• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New lump solutions and several interaction solutions and their dynamics of a generalized (3+1)-dimensional nonlinear differential equation

    2024-03-07 12:56:20YexuanFengandZhonglongZhao
    Communications in Theoretical Physics 2024年2期

    Yexuan Feng and Zhonglong Zhao

    School of Mathematics,North University of China,Taiyuan,Shanxi 030051,China

    Abstract In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.

    Keywords: lump solutions,generalized (3+1)-dimensional nonlinear differential equation,Hirota’s bilinear method,quadratic function method,interaction solutions

    1.Introduction

    Lump solutions are special analytical rational function solutions in soliton theory,which were first found in the study of the Kadomtsev–Petviashvili (KP) equation [1].Lump solutions have been widely applied in the fields of Bose–Einstein condensation,ocean waves,optics,shallow water waves and so on [2–8],and have been paid increasing attention by mathematicians in recent years[9–14].Therefore,it is of great significance to study lump solutions of nonlinear differential equations.To get lump solutions of nonlinear differential equations,many methods have been proposed,such as Darboux transformation [15],the long-wave limit method[16,17],Hirota’s bilinear method [18],the trigonometric function series method [19] and the Jacobi elliptic function expansion method[20].The long-wave limit method was first proposed by Ablowitz et al [16,17].However,by taking the long-wave limit,one can only get lump solutions which are localized in the all-plane of the nonlinear differential equations less than (2+1)-dimensional,while the lump solutions localized in the all-plane of the (3+1)-dimensional nonlinear differential equations cannot be guaranteed.

    It is always a hot topic to seek the exact solutions,such as breath-wave solutions [21,22],interaction solutions [23] and lump solutions [24–26],of nonlinear differential equations,and many exact solutions of nonlinear differential equations have been obtained by some scholars in recent years.For instance,Chen et al derived the breather solutions and the interaction solutions of the (3+1)-dimensional generalized Camassa–Holm KP equation [27].The mixed lump-stripe solutions and the mixed rogue wave-stripe solutions of the(3+1)-dimensional nonlinear wave equation were obtained by Wang et al [28].Li and Jiang obtained the lump solutions of the(2+1)-dimensional Hietarina-like equation[29].Based on the long-wave limit method,Liu obtained the lump solutions of the (2+1)-dimensional generalized Calogero–Bogoyavlenshii–Schiff (CBS) equation [30],while Cao et al obtained the lump solutions to the potential KP equation and(2+1)-dimensional Sawada–Kotera equation using the same method,respectively [31,32].With the aid of Hirota’s bilinear method,Pu et al obtained the lump solutions of the(3+1)-dimensional soliton equation and the expanded Jimbo–Miwa equation[33,34].In[35],Ma first proposed a quadratic function method for constructing lump solutions of nonlinear differential equations,which can gain the lump solutions of high-dimensional nonlinear differential equations localized in the whole plane.Subsequently,Zhou et al derived the lump solutions of the(3+1)-dimensional generalized CBS equation and reduced the (3+1)-dimensional nonlinear evolution equation using a quadratic function method[36,37].Inspired by the study of Ma et al,this paper aims to derive the lump solutions localized in the whole plane of a more generalized(3+1)-dimensional nonlinear differential equation

    and a,b,c,d,g and h are any nonzero constants.Through the transformation

    equation (1) can be transformed into the following Hirota’s bilinear form

    When different parameters are selected for the coefficients a,b,c,d,g and h,equation (1) can be reduced to many classical integrable equations.Here,we present the following examples.

    When a=b=1,c=d=g=h=0 and z=x,equation(1)is reduced to the Korteweg–de Vries (KdV) equation

    When a=1,b=h1,c=h5,g=0,d+h=0 and z=x,equation (1) is reduced to the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation[38]

    for h2=6h1,h6=3h5,h3=h4=h7=h8=0,wherehi(i=1,2,…,8)is an arbitrary real constant.When a=1,b=α,c=β,d=γ1,g=γ2,h=0 and z=x,equation (1) is reduced to the(2+1)-dimensional generalized Bogoyavlensky–Konopelchenko (BK) equation [39]

    for γ3=0,where α,β,γ1,γ2and γ3are constants.Equation(1)can be widely used in ocean dynamics and other related fields,and the study of equation(1)is helpful for us to find the lump solutions of KdV-type equations.In the following,the lump solutions localized in the full plane are shortened to lump solutions.

