• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conservation laws,Lie symmetries,self adjointness,and soliton solutions for the Selkov–Schnakenberg system

    2024-03-07 12:56:30KashifAliAlySeadawySyedRizviandNoorAziz
    Communications in Theoretical Physics 2024年2期

    Kashif Ali ,Aly R Seadawy ,Syed T R Rizvi and Noor Aziz

    1 Department of Mathematics,COMSATS University Islamabad,Lahore Campus,Pakistan

    2 Mathematics Department,Faculty of Science,Taibah University,Al-Madinah Al-Munawarah,41411,Saudi Arabia

    Abstract In this article,we explore the famous Selkov–Schnakenberg (SS) system of coupled nonlinear partial differential equations (PDEs) for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots.

    Keywords: Selkov–Schnakenberg system,Lie symmetry analysis,conservation laws,adjointness,integrability

    1.Introduction

    Partial differential equations (PDEs) play a vital role in the study of engineering and applied mathematics,particularly in fluid mechanics and electromagnetics [1–5].Nonlinear evolution equations (NLEEs) are foremost in the study of nonlinear phenomena.NLEEs are commonly applied to demonstrate the problems of plasma physics,fluid mechanics,biology,optical fibers,chemically reactive materials,chemical kinetics,electricity etc[6–11].Various methods have been utilized to find the solutions to NLEEs.They include an inverse scattering algorithm,Darboux transformations,Hirota bilinear approach,Lie symmetry analysis (LSA) etc [12–15].The Lie Group approach,also called LSA,is a successful and fruitful mechanism for attaining the symmetries,exact solutions,and conservation laws(CLs)of NLEEs[16].It was introduced by the Norwegian mathematician Sophus Lie in 1880.Many NLEEs have been studied under this approach.LSA is used in fractional calculus as well to produce new results.A symmetry of a differential equation (DE) converts one solution to another solution.New solutions can be produced from the older ones with the aid of symmetries of DEs[17].Symmetries and CLs are a vital part of the study of DEs.The CLs are essential because they provide a mathematical explanation of the model that certain physical quantity like energy,charge,linear,and angular momentum remains unaltered during the evolution of a physical system.An equation is integrable if it possesses CLs.The CLs of fractional PDEs are the amalgamation of works of Ibragimov[18]and Lukashchuk [19].

    CLs of a model can be evaluated by various approaches which include Noether?s theorem,variational approach,conservation theorem characteristic method,scaling invariance method etc [20–23].Hussain et al discussed the Burgers–Huxley equation by LSA and found the CLs[24].Rashidi and Hejazi[25]in their work used LSA to attain the solutions of a fractional integro-differential system called the Vlasov–Maxwell system.Bahi and Hilal [26] used LSA to find the CLs and exact solutions of the generalized time-fractional Korteweg-de Vries-Burgers-like equation.Liu et al used LSA on generalized time-fractional diffusion equations and also derived the CLs and exact solutions of the model [27–32].

    Figure 1.Numerical graphs of solution A1(x,t) for suitable parameters α=0.5,c=3,δ=1,η=0.5,p=3,q=2,Q=-0.5.

    Figure 2.Numerical graphs of solution A2(x,t) for suitable parameters α=0.5,c=3,δ=1,η=0.5,p=3,q=2,Q=0.5.

    Figure 3.Numerical graphs of solution A3(x,t) for suitable parameters α=0.5,c=3,δ=1,η=-0.5,p=3,q=2,Q=0.5,?=0.01.

    Any equation is said to be self-adjoint if its adjoint equation upon substitution is equal to the original equation.CLs have been derived on the basis of self-adjointness.The equations that are nonlinearly self-adjoint can be written in a strictly self-adjoint form with the aid of suitable multipliers.As a result,any linear equation can be expressed in a nonlinear strictly self-adjoint form [33].An integrable model possesses soliton solutions.A soliton is a wave that retains its shape and velocity on collision with another soliton.Many researchers have worked on finding the soliton solutions of the models [34–40] by different techniques.

