爽久久 | av欧美777| 在线观看日韩欧美| 亚洲色图av天堂| 久久香蕉国产精品| 午夜久久久久精精品| 神马国产精品三级电影在线观看| 日韩高清综合在线| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 又粗又爽又猛毛片免费看| 夜夜爽天天搞| 韩国av一区二区三区四区| 91麻豆精品激情在线观看国产| 久久久久性生活片| 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看电影| 淫妇啪啪啪对白视频| 亚洲国产精品999在线| 禁无遮挡网站| 无限看片的www在线观看| 天堂动漫精品| 精品人妻一区二区三区麻豆 | 女警被强在线播放| 亚洲 欧美 日韩 在线 免费| 啪啪无遮挡十八禁网站| 香蕉久久夜色| 19禁男女啪啪无遮挡网站| 99热这里只有精品一区| 国产野战对白在线观看| 亚洲美女黄片视频| 国产亚洲精品久久久com| 国产伦一二天堂av在线观看| 国产三级黄色录像| 最近最新中文字幕大全电影3| 男女午夜视频在线观看| 亚洲人成电影免费在线| 欧美区成人在线视频| 俄罗斯特黄特色一大片| 日日摸夜夜添夜夜添小说| 男女做爰动态图高潮gif福利片| 热99re8久久精品国产| 国产精品1区2区在线观看.| 国产精品日韩av在线免费观看| 99久久成人亚洲精品观看| 男人舔奶头视频| 午夜免费激情av| www日本在线高清视频| 久久久久久久午夜电影| 中文字幕久久专区| 久久中文看片网| 国产亚洲欧美98| 亚洲av五月六月丁香网| 国产精品一及| 国内精品久久久久久久电影| 激情在线观看视频在线高清| 深夜精品福利| 男插女下体视频免费在线播放| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线观看免费完整高清在 | e午夜精品久久久久久久| 精品一区二区三区人妻视频| 欧美黑人巨大hd| netflix在线观看网站| 亚洲av成人av| 真实男女啪啪啪动态图| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| 国产爱豆传媒在线观看| 美女cb高潮喷水在线观看| 成人高潮视频无遮挡免费网站| 露出奶头的视频| 国产高清三级在线| 草草在线视频免费看| 日本黄色片子视频| 亚洲av成人不卡在线观看播放网| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 色播亚洲综合网| 国产熟女xx| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 亚洲乱码一区二区免费版| 别揉我奶头~嗯~啊~动态视频| 欧美日韩综合久久久久久 | 国产高清激情床上av| 少妇的丰满在线观看| 91字幕亚洲| 给我免费播放毛片高清在线观看| 熟女电影av网| 桃红色精品国产亚洲av| 亚洲av二区三区四区| 极品教师在线免费播放| av专区在线播放| 美女高潮喷水抽搐中文字幕| 精品人妻一区二区三区麻豆 | 国产成人欧美在线观看| 男人舔奶头视频| 久久久国产成人免费| 一区二区三区激情视频| 禁无遮挡网站| 不卡一级毛片| 成年人黄色毛片网站| 在线a可以看的网站| 欧美激情在线99| 特级一级黄色大片| 偷拍熟女少妇极品色| 日日摸夜夜添夜夜添小说| 国产高清视频在线观看网站| 天堂网av新在线| 国产精品,欧美在线| 亚洲国产精品久久男人天堂| 久久婷婷人人爽人人干人人爱| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 国内少妇人妻偷人精品xxx网站| 男插女下体视频免费在线播放| av福利片在线观看| 日韩欧美精品免费久久 | 午夜免费观看网址| 中文在线观看免费www的网站| 午夜福利欧美成人| 亚洲人成网站在线播| av国产免费在线观看| 两人在一起打扑克的视频| 亚洲精品亚洲一区二区| 很黄的视频免费| 久久久久久人人人人人| 可以在线观看的亚洲视频| 亚洲中文字幕日韩| 亚洲最大成人手机在线| 激情在线观看视频在线高清| 婷婷亚洲欧美| 极品教师在线免费播放| 最近最新中文字幕大全电影3| 不卡一级毛片| 欧美最新免费一区二区三区 | 免费观看精品视频网站| 亚洲精品在线观看二区| 久久性视频一级片| 久久久久国产精品人妻aⅴ院| 