    The structure of this paper is organized as follows.In section 2,a lump solution is obtained using the quadratic function method.In section 3,we briefly introduce the amplitude of the lump wave and its propagation velocities along the x,y and z axes,respectively,and a theorem describing the amplitude and propagation velocity of this lump wave is established.In section 4,we show 3D plots and the corresponding density plots of the lump waves from three examples.In section 5,we obtain the breath-wave solutions of equation (1).In section 6,several interaction solutions of equation (1) are studied.Finally,some conclusions are given in the last section.

    2.Lump solutions in (3+1)-dimensional of equation (1)

    In this section,we introduce the method of finding the lump solutions.Based on the study of [35],we know that the positive quadratic function solution of equation (1) can be expressed as

    where fj=d1jx+d2jy+d3jz+d4jt+d5jwith d1j,d2j,d3j,d4jandd5j(j=1,2,3)being constants.It is difficult to obtain the sum of three squares of f by equation (5) to get a lump solution in (3+1)-dimensional.Therefore,we use the following method to find the lump solution.A useful lemma is introduced as follows.

    Lemma 1.Letβ=(β1,…,βN)T?RNbe a fixed vector and consider the following quadratic function

    where the real matrixB=(bij)N×Nis symmetric andq?R is a constant.The function f defined by equation (6) is a solution to the general Hirota bilinear equation

    where P is a polynomial of N variables andD=(D1,D2,…DN),Bidenotes the ith column vector of the symmetric matrix B for 1 ≤i≤N,pijandpijklare the coefficients of the quadratic and quartic terms,respectively [35].

    whereα=(x,y,z,t)T,B=[bij]is a 4×4 symmetric matrix,and q is a constant.We introduce two matrices

    then define

    whereP(i,j) andB(i,j) are used to represent the ith row and jth column elements of matrices P and B,respectively.From lemma 1,the function f defined by equation(7)is a solution to equation (1) if and only if

    Since equation(3)contains the second-order Hirota derivative terms,theorem 3.6 in [35] shows that equation (3) has a positive quadratic function solution when∣B∣=0.Thus,to satisfy∣B∣=0,we setRank(B) =3,then we get m=0.Substituting m=0 into equation (10),we obtain thatq(q>0) is an arbitrary constant andb1(bb3+cb2)=0.Since B is a semi-positive definite matrix,all the principal entries of B are non-negative.If b1=0,then

    hence b2=0.Furthermore,we have b3=b4=0.Then,we get a trivial solution to f that does not depend on x and,from theorem 2 in [36],equation (1) has no lump solution.Therefore,we have to set bb3+cb2=0,namelyThen,the non-trivial solutions of equation(11)can be written as

    where a,d,g and h are any nonzero constants,while b7,b8,b9and b10are free variables such that B ≥0 andRank(B)=3.

    Substituting equation (12) into B in equation (8),we get the matrix B

    and the function f defined by equation(5)can be expressed as

    Taking the appropriate parameters,such that

    then function f is positive definite.

    By symbolic computations,we obtain

    from equation (13).If the appropriate parameters are chosen so that

    then function f is positive definite.If equation(16)holds,then function f depends on x,y,z and t,thus

    Therefore,according to theorem 2 in [36],the function f defined by equation (15) produces a lump solution of equation (1).

    Remark 1.Lump solutions localized in the whole plane of any (3+1)-dimensional nonlinear evolution equation cannot be obtained by taking the long-wave limit of the two-soliton solutions,but can be obtained via the quadratic function method [36].

    3.The amplitude and propagation velocity of the lump waves

    In this section,we obtain the amplitude of the lump produced by equation (15) and its propagation velocities along the x,y and z axes.Substituting equation (15) into equation (2),a lump solution

    is obtained.

    Taking partial derivatives of x,y and z,respectively,in equation (15),we have

    Based on the above discussion,we give the following theorem.

    Theorem 1.For a bilinear equation of the form

    4.Three examples

    In this section,we will give three examples of the lump solutions to equations like equation (1) based on theorem 1.

