• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conformally symmetric wormhole solutions supported by non-commutative geometryin f(Q,T)gravity

    2024-03-07 12:56:52ChaitraChoodaChalavadiVenkateshaKavyaandDivyaRashmi
    Communications in Theoretical Physics 2024年2期

    Chaitra Chooda Chalavadi ,V Venkatesha ,N S Kavya and S V Divya Rashmi

    1 Department of P.G.Studies and Research in Mathematics,Kuvempu University,Shankaraghatta,Shivamogga 577451,Karnataka,India

    2 Department of Mathematics,Vidyavardhaka College of Engineering,Mysuru—570002,India

    Abstract This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.

    Keywords: traversable wormhole,f(Q,T) gravity,energy conditions,non-commutative geometry,conformal motion

    1.Introduction

    Wormholes are dual-mouthed hypothetical structures connecting distinct sectors in the same universe or different universes.Initially,Flamm [1] introduced the notion of a wormhole by constructing the isometric embedding of the Schwarzschild solution.Einstein and Rosen [2] employed Flamm’s concept to create a bridge,commonly known as the Einstein–Rosen bridge.Later,Thorne and his student Morris[3] conducted pioneering research on the concept of traversable wormholes.They meticulously examined static and spherically symmetric wormholes,revealing that the exotic matter inside them possesses negative energy,thus violating the null energy condition.Furthermore,in order to establish a physically feasible model,it is necessary to repudiate the existence of the hypothetical matter.Although within the framework of general relativity [4,5],it was not possible to definitively rule out the presence of such a substance,an alternative approach was supported to reduce or eliminate the reliance on exotic matter [6–8].Numerous studies have been conducted to explore wormhole solutions within the background of modified theories [9–36].

    Figure 1.The graphical behavior of shape function Ψ* for Gaussian non-commutative geometry with M*=7.25,α=0.45,C2=2 and

    In the context of string theory,non-commutative geometry is one of the most intriguing concepts.The idea of noncommutativity arises from the notion that coordinates on a D-brane can be treated as non-commutative operators.This property holds great significance in mathematically explored fundamental concepts of quantum gravity [37–39].Noncommutative geometry aims to unify space-time gravitational forces with weak and strong forces on a single platform.Within this framework,it becomes possible to replace pointlike structures with smeared objects,leading to the discretization of space-time.This discretization arises from the commutator [xa,xb]=iθabwhere θabis an antisymmetric second-order matrix [40–42].To simulate this smearing effect,the Gaussian distribution and Lorentzian distribution with a minimum length ofare incorporated instead of the Dirac delta function.This non-commutative geometry is an intrinsic property of space-time and independent of the behavior of curvature.

    Non-commutative geometry plays a crucial role in examining the properties of space-time geometry under different conditions.Jamil et al,[43] explored some new exact solutions of static wormholes under non-commutative geometry.They utilized the power-law approach to analyze these solutions and discuss their properties.Rahaman et al[44–46]conducted an extensive investigation into various studies in non-commutative geometry.They studied fluids in different dimensions influenced by non-commutative geometry,which exhibited conformal symmetry.Additionally,they derived specific solutions of a wormhole within the context off(R)gravity.In the realm of non-commutative geometry,Zubair et al[47]examined wormhole solutions that permit conformal motion within the context off(R ,T)theory.The study employed conformal killing vectors to analyze the properties and characteristics of these wormhole solutions.Kuhfitting[48] investigated the stable wormhole solutions utilizing conformal killing vectors within the framework of a noncommutative geometry that incorporates a minimal length.The study focused on exploring the properties and characteristics of these stable wormholes within this specific theoretical framework.In [49],the authors studied the noncommutative wormhole solution inf(R) gravity.Moreover,the concept of non-commutative geometry has been gaining attention from researchers,and numerous intriguing aspects of this theory have been extensively explored and deliberated upon in the literature[50–64].Inspired by the aforementioned attempts in modified gravity and non-commutative geometry,we now delve into the study of wormhole solutions inf(Q ,T)gravity.We consider Gaussian and Lorentzian noncommutative geometries with conformal killing vectors to explore their implications.

    The paper is structured following the subsequent pattern:In section 2,we discuss the traversability condition for a wormhole.We shall construct the mathematical formalism off(Q ,T)gravity in 3.In the same section,we briefly explain the energy condition and the basic formalism of conformal killing vectors.In section 4,we conduct a detailed analysis of the wormhole model under Gaussian and Lorentzian distributions.Within this section,we derive the shape function and explore the impact of model parameters on these functions,as well as the energy conditions.In section 5,we investigate the effect of anisotropy on both distributions.Finally,in section 6,we finalize the conclusive remarks and summarize the key findings of the study.