    In 1952,Alan Turning [41] gave a concept of turning pattern which describes how patterns like stripes and spots can be set up naturally from a homogeneous uniform state.In one of his papers,he pondered over the behavior of the system where two diffusible materials come across each other to form a spatially periodic pattern.Reaction-diffusion systems (DRS) are mathematical models corresponding to physical phenomena.They are frequently used in the alteration in time and space of concentration of one or several chemical products.We can observe DRS in chemistry,biology,physics,etc.In this article,we will acknowledge a simple reaction model for glycolysis known as a Selkov–Schnakenberg (SS)system proposed by Schnakenberg in 1979.It is a chemical reaction with limited cycle behavior involving three stages:

    V,W and P,T are chemical products and chemical sources representing dimensionless concentrations of the reactants.So the SS system is a couple of nonlinear PDEs of the form[42]

    where R(x,t)and S(x,t)represent the concentrations of the two reactants.α and γ are diffusion coefficients of R and S.β,δ ≥0,σ>0.If β=0=δ,equation(1)is transformed into the Selkov model [43].If δ=0 and σ>0 equation (1) is turned to the Schnakenberg model [44].The remaining manuscript is organized as follows:In section 2,LSA is performed for the abovequoted model.In section 3,CLs have been formulated.In section 4,the self-adjointness(SA)of the model is discussed.In section 5,the model is solved by the sub-ordinary differential equations (sub-ODE) approach in detail.In section 6,we will interpret the solution of the model with their 3D,2D,and contour profiles for various parameters.Later,section 7 provides results and discussions of our model.At the end,in section 8,we will wind up the article by providing our conclusion.

    2.Lie Symmetry Analysis

    In this section,our main focus is on LSA for equation (1)which is elaborated below.Let us assume we have one parameter Lie Group of point transmformations [45,46]

    where ?≤1 is the group parameter.ξ1(x,t,R,S),ξ2(x,t,R,S),η1(x,t,R,S)and η2(x,t,R,S)are the infinitesimal generators which we have to calculate.The vector field associated with the above-mentioned group of transformations is given by

    For system 1 Pr2will be the second prolongation then the Lie’s invariance condition is

    Using SYM package launched by Dimas and Tsoubelis [47]we get the determining equations which are obtained by equating the polynomials to zero.Solution of these determining equations give values of ξ1(x,t,R,S),ξ2(x,t,R,S),η1(x,t,R,S) and η2(x,t,R,S) as

    Case (i):When

    α=0,γ=0 and RS ≠0.

    where c1,c2and c3are constants.The Lie symmetry algebra introduced by equation (1) is spanned by the linearly independent operators

    3.Conservation laws

    In this section,we compute CLs [45] for the SS system by a new procedure that is based on the formal Lagrangian [48].The conserved vectors for each symmetry are established below.The Lagrangian is given by

    where z(x,t)=RB1and w(x,t)=-SB1.B1ia an arbitrary constant.

    For symmetry Y1,the conserved vectors areFor symmetry Y2,the conserved vectors are:

    4.Self adjointness

    Let us assume a system of DEs withequations with p dependent variables and g=(g1,…,gp)[49].

    This system is said to have nonlinearly SA if the succeeding adjoint equations

    are satisfied for all solutions g of the system(28)upon replacing

    4.1.Nonlinear self adjointness of the Selkov–Schnakenberg system

    Our main aim is to show that equation (1) is nonlinearly SA.The adjoint equation for equation (1) is stated as

    Suppose z=Z(x,t,R,S) and w=W(x,t,R,S),after performing a few calculations the following equation is attained

    Now equating the coefficients of Rt,St,Rx,Sx,Rxx,Sxxto zero,we obtain

    The solution of Z(x,t,R,S) and W(x,t,R,S) is found to be

    where B1is any constant.Hence,equation(1)is a nonlinearly SA with the substitution equation given by equation (33).

    5.Sub-ODE technique

    In this section,the soliton solutions of SS equation(1)will be obtained via a sub-ODE mechanism by the assumption [50],

    where c is the non-zero velocity of the soliton,A(ψ)and B(ψ)are real functions explaining the appearance of the solitary wave.Inserting equation(5)and equation(35)in equation(1)we achieve a system of ODEs

    As stated in the sub-ODE algorithm,we presume that(38)has a solution

    where m is a parameter and G(ψ) satisfies the equation

    where J,H,L,M,and Q are constants and m is found by the homogeneous balance method [50] between A″ and A3in equation (38)

    Now the solution of equation (38) is given as:

    Substituting equation (41) together with equation (43) in equation(38)and equating the coefficients of powers of G we arrive at the following equations:

    But the old woman looked at her steadily9, and knew her again, and said: How have you managed to grow so young and beautiful? I should like to be young and beautiful too

    Type 1.Substituting J=H=M=0 in equation (44) we have

    Using equation (45) along with equation (25) of [50] in equation (43) we obtain the bright soliton solution of equation (1) as

    Using equation (45) along with equation (26) of [50] in equation(43)we achieve the periodic solution of equation(1)as