    Case 1.We take a=b=c=d=g=1,h=-1,b7=-2,b8=6,b9=1,b10=10 and q=1.Then the matrix

    is positive semi-definite.By considering equation (15),we know

    Then the function

    is a lump solution to the equation

    This lump has an amplitude of 28,and the propagation velocities of this lump along the x,y,z axes are 1,1,-1,respectively,where the negative sign is the direction of propagation of the lump wave.Figure 1 shows the 3D plots of equation (19) for (a) x=0,(b) y=0,(c) z=0 when t=0,and the corresponding density plots of equation (19) for (d)x=0,(e) y=0,(f) z=0 when t=0.

    Figure 1.The 3D plots of equation(19)for(a)x=0,(b)y=0,(c)z=0 when t=0,and the corresponding density plots of equation(19)for(d) x=0,(e) y=0,(f) z=0 when t=0.

    Case 2.We take a=-1,b=c=2,d=1,g=h=-2,b7=-1,b8=5,b9=-2,b10=12 and q=2.Then the matrix

    is positive semi-definite.By considering equation (15),we have

    Then the function

    is a lump solution to the equation

    The amplitude of this lump is 12,and the propagation velocities of this lump along the x,y,z axes are -1,2,2,respectively.Figure 2 shows the 3D plots of equation(20)for(a) x=0,(b) y=0,(c) z=0 when t=0,and the corresponding density plots of equation (20) for (d) x=0,(e) y=0,(f) z=0 when t=0.

    Figure 2.The 3D plots of equation(20)for(a)x=0,(b)y=0,(c)z=0 when t=0,and the corresponding density plots of equation(20)for(d) x=0,(e) y=0,(f) z=0 when t=0.

    Case 3.We take a=b=d=2,c=1,g=-3,h=0,b7=1,b8=8,b9=1,b10=15,q=3,and z=x.Then the matrix

    is positive semi-definite.By considering equation (15),we have

    Then the function

    is a lump solution to the equation

    which is a bilinear equation of the (2+1)-dimensional generalized BK equation (4) for γ3=0.The amplitude of this lump is 18,and the propagation velocities of this lump along the x and y axes are 1 andrespectively.Figure 3 shows the 3D plots and corresponding density plots of the projection of the lump solution,equation (21),when t=0,t=5 and t=10.

    Figure 3.The 3D plots of equation(21)when(a)t=0,(b)t=5,(c)t=10,and the corresponding density plots of equation(21)when(d)t=0,(e) t=5,(f) t=10.

    5.The breath-wave solutions of equation (1)

    In this section,we focus on finding the breath-wave solutions of equation (1).We set

    where μ1,μ2,δ1and δ2are nonzero constants and

    withεi(i=1,…,10)being an undetermined constant.Substituting equation (22) into bilinear equation (3),we get

    where a,b,c,d,g,h,ε1,ε3,ε5,ε6,ε7,ε8,ε10,μ1,μ2and δ1are arbitrary nonzero constants.Substituting equation (23)into equation (22) yields

    and then,via the transformation,equation (2),we get

    We take a=b=c=d=g=h=1.Figure 4 shows the density plots of equation(24)under different parameters.As seen in figure 4(b),when the ε5decreases toand the ε7increases to 2,the breath waves become denser than those in figure 4(a).In figure 4(c),we find that when the parameter ε1is reduced tothe twist angle of the breath waves are changed.

    6.The interaction solutions of equation (1)

    In this section,we derive several interaction solutions of equation (1) and show corresponding plots to observe the structures of these solutions.

    6.1.The mixed lump–soliton solutions of equation (1)

    andri(i=1,…,16)is an undetermined constant.By substituting equation (25) into equation (3),we obtain

    where a,b,c,d,g,h,r1,r2,r6,r8,r12and r14are arbitrary nonzero constants.Substituting equation (26) into equation (25) generates

    From the transformation,equation (2),we have

    We take the xoy-plane as an example to analyze the relationship between the lump and the soliton in solution (28).Let z=0,and take the derivative of equation (27) with respect to x and y;then it can be concluded from fx=fy=0 that the central point coordinate of the lump is

    It is easy to conclude from the above equation that the distance between the lump and the soliton depends only on the choice of parameters and is independent of time.