    2.Traversability conditions for wormhole

    The Morris–Thorne metric for the traversable wormhole is described as

    In this scenario,we have two functions,namely Φ(r)and Ψ(r)which are referred to as the redshift and shape functions respectively.Both of these functions depend on the radial coordinate r.

    1.Redshift function: The redshift function Φ(r) needs to have a finite value across the entire space-time.Additionally,the redshift function must adhere to the constraint of having no event horizon,which allows for a two-way journey through the wormhole.

    2.Shape function:The shape function Ψ(r)characterizes the geometry of the traversable wormhole.Therefore,Ψ(r)must satisfy the following conditions:

    ? Throat condition:The value of the function Ψ(r)at the throat is r0and hence10for r>r0.

    ? Flaring-out condition: The radial differential of the shape function,Ψ′(r) at the throat should satisfy,Ψ′ (r0) <1.

    ? Asymptotic Flatness condition: As r →∞,

    3.Proper radial distance function: This function should be finite everywhere in the domain.In magnitude,it decreases from the upper universe to the throat and then increases from the throat to the lower universe.The proper radial distance function is expressed as,

    3.Mathematical formulations of f(Q,T )gravity

    In this article,we are particularly interested inf(Q ,T)gravity,where the Lagrangian is an arbitrary function of nonmetricity scalar and the trace of the energy-momentum tensor.Yixin et al,[15] introducedf(Q ,T)gravity,which is referred to as extended symmetric teleparallel gravity.This was developed within the metric-affine formalism framework.f(Q ,T)gravity theory has been employed to explain both matter-antimatter asymmetry and late-time acceleration.Furthermore,recent investigations suggest thatf(Q ,T)gravity may provide a feasible explanation of various cosmological and astrophysical phenomena [26,65–67].Nevertheless,no further studies on wormholes were conducted based on this theory,which is still in its early stages of development.These considerations motivate us to selectf(Q ,T)gravity to derive wormhole solutions.

    The Einstein–Hilbert action forf(Q ,T)gravity is given by

    wheref(Q ,T)is an arbitrary function that couples the nonmetricityQ and the traceT of the energy momentum tensor,mL is the Lagrangian density corresponding to matter and g denotes the determinant of the metric gμν.

    The non-metricity tensor is defined as

    and its traces are

    Further,we can define a super-potential associated with the non-metricity tensor as

    The non-metricity scalar is represented as

    Besides,the energy-momentum tensor for the fluid depiction of space-time can be expressed as

    The variation of the action (3) with respect to the fundamental metric,gives the metric field equation

    We presume that the matter distribution is an anisotropic stress-energy tensor,which can be written as

    where ρ,pr,ptare the energy density,radial and tangential pressures respectively.Here,ημrefers to a four-velocity vector with a magnitude of one,whileμrepresents a spacelike unit vector.Additionally,in this scenario,the tangential pressure will be orthogonal to the unit vector,and the radial pressure will be along the four-velocity vector.

    The expression for the trace of the energy-momentum tensor is determined as T=ρ-pr-2ptand equation (9)can be read as

    Using the wormhole metric (1),the trace of the nonmetricity scalarQ can be written as,

    Now,substituting the wormhole metric (1) and anisotropic matter distribution (11) into the motion equation (10),we found the following expressions:

    3.1.Energy condition

    Energy conditions provide interpretations for the physical phenomena associated with the motion of energy and matter,which are derived from the Raychaudhuri equation.To evaluate the geodesic behavior,we shall consider the criterion for different energy conditions.With the anisotropic matter distribution for ρ,prand ptbeing energy density,radial pressure and tangential pressure,we have the following:

    ? Null Energy Conditions: ρ+pt≥0 and ρ+pr≥0.

    ? Weak Energy Conditions: ρ ≥0 ?ρ+pt≥0 and ρ+pr≥0.

    ? Strong Energy Conditions:ρ+pj≥0 ?ρ+Σjpj≥0 ?j.

    ? Dominant Energy Conditions: ρ ≥0 ?ρ-|pr|≥0 and ρ-|pt|≥0.