    Using equation (45) along with equation (27) of [50] in equation (43) we get the rational solution of equation (1)

    Using equation (52) along with equation (28) of [50] in equation(43)we get the dark soliton solution of equation(1)as

    Using equation (52) along with equation (29) of [50] in equation (43) the periodic solution is given by

    Type 3.Putting H=M=0 in equation (44) we obtain

    When m →0,then equation (58) is converted to:

    When m →1,then equation (58) is converted to:

    Using equation (57) along with equation (31) of [50] in equation (43) we get

    When m →1,then equation (63) is converted to:

    Using equation (57) along with equation (32) of [50] in equation (43) we get

    When m →0,then equation (66) is converted to:

    Using equation (69) along with equation (33) of [50] in equation (43) we get the bright soliton solution of equation (1) as

    Using equation (69) along with equation (34) of [50] in equation (43) we get the periodic solution of equation (1) as

    Type 5.Putting L=Q=0 in equation (44) we attain

    Using equation (74) along with equation (36) of [50] in equation (43) we get various Weierstrass elliptic solutions of equation (1) as

    Using equation (77) along with equation (37) of [50] in equation (43) we get more Weierstrass elliptic solutions of equation (1) as

    Using equation (77) along with equation (41) of [50] in equation (43) we get

    Using equation (84) along with equation (43) of [50] in equation (43) we get different positive solutions of equation (1) as

    Using equation (87) along with equation (44) of [50] in equation (43) we get

    Using equation (87) along with equation (45) of [50] in equation (43) we get

    Type 7.Substituting J=H=0 in equation (44) we have

    Using equation (93) along with equation (46) of [50] in equation (43) we obtain the hyperbolic function solutions of equation (1) as

    Using equation (93) along with equation (47) of [50] in equation (43) we attain

    Using equation (98) along with equation (48) of [50] in equation (43) we obtain the periodic solutions of equation (1) as

    Using equation (98) along with equation (49) of [50] in equation (43) we attain

    Figure 4.Numerical graphs of solution B4(x,t) for suitable parameters α=2,c=-3,δ=0.5,η=1,p=2,q=2,Q=-3,?=0.01.

    Figure 5.Numerical graphs of solution B5(x,t) for suitable parameters α=2,c=-3,δ=0.5,η=-2,p=5,q=4,Q=3,?=0.01.

    Figure 6.Numerical graphs of solution A7(x,t) for suitable parameters α=0.5,c=3,δ=0,η=3,m=1,p=2,q=2,Q=4.

    6.Graphical Representation

    The graphical representation of the SS system is given below by 3D,2D,and contour plots.

    7.Result and discussions

    Many authors have worked on the SS diffusion-reaction system.Li et al analyzed the SS diffusion-reaction system for the stability and instability of constant steady-state solutions[51].Al Noufaey discovered the semi-analytical solutions of the SS system by the Glarekin approach [52].Iqbal et al explored the soliton solutions of the SS model [42].Uecker and Wetzel proved the existence of various spatial patterns of the SS system [53].In this paper,we have utilized LSA to find the infinitesimal generators and symmetries of the SS system represented by equation (1).Next,its nonlinear self adjointness has been discussed.Moreover,the sub-ODE method is used to find soliton solutions of the model.Bright and periodic soliton solutions are shown by A1(x,t),B1(x,t),A13(x,t),B13(x,t),A2(x,t),B2(x,t),A5(x,t),B5(x,t),A14(x,t),B14(x,t),A24(x,t),B24(x,t)and A25(x,t),B25(x,t),respectively(figures 1–10).A4(x,t) and B4(x,t) present the dark soliton solutions and their graphical representation is given in figures 4 and 5 and JES solutions are represented by A6(x,t),B6(x,t),A7(x,t),B7(x,t),A8(x,t),B8(x,t),A9(x,t),B9(x,t),A10(x,t),B10(x,t),A11(x,t),B11(x,t),A12(x,t)and B12(x,t)and graphically by figures 8–12.Weierstrass elliptic solutions are presented by A15(x,t),B15(x,t),A16(x,t),B16(x,t),A17(x,t),B17(x,t),A18(x,t) and B18(x,t) and from figures 13–17.Hyperbolic function solutions are given by A22(x,t),B22(x,t)and A23(x,t),B23(x,t)and graphically by figures 18 and 19.The governing model has positive solutions shown by A19(x,t),B19(x,t),A20(x,t),B20(x,t),A21(x,t) and B21(x,t) and graphically by figures 20 and 21.