    We take a=b=c=d=g=h=1 as an example to observe the dynamic behavior of equation (28).Figure 5 shows the 3D plots of equation(28)with different parameters.As seen in figure 5,the soliton moves up to the left while the lump moves down to the left.In figures 5(a)–(c),we can see that when r10=20,the distance between the lump and the soliton is alwaysIt can be observed from figures 5(d)–(f) that when r10=1,the distance between the lump and the soliton is always 0,i.e.the lump moves on the soliton.When r10decreases to-30,the lump and the soliton are completely fused,and only one soliton is shown in the plot,as shown in figures 5(g)–(i).

    Figure 5.The 3D plots of equation (28) when r1=r2=r5=r6=r8=r12=r14=1,r11=e,r16=3 and (a)–(c) r10=20,(d)–(f) r10=1,and (g)–(i) r10=-30 in the xoy-plane.

    Figure 7.Density plots of equation (34) when η2=10,η3=η5=η8=η10=η13=η15=η16=δ4=δ5=1,η7η11=2,δ at (a)t=-5,(b) t=0 and (c) t=5 in the xoy-plane.

    6.2.The mixed rogue-wave–soliton solutions of equation (1)

    To derive the mixed rogue-wave–soliton solutions of equation (1),we assume that

    where

    andwi(i=1,…,16)is a constant to be determined.We substitute equation (25) into equation (3) and then obtain

    where a,b,c,d,g,h,w1,w3,w5,w7,w9,w10,w11,w12,w15and w16are arbitrary nonzero constants such that bg-ch ≠0.Substituting equation (30) into equation (29) gives

    Through the transformation,equation (2),we have

    We still analyze the position relationship between the lump and the two solitons taking the xoy-plane as an example.Similarly to the previous analysis,if z=0,we take the derivative of equation(27)with respect to x and y,and then fx=fy=0 leads to the coordinate of the center point of the lump being

    6.3.The periodic cross-kink solutions of equation (1)

    We assume that

    where a,b,c,d,g,h,η2,η3,η5,η6,η7,η8,η10,η11,η13,η15and η16are arbitrary nonzero constants.By substituting equation (33) into equation (32),we get

    then,by virtue of the transformation,equation (2),we have

    We take a=b=c=d=g=h=1.It can be observed in figure 7 that the solution,equation (34),appears as two intersecting solitons.Over time,the narrower soliton moves upward to the left,while the wider soliton moves upward to the right.And the intersection of the two solitons moves with time along the positive semi-axis of x and y.

    7.Conclusion

    In this paper,we first consider a generalized(3+1)-dimensional equation,and derive its bilinear form using Hirota’s bilinear method.The lump solutions localized in the whole plane are obtained via the quadratic function method.To analyze the dynamical behavior of the lump waves,three examples are given and the 3D plots and corresponding density plots are presented.It is notable that the method used here to obtain lump solutions can be extended to other (3+1)-dimensional equations.However,the lump solutions derived by this method are localized in the whole plane,but only as single-lump solutions,while the lump solutions obtained via methods such as the long-wave limit are multi-lump solutions,but not necessarily localized in the whole plane.Moreover,the breath-wave solutions,the mixed lump–soliton solutions,the mixed rogue-wave–soliton solutions and the periodic cross-kink solutions are derived.In future work,we will explore whether this method can derive multi-lump solutions localized in the whole plane of the(3+1)-dimensional equations.Recent studies have proved the existence of line rogue waves in some(2+1)-dimensional evolution equations[40,41].We will investigate the existence of line rogue waves in(3+1)-dimensional equations in future work.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos.12101572 and 12371256),2023 Shanxi Province Graduate Innovation Project (No.2023KY614) and the 19th Graduate Science and Technology Project of North University of China (No.20231943).