    3.2.Conformal killing vectors

    Conformal killing vectors play a significant role in establishing the mathematical connection between the geometry of space-time and the matter it contains through Einstein’s field equations.These vectors are derived from the killing equations,utilizing the principles of Lie algebra [47,68].Conformal killing vectors are an essential tool for reducing the non-linearity order of field equations in various modified theories.In the context of general relativity,conformal killing vectors find numerous applications in geometric configurations,kinematics,and dynamics based on the structure theory.We employ an inheritance symmetry of space-time characterized by conformal killing vectors,which are defined as[44,69]

    where ζ,ηkand gijrepresent the conformal factor,conformal killing vectors and metric tensor respectively.It is supposed that the vector η generates the conformal symmetry and the metric g is conformally mapped onto itself along η.The conformal factor,which characterizes the scaling of the metric,influences the geometry of the wormhole.By inserting the equation Lηgij=ζ(r)gijfrom equation (17) into equation (1),we get the following equations:

    On solving the aforementioned expressions,we obtain the following two relationships for the metric components:

    where1C and C2are the integrating constants.For the simplification,we assume A(r)=ζ2(r).Consequently,the expression for the shape function can be obtained as

    4.Wormhole model in f(Q,T)gravity

    In this section,we shall consider a feasible model to study the properties of wormhole geometry.In particular,we suppose the linear form given by

    where α and β are the model parameters.For α=1,β=0,one can retain general relativity.By utilizing equations (21),(22) and adopting dimensionless parameters,the field equations (14)–(16) can be solved to obtain the following equations:

    Here,the subscript ‘*’ denotes corresponding adimensional quantities and the overhead dot is the derivative of the function with respect toFurther,non-dimensionalization is a powerful tool in theoretical physics.It enables researchers to simplify equations,comprehend the scaling behavior of physical systems,and gain insights into the essential features of complex phenomena such as wormholes.

    Now,we shall discuss the physical analysis of wormhole solutions with the help of equations (24–26) under noncommutative distributions.For this purpose,we consider the Gaussian and Lorentzian energy densities of the static and spherically symmetric particle-like gravitational source with a total mass of the form [58,70]

    4.1.Gaussian energy density

    In this subsection,our attention will be directed towards exploring non-commutative geometry under Gaussian distribution.When we substitute the Gaussian energy density(27) into equation (24),we obtain the resulting differential equation:

    We can easily verify the satisfaction of the throat condition by performing a simple calculation ofFurthermore,by evaluating the derivative of the shape function (31) at the throat,we derive the following relation:

    In our study,the behavior of energy density and energy conditions are illustrated in figure 2.Both dominant energy conditions,radial null energy condition and strong energy condition are violated.However,the tangential null energy condition is satisfied.

    4.2.Lorentzian energy density

    In this subsection,we focus on the scenario involving noncommutative geometry with the Lorentzian distribution.By substituting the Lorentzian energy density (28) into (24),we get

    Solving the aforementioned differential equation while imposing the throat condition on the shape function,we can derive the following expression:

    Figure 2.Gaussian Source: The profile of energy density and energy conditions with respect to for different values of β with fixed parameters M*=7.25,α=0.45,C2=2and =1.6.

    Figure 3.The graphical behavior of shape function Ψ* for Lorentzian non-commutative geometry with M*=7.25,α=0.45,C2=2 and 1.6.

    where2F1(a,b;c;z) is the hypergeometric function.Hence,the resulting shape function can be expressed as follows:

    From the above expression,the derivative of the shape function is given by

    Now,substituting function(36)into(25)and(26),we get the pressure elements as

    where Γ(a,z) is the gamma function.

    Figure 4 illustrates the characteristics of the energy conditions and the corresponding energy density profile for Lorentzian distribution.It shows that in this scenario,the radial null energy condition[figure 4(b)]and dominant energy conditions [figure 4(d)] are violated.But,the tangential null energy condition [figure 4(c)] and strong energy condition[figure 4(f)] are obeyed.

    Figure 4.Lorentzian Source: The profile of energy density and energy conditions with respect to for different values of β with fixed parameters M*=7.25,α=0.45,C2=2and =1.6.

    Moreover,by investigating the existence of wormhole solutions and analyzing energy conditions in the late-time universe,we explore exotic matter and energy distributions that could enable the formation and stability of wormholes.The presence or absence of these solutions has significant implications for our understanding of the late-time universe’s evolution and the nature of exotic matter needed to support such structures.