国产精品一区二区三区四区久久| 国内揄拍国产精品人妻在线| 青草久久国产| 99国产精品一区二区三区| 九色成人免费人妻av| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 亚洲精华国产精华精| 9191精品国产免费久久| 午夜免费观看网址| 成年人黄色毛片网站| 国产免费男女视频| 久久久久久久午夜电影| 一本精品99久久精品77| 97人妻精品一区二区三区麻豆| 午夜精品久久久久久毛片777| 一个人看视频在线观看www免费 | 级片在线观看| 国产精品98久久久久久宅男小说| 亚洲av日韩精品久久久久久密| 亚洲av成人精品一区久久| 亚洲自拍偷在线| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看| 久久久成人免费电影| 高清毛片免费观看视频网站| 精品一区二区三区av网在线观看| 黄色女人牲交| 在线观看日韩欧美| 婷婷精品国产亚洲av| 成人特级av手机在线观看| 最近最新中文字幕大全电影3| 国产精品久久久久久亚洲av鲁大| а√天堂www在线а√下载| 午夜日韩欧美国产| 他把我摸到了高潮在线观看| 久久久色成人| 国产免费男女视频| 国产欧美日韩精品亚洲av| 亚洲av不卡在线观看| 日本免费一区二区三区高清不卡| 成人午夜高清在线视频| 欧美+日韩+精品| 噜噜噜噜噜久久久久久91| 精品一区二区三区av网在线观看| 久久香蕉精品热| 免费搜索国产男女视频| 国产亚洲精品av在线| av欧美777| 国内精品久久久久久久电影| 在线观看av片永久免费下载| 久久久国产成人免费| 不卡一级毛片| 久久久久国内视频| 国产黄片美女视频| 听说在线观看完整版免费高清| 免费人成在线观看视频色| 丰满人妻一区二区三区视频av | 欧美区成人在线视频| 亚洲熟妇中文字幕五十中出| 日本三级黄在线观看| 色在线成人网| 在线观看午夜福利视频| 国产精品乱码一区二三区的特点| 国产精品日韩av在线免费观看| 亚洲在线自拍视频| 身体一侧抽搐| 亚洲,欧美精品.| 成人鲁丝片一二三区免费| 亚洲中文字幕一区二区三区有码在线看| 亚洲精华国产精华精| 精品国内亚洲2022精品成人| av天堂在线播放| 久久久国产成人免费| 少妇熟女aⅴ在线视频| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| 精品电影一区二区在线| 久久性视频一级片| 国产精品98久久久久久宅男小说| 我要搜黄色片| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 国产三级中文精品| 黄片大片在线免费观看| 白带黄色成豆腐渣| 丰满乱子伦码专区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产欧美日韩精品亚洲av| 91麻豆av在线| 日本黄大片高清| 久久6这里有精品| 成人精品一区二区免费| 黄片小视频在线播放| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 亚洲av电影在线进入| 少妇的丰满在线观看| 老司机深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲| 欧美一级a爱片免费观看看| 少妇丰满av| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 国产成人av教育| 网址你懂的国产日韩在线| 午夜福利18| 一本一本综合久久| 少妇熟女aⅴ在线视频| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美国产在线观看| 国产三级在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美日韩卡通动漫| a级一级毛片免费在线观看| 免费电影在线观看免费观看| av黄色大香蕉| 在线观看一区二区三区| 51国产日韩欧美| 日韩人妻高清精品专区| 毛片女人毛片| 成人国产综合亚洲| or卡值多少钱| 脱女人内裤的视频| 久久中文看片网| 制服人妻中文乱码| 色噜噜av男人的天堂激情| 校园春色视频在线观看| 草草在线视频免费看| 黄色丝袜av网址大全| av女优亚洲男人天堂| 