    美女午夜性视频免费| 19禁男女啪啪无遮挡网站| 新久久久久国产一级毛片| 9热在线视频观看99| 亚洲色图综合在线观看| 操美女的视频在线观看| 在线观看午夜福利视频| 国产亚洲欧美在线一区二区| 免费少妇av软件| 亚洲精品在线美女| 成人永久免费在线观看视频| 久久人妻av系列| 免费不卡黄色视频| 18禁裸乳无遮挡免费网站照片 | 国产成人一区二区三区免费视频网站| 18禁美女被吸乳视频| 99精品欧美一区二区三区四区| 精品久久久久久,| 精品国产超薄肉色丝袜足j| 无限看片的www在线观看| 91老司机精品| 一级片'在线观看视频| 99热国产这里只有精品6| 国产精品 国内视频| 亚洲精品美女久久av网站| 日韩 欧美 亚洲 中文字幕| 少妇粗大呻吟视频| 免费日韩欧美在线观看| 亚洲色图综合在线观看| 日本三级黄在线观看| 女人精品久久久久毛片| 91国产中文字幕| 欧美成人性av电影在线观看| 亚洲精品国产精品久久久不卡| 精品一品国产午夜福利视频| 欧美+亚洲+日韩+国产| a级毛片黄视频| 丝袜美足系列| 久久久久久久久免费视频了| 成人三级做爰电影| 人人妻人人澡人人看| 高清毛片免费观看视频网站 | 性欧美人与动物交配| 亚洲色图 男人天堂 中文字幕| 久久久久久久精品吃奶| 免费高清在线观看日韩| 中文字幕人妻丝袜一区二区| 男女下面进入的视频免费午夜 | 国产成人精品久久二区二区91| 视频区欧美日本亚洲| 18禁国产床啪视频网站| 久久国产精品男人的天堂亚洲| 国产欧美日韩一区二区三区在线| 又紧又爽又黄一区二区| 国产免费男女视频| 日日爽夜夜爽网站| 制服人妻中文乱码| 色综合欧美亚洲国产小说| 三级毛片av免费| 国产av又大| 免费看十八禁软件| 国产成人精品久久二区二区91| 嫩草影院精品99| 99在线人妻在线中文字幕| 亚洲成人国产一区在线观看| 久久国产精品男人的天堂亚洲| 人人妻,人人澡人人爽秒播| 国产99白浆流出| 国产精品99久久99久久久不卡| 欧美乱色亚洲激情| 男男h啪啪无遮挡| 免费在线观看日本一区| 天堂影院成人在线观看| 婷婷丁香在线五月| 国产亚洲欧美98| 女警被强在线播放| 香蕉国产在线看| 国产精品久久久久久人妻精品电影| 日本a在线网址| 嫩草影院精品99| 久久久久久久午夜电影 | av天堂久久9| 多毛熟女@视频| 成人三级做爰电影| 欧美中文日本在线观看视频| 极品人妻少妇av视频| 18禁黄网站禁片午夜丰满| 真人一进一出gif抽搐免费| 超色免费av| 一边摸一边抽搐一进一小说| 久久99一区二区三区| 俄罗斯特黄特色一大片| 女生性感内裤真人,穿戴方法视频| 久久天堂一区二区三区四区| 国产一区在线观看成人免费| 美女大奶头视频| 在线视频色国产色| 婷婷精品国产亚洲av在线| 天天躁夜夜躁狠狠躁躁| 大型黄色视频在线免费观看| 国产xxxxx性猛交| 一区福利在线观看| 一边摸一边抽搐一进一出视频| 淫妇啪啪啪对白视频| 欧美另类亚洲清纯唯美| 老司机午夜十八禁免费视频| 超色免费av| 亚洲七黄色美女视频| 在线免费观看的www视频| 国产精品香港三级国产av潘金莲| 神马国产精品三级电影在线观看 | 美国免费a级毛片| 色尼玛亚洲综合影院| 99久久国产精品久久久| 亚洲av熟女| 亚洲精品国产精品久久久不卡| 日韩精品免费视频一区二区三区| 免费在线观看影片大全网站| 亚洲专区字幕在线| 国产精品电影一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产精品美女特级片免费视频播放器 | 波多野结衣一区麻豆| 又大又爽又粗| 母亲3免费完整高清在线观看| 交换朋友夫妻互换小说| 亚洲av熟女| 视频在线观看一区二区三区| 高清毛片免费观看视频网站 | 夜夜躁狠狠躁天天躁| 国产99久久九九免费精品| 免费观看精品视频网站| 欧美最黄视频在线播放免费 | 女人被躁到高潮嗷嗷叫费观| 自线自在国产av| 