    5.Effect of anisotropy

    In this section,we explore the anisotropy of Gaussian and Lorentzian non-commutative geometry in order to understand the characteristics of the anisotropic pressure.The quantification of anisotropy plays a crucial role in revealing the internal geometry of a relativistic wormhole configuration.It is well known that the level of anisotropy within a wormhole can be measured using the following formula [20,49,62,71–73]:

    We can determine the geometry of the wormhole based on anisotropic factor.When the tangential pressure is greater than the radial pressure,it results in Δ>0.This signifies that the structure of the wormhole is repulsive and anisotropic force is acting in an outward direction.Conversely,if the radial pressure is greater than the tangential pressure,it yields Δ<0.This indicates an attractive geometry of the wormhole and force is directed inward.The anisotropy for both the Gaussian (ΔG) and Lorentzian (ΔL) distributions with the linear model is calculated as

    Figure 5 depicts the effect of anisotropy for a viable wormhole model under Gaussian and Lorentzian distributions.The investigation reveals that our anisotropy factor Δ is positiveand the structure of the wormhole is repulsive in Gaussian distribution [figure 5(a)],whereas Δ is negativewhich indicates an attractive geometry of the wormhole in Lorentzian distribution[figure 5(b)].

    Figure 5.The graphical representation of anisotropy for both distributions.

    6.Results and concluding remarks

    In this article,we have explored the conformal symmetric wormhole solutions under non-commutative geometry in the background off(Q ,T)gravity.To achieve this,we have considered the presence of an anisotropic fluid in a spherically symmetric space-time.The concept of conformal symmetry and non-commutative geometry have already been used in literature within various contexts of modified theories of gravity [50–60,62–64].Non-commutative geometry is used to replace the particle-like structure to smeared objects in string theory.Furthermore,conformal killing vectors are derived from the killing equation,which is based on the Lie algebra.These vectors are used to reduce the nonlinearity order of the field equation.Conformal symmetry has proved to be effective in describing relativistic stellar-type objects.Furthermore,it has led to new solutions and provided insights into geometry and kinematics[74].It influences the geometry and dynamics of the space-time,impacting key parameters such as throat size and stability.

    In the framework of extended symmetric teleparallel gravity,we have derived some new exact solutions for wormholes by using both Gaussian and Lorentzian energy densities of non-commutative geometry.For this object,we presumed the linear wormhole model asf(Q ,T)=αQ +βT,where α and β are model parameters.In both cases,we examined the wormhole scenario using Gaussian and Lorentzian distributions.By applying the throat condition in two distributions,we obtained different shape functions that obey all the criteria for a traversable wormhole.A similar result was presented in [63] where the authors explored wormhole solutions in curvature-matter coupling gravity supported by non-commutative geometry and conformal symmetry.Furthermore,we investigated the impact of model parameters on these two shape functions.Due to the conformal symmetry,the redshift function does not approach zero as r>r0[8,59,60,75].

    Figures 1 and 3 show the graphical nature of the obtained shape functions with β ?[0,0.5).Notably,a slight variation in the value of β can impact the nature of the shape function.Moreover,the graphical behavior of the energy conditions is shown in figures 2 and 4.The energy density is positive throughout the space-time.For all the wormhole solutions,the violation of the null energy conditions indicates the presence of hypothetical matter.Here,this nature of hypothetical fluid is presented in references [63,76,77].Next,we studied the effect of anisotropy for both distributions.The geometry of the wormhole is repulsive in the Gaussian distribution,whereas it is attractive in the Lorentzian distribution[figure 5].

    To conclude,this work validates the conformal symmetric wormhole solutions inf(Q ,T)gravity under noncommutative geometry.The authors [78] have identified the possibility of a generalized wormhole formation in the galactic halo due to dark matter using observational data within the matter coupling gravity formalism.In the near future,we plan to investigate various wormhole scenarios in alternative theories of gravity,as discussed in references[79–82].

    Acknowledgments

    CCC,VV and NSK acknowledge DST,New Delhi,India,for its financial support for research facilities under DSTFIST-2019.