国产高清三级在线| 国产成人系列免费观看| 免费在线观看成人毛片| 成人av一区二区三区在线看| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 日本 欧美在线| 手机成人av网站| 免费看美女性在线毛片视频| 啦啦啦韩国在线观看视频| 亚洲av成人不卡在线观看播放网| av女优亚洲男人天堂| 中文字幕av成人在线电影| 国产成人av教育| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 91av网一区二区| 亚洲av不卡在线观看| 国产精品av视频在线免费观看| 欧美国产日韩亚洲一区| 91麻豆精品激情在线观看国产| 真实男女啪啪啪动态图| 天堂√8在线中文| 日日夜夜操网爽| 变态另类丝袜制服| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 夜夜躁狠狠躁天天躁| 亚洲精品国产精品久久久不卡| 日韩欧美在线乱码| 叶爱在线成人免费视频播放| 天天一区二区日本电影三级| 亚洲精品国产精品久久久不卡| 国产精品电影一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲男人的天堂狠狠| 成人三级黄色视频| 亚洲久久久久久中文字幕| 国产蜜桃级精品一区二区三区| 国产久久久一区二区三区| 香蕉av资源在线| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 在线免费观看不下载黄p国产 | 日韩亚洲欧美综合| 亚洲一区二区三区色噜噜| 1024手机看黄色片| 国产老妇女一区| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 性色av乱码一区二区三区2| www日本在线高清视频| www.www免费av| 九九在线视频观看精品| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 99久久无色码亚洲精品果冻| 午夜福利视频1000在线观看| 桃红色精品国产亚洲av| 日本黄大片高清| 国产精品美女特级片免费视频播放器| 亚洲一区二区三区色噜噜| a在线观看视频网站| 亚洲成人久久性| 久久久久性生活片| 亚洲 欧美 日韩 在线 免费| 麻豆成人午夜福利视频| 一进一出抽搐gif免费好疼| 一级黄片播放器| 国产一区在线观看成人免费| 国产视频内射| 亚洲片人在线观看| 日本一本二区三区精品| 亚洲性夜色夜夜综合| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 免费看日本二区| 久久国产乱子伦精品免费另类| 一卡2卡三卡四卡精品乱码亚洲| 高清日韩中文字幕在线| 色av中文字幕| 一级a爱片免费观看的视频| 在线播放国产精品三级| 宅男免费午夜| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 国产精品亚洲美女久久久| 一个人观看的视频www高清免费观看| 免费av不卡在线播放| 日本一二三区视频观看| 国产乱人视频| 成年女人毛片免费观看观看9| 精品国产三级普通话版| 国产高清三级在线| 国产一区二区亚洲精品在线观看| 国产成+人综合+亚洲专区| 色播亚洲综合网| 国产极品精品免费视频能看的| 51国产日韩欧美| 搡老岳熟女国产| 欧美大码av| 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 最新在线观看一区二区三区| 国产精品av视频在线免费观看| 午夜精品一区二区三区免费看| 嫩草影院精品99| 一个人看的www免费观看视频| 黄片大片在线免费观看| 又粗又爽又猛毛片免费看| 免费在线观看亚洲国产| av国产免费在线观看| 国产又黄又爽又无遮挡在线| 国产亚洲欧美在线一区二区| 亚洲国产精品合色在线| 日韩高清综合在线| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 精品国产三级普通话版| 国产高清三级在线| 亚洲国产欧美人成| 国产探花极品一区二区| 亚洲一区二区三区色噜噜| bbb黄色大片| 757午夜福利合集在线观看| 男人的好看免费观看在线视频| 久久精品人妻少妇| 午夜福利成人在线免费观看|