    Figure 7.Numerical graphs of solution A10(x,t) for suitable parameters α=-2,c=3,δ=0,η=3,m=1,p=5,q=2,Q=0.5.

    Figure 8.Numerical graphs of solution A12(x,t) for suitable parameters α=2,c=-5,δ=2,η=3,m=1,p=1,q=2,Q=0.5.

    Figure 9.Numerical graphs of solution B13(x,t) for suitable parameters α=2,c=-1,δ=0,η=2,μ=1,M=-4,p=3,q=2.

    Figure 10.Numerical graphs of solution B14(x,t) for suitable parameters μ=1,α=2,c=-1,δ=0.5,η=4,M=4,p=3,q=1.

    Figure 11.Numerical graphs of solution A15(x,t)for suitable parameters δ=0.5,α=-3,β=2,c=3,η=2,H=1,M=4,p=3,q=2.

    Figure 12.Numerical graphs of solution B16(x,t) for suitable parameters α=-3,c=2,δ=0,η=2,p=1,q=1,Q=3.

    Figure 13.Numerical graphs of solution B17(x,t) for suitable parameters α=-3,c=2,δ=6,η=2,p=1,q=4,Q=3.

    Figure 14.Numerical graphs of solution A18(x,t) for suitable parameters α=5,c=2,δ=1,η=-2,p=1,q=1,Q=3.

    Figure 15.Numerical graphs of solution B19(x,t) for suitable parameters α=5,c=25,δ=15,η=20,μ=10,p=10,q=10.

    Figure 16.Numerical graphs of solution B20(x,t) for suitable parameters α=5,c=2,δ=1,η=-4,μ=2,p=1,q=1,Q=5,?=1.

    Figure 17.Numerical graphs of solution B21(x,t) for suitable parameters α=5c=-2,δ=0.25,η=4,μ=2,p=1,q=1.

    Figure 18.Numerical graphs of solution A22(x,t)for suitable parameters α=2.5,c=3,δ=0,η=2,μ=0.5,M=2,p=1,q=1,Q=1.

    Figure 19.Numerical graphs of solution A23(x,t) for suitable parameters α=5,c=2,δ=0,η=-4,μ=1,M=4,p=1,q=1,Q=1.

    Figure 20.Numerical graphs of solution B24(x,t) for suitable parameters α=-2.5,c=-2,δ=1,η=2,M=1,p=1,q=1,Q=2.

    Figure 21.Numerical graphs of solution B25(x,t) for suitable parameters α=-3,c=3,δ=0,η=3,M=4,p=1,q=1,Q=2.

    8.Concluding remarks

    In this paper,the SS system has been discussed by LSA.We have explored the Lie point symmetries,infinitesimal generators,and the nonlinear SA and CLs of the SS system.Several soliton solutions like bright,dark solitons,periodic solitons,bell,kink shaped,Weierstrass elliptic function solutions,Jacobi,and Hyperbolic are developed for the above model by using the sub-ODE method with the help of Mathematica.A graphical representation is given for all the solutions evaluated in the paper.