    ORCID iDs

    精品国产乱码久久久久久小说| 高清在线国产一区| 久久九九热精品免费| 18在线观看网站| 别揉我奶头~嗯~啊~动态视频 | 美女福利国产在线| 老司机午夜福利在线观看视频 | 精品国产乱子伦一区二区三区 | 中文欧美无线码| 90打野战视频偷拍视频| 他把我摸到了高潮在线观看 | 午夜免费鲁丝| 极品人妻少妇av视频| 欧美在线一区亚洲| 成人亚洲精品一区在线观看| 99精品欧美一区二区三区四区| 久久久精品免费免费高清| 精品人妻在线不人妻| 99国产精品免费福利视频| 日韩视频一区二区在线观看| 天天操日日干夜夜撸| av福利片在线| av网站在线播放免费| 久久综合国产亚洲精品| 男人爽女人下面视频在线观看| 日韩一区二区三区影片| 日本五十路高清| 热99久久久久精品小说推荐| 老司机影院毛片| 亚洲精品中文字幕一二三四区 | 动漫黄色视频在线观看| 精品福利观看| 日韩一区二区三区影片| 国产在线观看jvid| 国产1区2区3区精品| www.av在线官网国产| 两个人免费观看高清视频| 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| 久久精品久久久久久噜噜老黄| 美女高潮喷水抽搐中文字幕| 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 国产麻豆69| 欧美日韩亚洲国产一区二区在线观看 | 丝袜在线中文字幕| 国产精品.久久久| 少妇被粗大的猛进出69影院| 久久人妻熟女aⅴ| 国产区一区二久久| 老司机亚洲免费影院| 91字幕亚洲| 久久久水蜜桃国产精品网| 青草久久国产| 久久午夜综合久久蜜桃| 亚洲av成人一区二区三| 亚洲午夜精品一区,二区,三区| 纯流量卡能插随身wifi吗| 午夜福利视频在线观看免费| 精品一区二区三卡| 99精品欧美一区二区三区四区| 国产亚洲精品久久久久5区| 丝袜人妻中文字幕| 精品国产一区二区久久| 日韩中文字幕视频在线看片| 天堂8中文在线网| 欧美激情久久久久久爽电影 | 亚洲中文日韩欧美视频| 不卡av一区二区三区| 亚洲三区欧美一区| 女人被躁到高潮嗷嗷叫费观| 久久久精品免费免费高清| 久久久国产精品麻豆| 丝袜人妻中文字幕| 午夜激情久久久久久久| 午夜福利视频精品| 黄色 视频免费看| 欧美变态另类bdsm刘玥| 久久久国产精品麻豆| 大型av网站在线播放| 亚洲人成电影观看| 最新在线观看一区二区三区| 精品第一国产精品| 人妻人人澡人人爽人人| 另类精品久久| 欧美av亚洲av综合av国产av| 老熟女久久久| 91国产中文字幕| 在线观看免费日韩欧美大片| 久久久国产成人免费| 汤姆久久久久久久影院中文字幕| 少妇的丰满在线观看| 国产亚洲精品一区二区www | 免费高清在线观看视频在线观看| 69精品国产乱码久久久| 中文字幕色久视频| 国产高清videossex| 亚洲精品国产色婷婷电影| 中文字幕最新亚洲高清| 国产人伦9x9x在线观看| 搡老熟女国产l中国老女人| 亚洲情色 制服丝袜| 在线观看免费高清a一片| 久久 成人 亚洲| 窝窝影院91人妻| 青春草亚洲视频在线观看| 免费一级毛片在线播放高清视频 | 久久国产亚洲av麻豆专区| 午夜日韩欧美国产| 国产亚洲一区二区精品| 成年av动漫网址| 久久久国产欧美日韩av| 蜜桃国产av成人99| 精品国产超薄肉色丝袜足j| 国产在线一区二区三区精| 久久精品亚洲熟妇少妇任你| 美女福利国产在线| 免费一级毛片在线播放高清视频 | 老汉色av国产亚洲站长工具| 国产又色又爽无遮挡免| 色94色欧美一区二区| 母亲3免费完整高清在线观看| 免费人妻精品一区二区三区视频| 精品乱码久久久久久99久播| 亚洲第一青青草原| 亚洲第一av免费看| 又紧又爽又黄一区二区| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 国产亚洲一区二区精品| 国产深夜福利视频在线观看| 久久久久久免费高清国产稀缺| 亚洲欧美激情在线| 欧美日韩av久久| 成年人午夜在线观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 热99久久久久精品小说推荐| 日韩熟女老妇一区二区性免费视频| 久久人妻福利社区极品人妻图片| 黄片大片在线免费观看| 18禁黄网站禁片午夜丰满| 久久久久久久精品精品| 久久久精品区二区三区| 蜜桃在线观看..| 老鸭窝网址在线观看| 亚洲精品乱久久久久久| 在线观看舔阴道视频| 99久久国产精品久久久| 久久久久久久久免费视频了| 国产亚洲av高清不卡| 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 久久青草综合色| 亚洲精品在线美女| a级片在线免费高清观看视频| 久久国产精品大桥未久av| 大香蕉久久成人网| 老司机午夜福利在线观看视频 | 十分钟在线观看高清视频www| 国产成人免费无遮挡视频| 丝袜在线中文字幕| 午夜福利,免费看| 最新的欧美精品一区二区| 成人三级做爰电影| 亚洲欧美一区二区三区久久| 久久久久久久国产电影| 亚洲男人天堂网一区| av网站免费在线观看视频| 大片电影免费在线观看免费| 又黄又粗又硬又大视频| av在线app专区| 大陆偷拍与自拍| 国产成人一区二区三区免费视频网站| 啦啦啦在线免费观看视频4| 极品少妇高潮喷水抽搐| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 久久av网站| 日本vs欧美在线观看视频| 亚洲一区中文字幕在线| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 国产日韩欧美视频二区| 欧美日韩亚洲综合一区二区三区_| 国产精品 欧美亚洲| 亚洲国产成人一精品久久久| 18在线观看网站| 午夜日韩欧美国产| 高清视频免费观看一区二区| 国产成人欧美在线观看 | 久久精品亚洲熟妇少妇任你| 日本精品一区二区三区蜜桃| 91麻豆av在线| 亚洲av成人不卡在线观看播放网 | 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av| 久久久国产成人免费| 亚洲自偷自拍图片 自拍| 国产精品国产av在线观看| bbb黄色大片| 色老头精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 国产男女内射视频| 国产高清视频在线播放一区 | 狂野欧美激情性bbbbbb| 国产精品自产拍在线观看55亚洲 | 亚洲熟女精品中文字幕| 9热在线视频观看99| 亚洲国产日韩一区二区| 国产男人的电影天堂91| 午夜免费成人在线视频| 欧美人与性动交α欧美精品济南到| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 99热国产这里只有精品6| 午夜福利影视在线免费观看| 亚洲成人免费av在线播放| 久久av网站| 一本一本久久a久久精品综合妖精| 欧美亚洲 丝袜 人妻 在线| 欧美久久黑人一区二区| 日韩 亚洲 欧美在线| 侵犯人妻中文字幕一二三四区| 亚洲精品第二区| 亚洲精品在线美女| 在线永久观看黄色视频| videosex国产| 麻豆国产av国片精品| 久久久久久久精品精品| 国产精品久久久久久精品古装| 男人舔女人的私密视频| 女性生殖器流出的白浆| 性高湖久久久久久久久免费观看| 亚洲精品久久久久久婷婷小说| 欧美日韩成人在线一区二区| 国产亚洲欧美精品永久| 美女扒开内裤让男人捅视频| 久久精品亚洲熟妇少妇任你| 丝袜美足系列| netflix在线观看网站| 在线观看www视频免费| 亚洲精品第二区| 国产精品影院久久| 一区二区日韩欧美中文字幕| 99国产精品免费福利视频| 精品国产一区二区三区久久久樱花| 一级片免费观看大全| 麻豆av在线久日| 欧美中文综合在线视频| 亚洲av电影在线观看一区二区三区| 中文字幕高清在线视频| 久久久久久人人人人人| 午夜福利视频在线观看免费| 91麻豆精品激情在线观看国产 | 欧美日韩福利视频一区二区| 丰满迷人的少妇在线观看| 欧美乱码精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| www.自偷自拍.com| 国产精品香港三级国产av潘金莲| 男女下面插进去视频免费观看| 纵有疾风起免费观看全集完整版| 免费观看a级毛片全部| 欧美少妇被猛烈插入视频| 欧美国产精品va在线观看不卡| av在线app专区| 国产黄色免费在线视频| 日韩大片免费观看网站| 夜夜夜夜夜久久久久| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 日本一区二区免费在线视频| 国产精品 欧美亚洲| 淫妇啪啪啪对白视频 | 人人妻,人人澡人人爽秒播| 欧美精品高潮呻吟av久久| av视频免费观看在线观看| 99精品欧美一区二区三区四区| 99精品欧美一区二区三区四区| 国产精品一区二区在线观看99| 狠狠婷婷综合久久久久久88av| 国产精品亚洲av一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 丰满饥渴人妻一区二区三| 久久精品aⅴ一区二区三区四区| 国产伦人伦偷精品视频| 国产成人欧美在线观看 | bbb黄色大片| 国产精品久久久久成人av| av视频免费观看在线观看| 男人操女人黄网站| 久久 成人 亚洲| 国产精品久久久av美女十八| 精品福利永久在线观看| 搡老乐熟女国产| 美女视频免费永久观看网站| 久久国产精品大桥未久av| 欧美中文综合在线视频| 亚洲精品中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品亚洲成国产av| 免费不卡黄色视频| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区精品| 亚洲精品一卡2卡三卡4卡5卡 | 精品国产国语对白av| 国产精品九九99| 精品第一国产精品| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产一区二区| 