    亚洲国产欧美日韩在线播放| 久久亚洲国产成人精品v| 成年人黄色毛片网站| 国产成人系列免费观看| 欧美少妇被猛烈插入视频| 老熟女久久久| 男人操女人黄网站| 99热全是精品| 免费看十八禁软件| 精品视频人人做人人爽| 国产一区二区在线观看av| 欧美老熟妇乱子伦牲交| 免费在线观看视频国产中文字幕亚洲 | 大香蕉久久成人网| 亚洲精品一区蜜桃| 黄色a级毛片大全视频| 啪啪无遮挡十八禁网站| 久久精品国产a三级三级三级| 欧美大码av| 天堂中文最新版在线下载| 成年av动漫网址| 久久综合国产亚洲精品| 精品人妻熟女毛片av久久网站| 免费日韩欧美在线观看| 中文欧美无线码| 国产在线观看jvid| 大片免费播放器 马上看| 中国美女看黄片| 国产欧美日韩一区二区三 | 天天躁日日躁夜夜躁夜夜| 香蕉国产在线看| 午夜福利一区二区在线看| 91成人精品电影| 黄色 视频免费看| 国产视频一区二区在线看| 大片电影免费在线观看免费| 欧美亚洲 丝袜 人妻 在线| 国产在线观看jvid| 亚洲五月色婷婷综合| 十分钟在线观看高清视频www| 亚洲成人国产一区在线观看| 一级a爱视频在线免费观看| 国产男女内射视频| av网站免费在线观看视频| 精品人妻在线不人妻| 国产成人欧美| 日韩免费高清中文字幕av| 国产麻豆69| 国产伦理片在线播放av一区| 秋霞在线观看毛片| 黄色a级毛片大全视频| 十八禁人妻一区二区| 国产精品香港三级国产av潘金莲| 成年人午夜在线观看视频| 午夜福利在线观看吧| 三上悠亚av全集在线观看| 亚洲欧美成人综合另类久久久| 91成人精品电影| 两个人看的免费小视频| 一二三四社区在线视频社区8| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲成av片中文字幕在线观看| 在线十欧美十亚洲十日本专区| 久久久久久亚洲精品国产蜜桃av| 叶爱在线成人免费视频播放| 成人av一区二区三区在线看 | 亚洲国产精品成人久久小说| 夜夜夜夜夜久久久久| 天堂中文最新版在线下载| a级毛片黄视频| 亚洲激情五月婷婷啪啪| 国产精品国产av在线观看| 亚洲五月色婷婷综合| 久久热在线av| 人人妻人人澡人人看| 老汉色av国产亚洲站长工具| 欧美 日韩 精品 国产| 精品卡一卡二卡四卡免费| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| av线在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦中文免费视频观看日本| 精品福利永久在线观看| 他把我摸到了高潮在线观看 | 久久精品国产亚洲av高清一级| 久久精品熟女亚洲av麻豆精品| 精品国产超薄肉色丝袜足j| 老司机午夜福利在线观看视频 | 欧美日韩视频精品一区| 天天躁狠狠躁夜夜躁狠狠躁| 91字幕亚洲| 亚洲中文字幕日韩| 亚洲精品一卡2卡三卡4卡5卡 | 老司机午夜十八禁免费视频| 亚洲一码二码三码区别大吗| 亚洲第一av免费看| 欧美日韩精品网址| 中国国产av一级| 精品国产乱码久久久久久小说| 人人妻人人澡人人爽人人夜夜| 成年av动漫网址| 亚洲精品av麻豆狂野| 69精品国产乱码久久久| 黄片小视频在线播放| 亚洲国产毛片av蜜桃av| 少妇 在线观看| 中文字幕最新亚洲高清| 亚洲av国产av综合av卡| 视频区欧美日本亚洲| av在线app专区| 91精品伊人久久大香线蕉| av片东京热男人的天堂| 亚洲av欧美aⅴ国产| 亚洲第一青青草原| 岛国在线观看网站| 女人精品久久久久毛片| 久久久久国内视频| 成年人免费黄色播放视频| 丁香六月天网| 国产精品一区二区精品视频观看| 黄片播放在线免费| 国产亚洲午夜精品一区二区久久| 国产男女超爽视频在线观看| 丰满饥渴人妻一区二区三| av不卡在线播放| 亚洲情色 制服丝袜| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲人成电影免费在线| 久久中文字幕一级| av欧美777| 亚洲欧美精品综合一区二区三区| 国产免费现黄频在线看| 日韩一区二区三区影片| 黑人操中国人逼视频| 国产精品亚洲av一区麻豆| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美一区二区综合| 欧美在线黄色| 亚洲精品中文字幕在线视频| 国产成人免费无遮挡视频| 国产激情久久老熟女| 两性夫妻黄色片| 黑丝袜美女国产一区| 90打野战视频偷拍视频| 91精品三级在线观看| 两个人免费观看高清视频| 久久狼人影院| 国产视频一区二区在线看| 一级毛片精品| 多毛熟女@视频| 汤姆久久久久久久影院中文字幕| 国产精品自产拍在线观看55亚洲 | 久久精品国产亚洲av香蕉五月 | 亚洲自偷自拍图片 自拍| 亚洲第一青青草原| 人人妻,人人澡人人爽秒播| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 丝袜喷水一区| 