乱人伦中国视频| av网站免费在线观看视频| 99国产精品一区二区三区| 99国产综合亚洲精品| 亚洲中文日韩欧美视频| 午夜福利在线免费观看网站| 亚洲欧洲日产国产| 两个人免费观看高清视频| 久久久国产一区二区| 亚洲精品一区蜜桃| 1024视频免费在线观看| 我的亚洲天堂| 一区二区三区激情视频| 视频区欧美日本亚洲| 一级,二级,三级黄色视频| 国产黄频视频在线观看| 国产欧美日韩综合在线一区二区| av片东京热男人的天堂| 中文欧美无线码| 99久久精品国产亚洲精品| 亚洲欧美清纯卡通| 自线自在国产av| 国产一卡二卡三卡精品| 亚洲性夜色夜夜综合| 久久免费观看电影| 免费在线观看黄色视频的| 午夜福利视频精品| 亚洲五月色婷婷综合| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 亚洲avbb在线观看| 美国免费a级毛片| 国产淫语在线视频| 狠狠婷婷综合久久久久久88av| 成人三级做爰电影| 国产无遮挡羞羞视频在线观看| 亚洲av电影在线进入| 精品一区在线观看国产| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 欧美在线黄色| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 十八禁网站网址无遮挡| 成年女人毛片免费观看观看9 | 精品久久蜜臀av无| 成年动漫av网址| 免费久久久久久久精品成人欧美视频| 80岁老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| av欧美777| 国产成人免费观看mmmm| 午夜两性在线视频| 亚洲视频免费观看视频| 国产欧美亚洲国产| 国产精品自产拍在线观看55亚洲 | 蜜桃国产av成人99| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 精品人妻1区二区| 久久性视频一级片| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看 | xxxhd国产人妻xxx| 亚洲 国产 在线| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 男女午夜视频在线观看| 制服诱惑二区| 一本综合久久免费| www.999成人在线观看| 多毛熟女@视频| 99国产极品粉嫩在线观看| 亚洲美女黄色视频免费看| 老司机深夜福利视频在线观看 | 免费一级毛片在线播放高清视频 | 人人妻人人澡人人爽人人夜夜| 欧美大码av| 美女午夜性视频免费| 热99re8久久精品国产| 欧美成人午夜精品| 大陆偷拍与自拍| 精品国内亚洲2022精品成人 | 成人三级做爰电影| 91成人精品电影| 女警被强在线播放| 99热全是精品| 免费高清在线观看日韩| 精品少妇久久久久久888优播| 免费少妇av软件| 色婷婷av一区二区三区视频| 无限看片的www在线观看| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 男人操女人黄网站| 女性被躁到高潮视频| 色94色欧美一区二区| 精品一区二区三区av网在线观看 | 久久精品成人免费网站| 9色porny在线观看| 免费在线观看完整版高清| 亚洲欧洲日产国产| 男女无遮挡免费网站观看| 日韩大片免费观看网站| 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线| 老司机靠b影院| 久久久国产成人免费| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| 欧美精品啪啪一区二区三区 | 免费在线观看黄色视频的| 久久久精品区二区三区| 视频在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 最近中文字幕2019免费版| 亚洲精品av麻豆狂野| 国产精品九九99| 男人添女人高潮全过程视频| 天天操日日干夜夜撸| 精品一区二区三区av网在线观看 | 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区mp4| 天天操日日干夜夜撸| 色老头精品视频在线观看| 大陆偷拍与自拍| 午夜91福利影院| 在线天堂中文资源库| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 99久久精品国产亚洲精品| 极品少妇高潮喷水抽搐| 桃花免费在线播放| 999久久久国产精品视频| 又大又爽又粗| 一二三四在线观看免费中文在| cao死你这个sao货| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 99九九在线精品视频| 午夜福利,免费看| 久久影院123| 青春草视频在线免费观看| 三级毛片av免费| 午夜视频精品福利| 如日韩欧美国产精品一区二区三区| 黄色视频在线播放观看不卡| cao死你这个sao货| 