亚洲欧美精品综合一区二区三区| 欧美另类亚洲清纯唯美| videosex国产| 丝瓜视频免费看黄片| 老司机影院成人| 国产欧美日韩一区二区精品| 亚洲男人天堂网一区| 在线观看免费高清a一片| 亚洲av男天堂| 国产一区二区激情短视频 | 热99国产精品久久久久久7| 中文字幕最新亚洲高清| 人妻久久中文字幕网| 日韩制服骚丝袜av| 精品乱码久久久久久99久播| 久久精品熟女亚洲av麻豆精品| 午夜福利视频在线观看免费| 亚洲专区国产一区二区| 汤姆久久久久久久影院中文字幕| 视频区欧美日本亚洲| 久热这里只有精品99| 美国免费a级毛片| av天堂久久9| 免费在线观看黄色视频的| 亚洲精品日韩在线中文字幕| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久男人| 亚洲精品粉嫩美女一区| 免费在线观看完整版高清| tube8黄色片| 国产成人a∨麻豆精品| 亚洲精品国产色婷婷电影| 国产成人av教育| 丝袜美腿诱惑在线| 久久狼人影院| 老熟女久久久| 亚洲精品国产区一区二| 天天躁日日躁夜夜躁夜夜| 精品一区二区三区四区五区乱码| 久久天躁狠狠躁夜夜2o2o| 亚洲av日韩在线播放| 久久精品人人爽人人爽视色| 精品人妻熟女毛片av久久网站| h视频一区二区三区| 亚洲三区欧美一区| 久久热在线av| 日韩中文字幕视频在线看片| 免费人妻精品一区二区三区视频| 在线看a的网站| 亚洲国产欧美日韩在线播放| 亚洲成人免费电影在线观看| 99久久综合免费| www.熟女人妻精品国产| 亚洲欧美成人综合另类久久久| 中亚洲国语对白在线视频| 一二三四社区在线视频社区8| 99精品欧美一区二区三区四区| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜一区二区| 久久亚洲精品不卡| 午夜影院在线不卡| 男女午夜视频在线观看| 亚洲精品在线美女| 色老头精品视频在线观看| a级毛片黄视频| 亚洲一区中文字幕在线| 久久人人爽人人片av| 一区二区三区激情视频| 国产野战对白在线观看| 热re99久久精品国产66热6| 每晚都被弄得嗷嗷叫到高潮| 91字幕亚洲| 亚洲第一av免费看| 久久久精品免费免费高清| 啦啦啦免费观看视频1| 久久国产精品男人的天堂亚洲| 久久久国产欧美日韩av| 91字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品第二区| 亚洲欧洲精品一区二区精品久久久| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 免费黄频网站在线观看国产| 久久久久久人人人人人| 亚洲成人手机| 淫妇啪啪啪对白视频 | 亚洲专区中文字幕在线| 日本欧美视频一区| 国产一级毛片在线| 一边摸一边做爽爽视频免费| 国产成人免费无遮挡视频| 精品国产乱子伦一区二区三区 | 国产精品一区二区精品视频观看| 美女扒开内裤让男人捅视频| 18禁黄网站禁片午夜丰满| 桃红色精品国产亚洲av| 男女边摸边吃奶| 五月开心婷婷网| 色94色欧美一区二区| 深夜精品福利| 日韩欧美国产一区二区入口| 欧美成人午夜精品| 三上悠亚av全集在线观看| 好男人电影高清在线观看| 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区久久| 国产av又大| 在线永久观看黄色视频| 久久狼人影院| 婷婷丁香在线五月| 亚洲国产欧美一区二区综合| 欧美xxⅹ黑人| 一区二区三区激情视频| 中文字幕人妻熟女乱码| 黄色片一级片一级黄色片| 欧美亚洲 丝袜 人妻 在线| 免费高清在线观看视频在线观看| av超薄肉色丝袜交足视频| 国产一区二区三区综合在线观看| 国产在线观看jvid| 久久天堂一区二区三区四区| 美女高潮到喷水免费观看| 亚洲国产精品999| 亚洲av日韩精品久久久久久密| 丝袜喷水一区| 亚洲精品一区蜜桃| 午夜免费成人在线视频| 精品人妻1区二区| 啦啦啦啦在线视频资源| 啦啦啦啦在线视频资源| 夜夜夜夜夜久久久久| 久久久精品免费免费高清| 午夜福利乱码中文字幕| 国产一卡二卡三卡精品| www.av在线官网国产| 久久精品国产亚洲av高清一级| 欧美在线黄色| 午夜福利视频在线观看免费| 日韩 欧美 亚洲 中文字幕| 在线 av 中文字幕| 午夜日韩欧美国产| 亚洲午夜精品一区,二区,三区| 国产精品国产三级国产专区5o| 午夜成年电影在线免费观看| 搡老乐熟女国产| 少妇人妻久久综合中文| 在线观看免费午夜福利视频| 91av网站免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 考比视频在线观看| 日韩欧美一区视频在线观看| 热99久久久久精品小说推荐| 亚洲精品国产精品久久久不卡| 两个人免费观看高清视频| 99国产综合亚洲精品| 久久精品国产亚洲av香蕉五月 | 亚洲av成人一区二区三| 成年美女黄网站色视频大全免费| 国产欧美亚洲国产| 99国产综合亚洲精品| 丝袜人妻中文字幕| 国产亚洲欧美精品永久| 午夜免费鲁丝| 老司机深夜福利视频在线观看 | 成年人免费黄色播放视频| 久久久久久久久久久久大奶| 日本一区二区免费在线视频| 国产精品 欧美亚洲| 亚洲国产精品成人久久小说| 午夜免费成人在线视频| 人人妻人人爽人人添夜夜欢视频| 亚洲成av片中文字幕在线观看| 亚洲欧美激情在线| 啦啦啦中文免费视频观看日本| 看免费av毛片| 日日摸夜夜添夜夜添小说| 丝袜脚勾引网站| 美女视频免费永久观看网站| 午夜免费成人在线视频| av视频免费观看在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美一区二区三区在线观看 | 美女脱内裤让男人舔精品视频| 汤姆久久久久久久影院中文字幕| 少妇的丰满在线观看| 久久久久精品国产欧美久久久 | 亚洲精品国产色婷婷电影| 丝袜美足系列| 久久国产精品影院| 欧美亚洲日本最大视频资源| av在线老鸭窝| 国产免费av片在线观看野外av| 国产精品自产拍在线观看55亚洲 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产av精品麻豆| 国产亚洲欧美在线一区二区| 51午夜福利影视在线观看| 亚洲美女黄色视频免费看| 亚洲国产欧美一区二区综合| 日韩欧美免费精品| 国产97色在线日韩免费| 国产免费一区二区三区四区乱码| videos熟女内射| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片| 色婷婷久久久亚洲欧美| 91麻豆精品激情在线观看国产 | 中文欧美无线码| 国产精品欧美亚洲77777| 国产成人欧美在线观看 | 丰满饥渴人妻一区二区三| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区四区第35| 色94色欧美一区二区| 日韩大码丰满熟妇| 岛国毛片在线播放| 成年人黄色毛片网站| 精品国内亚洲2022精品成人 | 黑丝袜美女国产一区| 这个男人来自地球电影免费观看| 久久久久久亚洲精品国产蜜桃av| 脱女人内裤的视频| 五月天丁香电影| 在线亚洲精品国产二区图片欧美| 国产精品久久久人人做人人爽| 亚洲人成77777在线视频| 黄片大片在线免费观看| 成人国语在线视频| 2018国产大陆天天弄谢| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 亚洲第一青青草原| a在线观看视频网站| 一本—道久久a久久精品蜜桃钙片| 国产麻豆69| 俄罗斯特黄特色一大片| 在线精品无人区一区二区三| 电影成人av| 超碰97精品在线观看| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久av网站| 美女大奶头黄色视频| 日韩制服骚丝袜av| 一区二区三区四区激情视频| 999精品在线视频| 国产精品麻豆人妻色哟哟久久| 国产在线免费精品| 国产色视频综合| 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 成人影院久久| 曰老女人黄片| 亚洲国产欧美日韩在线播放| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 久久女婷五月综合色啪小说| 美女脱内裤让男人舔精品视频| 国产男女超爽视频在线观看| 亚洲精品自拍成人| 亚洲成国产人片在线观看| av片东京热男人的天堂| 啦啦啦中文免费视频观看日本| 少妇 在线观看| 亚洲成人免费av在线播放| 亚洲欧美色中文字幕在线| 亚洲中文av在线| 亚洲人成电影免费在线| 黄色a级毛片大全视频| 超碰97精品在线观看| 久久久欧美国产精品| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 亚洲精品一卡2卡三卡4卡5卡 | 淫妇啪啪啪对白视频 | 亚洲色图综合在线观看| 国产无遮挡羞羞视频在线观看| 免费高清在线观看日韩| 精品福利永久在线观看| 亚洲av电影在线进入| 人成视频在线观看免费观看| 国产国语露脸激情在线看| 亚洲色图综合在线观看| 激情视频va一区二区三区| 人妻 亚洲 视频| 纵有疾风起免费观看全集完整版| 色综合欧美亚洲国产小说| a级毛片黄视频| 日韩欧美国产一区二区入口| 啦啦啦啦在线视频资源| 国产真人三级小视频在线观看| 纯流量卡能插随身wifi吗| 久久国产精品男人的天堂亚洲| 午夜福利,免费看| 国产成人精品在线电影| 18在线观看网站| 亚洲avbb在线观看| 国产精品熟女久久久久浪| 国产日韩欧美视频二区| 久久久精品免费免费高清| 国产精品 国内视频| 日本一区二区免费在线视频| 搡老乐熟女国产| 9热在线视频观看99| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 亚洲国产av影院在线观看| 国产欧美日韩综合在线一区二区| 