国产精品久久久久成人av| 精品国产一区二区三区久久久樱花| 国产免费视频播放在线视频| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看 | 老熟妇仑乱视频hdxx| 国产黄频视频在线观看| 日韩一区二区三区影片| 视频在线观看一区二区三区| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女 | 亚洲国产成人一精品久久久| 国产色视频综合| 天堂俺去俺来也www色官网| 一级片免费观看大全| 秋霞在线观看毛片| 国产国语露脸激情在线看| 久久国产精品男人的天堂亚洲| √禁漫天堂资源中文www| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美网| 亚洲国产精品一区二区三区在线| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 亚洲精品一二三| 热re99久久国产66热| 69av精品久久久久久 | 宅男免费午夜| 99国产精品99久久久久| 人成视频在线观看免费观看| 女人被躁到高潮嗷嗷叫费观| 老司机福利观看| 亚洲第一青青草原| 搡老熟女国产l中国老女人| 啪啪无遮挡十八禁网站| 婷婷成人精品国产| 日韩中文字幕视频在线看片| 深夜精品福利| 无限看片的www在线观看| 亚洲精品久久久久久婷婷小说| 亚洲国产成人一精品久久久| av网站在线播放免费| 91精品三级在线观看| 高清欧美精品videossex| av网站免费在线观看视频| 老汉色∧v一级毛片| 少妇的丰满在线观看| 欧美黄色片欧美黄色片| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| 精品亚洲成a人片在线观看| 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 一级a爱视频在线免费观看| 午夜精品久久久久久毛片777| 久久精品国产a三级三级三级| 夫妻午夜视频| 国产精品九九99| 老熟妇乱子伦视频在线观看 | 久久人人爽人人片av| 日本一区二区免费在线视频| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 永久免费av网站大全| 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产精品久久久不卡| 欧美激情久久久久久爽电影 | 国产成人a∨麻豆精品| 母亲3免费完整高清在线观看| 999久久久国产精品视频| 亚洲欧洲日产国产| 久久女婷五月综合色啪小说| 曰老女人黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品视频人人做人人爽| 99国产精品99久久久久| 视频在线观看一区二区三区| 97在线人人人人妻| 久久综合国产亚洲精品| 亚洲精品中文字幕一二三四区 | 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 黄片大片在线免费观看| 亚洲欧美清纯卡通| 亚洲九九香蕉| 亚洲午夜精品一区,二区,三区| 久久久久久久久免费视频了| 亚洲国产日韩一区二区| 国产成人a∨麻豆精品| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美软件| 亚洲黑人精品在线| 日韩 亚洲 欧美在线| 国产精品偷伦视频观看了| 欧美日韩黄片免| 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 最新在线观看一区二区三区| 久久精品国产亚洲av香蕉五月 | 天堂中文最新版在线下载| 水蜜桃什么品种好| 最新的欧美精品一区二区| 久久久精品区二区三区| 大码成人一级视频| 一本一本久久a久久精品综合妖精| 在线十欧美十亚洲十日本专区| 欧美日韩福利视频一区二区| 另类亚洲欧美激情| 无限看片的www在线观看| 一区在线观看完整版| 久久精品aⅴ一区二区三区四区| 亚洲av成人一区二区三| 两性夫妻黄色片| 国产淫语在线视频| netflix在线观看网站| 欧美精品一区二区免费开放| 美女中出高潮动态图| 色播在线永久视频| 两性夫妻黄色片| avwww免费| 丰满少妇做爰视频| 麻豆国产av国片精品| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 久久香蕉激情| 两个人免费观看高清视频| 亚洲精品国产av成人精品| 99香蕉大伊视频| 久久久精品免费免费高清| 午夜福利影视在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利一区二区在线看| 无限看片的www在线观看| 日韩有码中文字幕| 考比视频在线观看| 我要看黄色一级片免费的| 后天国语完整版免费观看| 亚洲第一av免费看| 大片免费播放器 马上看| 久久九九热精品免费| 午夜免费观看性视频| 又黄又粗又硬又大视频| 国产国语露脸激情在线看| 在线永久观看黄色视频|