国产成人a∨麻豆精品| 亚洲精品国产区一区二| 国产又爽黄色视频| 午夜福利在线免费观看网站| 桃红色精品国产亚洲av| 最近中文字幕2019免费版| 国产精品偷伦视频观看了| 黄片播放在线免费| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕在线视频| 免费在线观看完整版高清| 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区 | 天堂俺去俺来也www色官网| 在线观看免费视频网站a站| 日本a在线网址| 法律面前人人平等表现在哪些方面 | 免费人妻精品一区二区三区视频| 国产一区二区 视频在线| 在线亚洲精品国产二区图片欧美| 亚洲精品一二三| a在线观看视频网站| 50天的宝宝边吃奶边哭怎么回事| 97在线人人人人妻| cao死你这个sao货| 正在播放国产对白刺激| 欧美日韩精品网址| 自线自在国产av| 在线观看人妻少妇| 国产成人精品在线电影| 国产男女超爽视频在线观看| av在线app专区| 日韩视频在线欧美| 黄频高清免费视频| 欧美另类一区| 欧美成人午夜精品| 日韩精品免费视频一区二区三区| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 91av网站免费观看| 两个人看的免费小视频| 黑人巨大精品欧美一区二区mp4| 人人妻人人爽人人添夜夜欢视频| 18在线观看网站| 欧美乱码精品一区二区三区| 亚洲国产精品999| 日韩大片免费观看网站| 免费在线观看影片大全网站| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 国产欧美日韩一区二区三 | 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 在线 av 中文字幕| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 黑人欧美特级aaaaaa片| 亚洲国产欧美日韩在线播放| 黄色视频,在线免费观看| 国产亚洲午夜精品一区二区久久| 亚洲综合色网址| 亚洲欧美激情在线| 国产成人精品在线电影| 两人在一起打扑克的视频| 午夜老司机福利片| 精品久久蜜臀av无| 久久精品国产综合久久久| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 国产麻豆69| 免费av中文字幕在线| 欧美精品av麻豆av| 亚洲五月色婷婷综合| 一级黄色大片毛片| 亚洲欧美精品综合一区二区三区| 国产亚洲av片在线观看秒播厂| 少妇裸体淫交视频免费看高清 | 悠悠久久av| 国产欧美亚洲国产| 成人国语在线视频| 黑人巨大精品欧美一区二区mp4| 午夜福利一区二区在线看| 在线观看免费午夜福利视频| 国产老妇伦熟女老妇高清| 两个人免费观看高清视频| 后天国语完整版免费观看| 一本综合久久免费| 国产欧美日韩一区二区三 | 19禁男女啪啪无遮挡网站| 午夜激情久久久久久久| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 国产亚洲午夜精品一区二区久久| 久久精品国产综合久久久| 丰满少妇做爰视频| 国产精品麻豆人妻色哟哟久久| 午夜福利免费观看在线| 十分钟在线观看高清视频www| 97精品久久久久久久久久精品| 亚洲国产精品999| 精品久久久久久电影网| 欧美日韩亚洲国产一区二区在线观看 | 免费看十八禁软件| 午夜福利视频精品| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲av电影在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频 | 中国美女看黄片| 精品一区在线观看国产| 日本五十路高清| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 欧美老熟妇乱子伦牲交| 国产男人的电影天堂91| netflix在线观看网站| 三上悠亚av全集在线观看| 亚洲精品美女久久av网站| 国产亚洲午夜精品一区二区久久| 亚洲精品国产av蜜桃| 国产亚洲精品久久久久5区| 免费在线观看日本一区| 男女之事视频高清在线观看| 国产高清videossex| 午夜影院在线不卡| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 99国产综合亚洲精品| 久久久久国产一级毛片高清牌| 老司机在亚洲福利影院| 成在线人永久免费视频| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 日本av免费视频播放| √禁漫天堂资源中文www| 97精品久久久久久久久久精品| 巨乳人妻的诱惑在线观看| 天堂中文最新版在线下载| 久久国产亚洲av麻豆专区| 精品人妻在线不人妻| 99久久国产精品久久久| 老司机午夜十八禁免费视频|