日韩欧美国产一区二区入口| 精品人妻1区二区| 久久久国产欧美日韩av| 搡老岳熟女国产| 国产真人三级小视频在线观看| 国产又爽黄色视频| 国产不卡一卡二| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av香蕉五月| 日本 av在线| 欧美激情 高清一区二区三区| 天堂√8在线中文| 成人亚洲精品一区在线观看| 叶爱在线成人免费视频播放| 欧美成人性av电影在线观看| 久久亚洲真实| 亚洲五月天丁香| 超色免费av| 制服诱惑二区| x7x7x7水蜜桃| 亚洲第一欧美日韩一区二区三区| √禁漫天堂资源中文www| 正在播放国产对白刺激| 久久人妻av系列| 麻豆一二三区av精品| 好看av亚洲va欧美ⅴa在| 老熟妇乱子伦视频在线观看| 国产精品1区2区在线观看.| 动漫黄色视频在线观看| 国产高清视频在线播放一区| 亚洲精品在线观看二区| 在线视频色国产色| 精品人妻在线不人妻| 亚洲成av片中文字幕在线观看| 日韩免费av在线播放| 不卡一级毛片| 久久狼人影院| 欧美日韩中文字幕国产精品一区二区三区 | 欧美中文日本在线观看视频| 两人在一起打扑克的视频| 免费不卡黄色视频| 成人国语在线视频| 国产极品粉嫩免费观看在线| 两性夫妻黄色片| 亚洲精华国产精华精| 高清黄色对白视频在线免费看| 大陆偷拍与自拍| 亚洲久久久国产精品| av欧美777| 精品久久久久久,| 国产男靠女视频免费网站| 麻豆久久精品国产亚洲av | 免费高清视频大片| 亚洲成人免费av在线播放| 久久久久久免费高清国产稀缺| 国产精品免费视频内射| 一级a爱视频在线免费观看| 久久久久国产精品人妻aⅴ院| 日韩免费高清中文字幕av| 黑人操中国人逼视频| 欧美黄色片欧美黄色片| 国产精品98久久久久久宅男小说| 激情在线观看视频在线高清| 亚洲av五月六月丁香网| 精品国产亚洲在线| 亚洲伊人色综图| 精品一品国产午夜福利视频| 欧美黄色片欧美黄色片| 长腿黑丝高跟| 午夜a级毛片| 精品国产一区二区三区四区第35| 成人三级黄色视频| 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 成人永久免费在线观看视频| 国产三级在线视频| av网站免费在线观看视频| 国产亚洲欧美精品永久| 国产成年人精品一区二区 | 久久影院123| 午夜久久久在线观看| 久久伊人香网站| 男女床上黄色一级片免费看| 看免费av毛片| 人妻丰满熟妇av一区二区三区| 精品国产乱子伦一区二区三区| www.熟女人妻精品国产| 国产精品成人在线| 欧美黄色淫秽网站| 成人18禁在线播放| 国产激情久久老熟女| 人人妻人人添人人爽欧美一区卜| 亚洲一区二区三区不卡视频| 757午夜福利合集在线观看| 999精品在线视频| 日本欧美视频一区| 成年人免费黄色播放视频| 国产av精品麻豆| 十八禁人妻一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲国产欧美网| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 欧美+亚洲+日韩+国产| 亚洲熟女毛片儿| 9191精品国产免费久久| 一级毛片女人18水好多| 国产激情欧美一区二区| 男女高潮啪啪啪动态图| 在线播放国产精品三级| 国产成人免费无遮挡视频| 老熟妇乱子伦视频在线观看| 嫩草影视91久久| 丝袜美足系列| 麻豆成人av在线观看| 色在线成人网| 精品人妻1区二区| 一a级毛片在线观看| 丝袜美腿诱惑在线| 国产亚洲欧美98| 在线观看舔阴道视频| 变态另类成人亚洲欧美熟女 | 亚洲av五月六月丁香网| 日韩精品免费视频一区二区三区| 一级片免费观看大全| 一级片'在线观看视频| 757午夜福利合集在线观看| 亚洲精品在线观看二区| 国产精品爽爽va在线观看网站 | 亚洲国产精品合色在线| 99久久人妻综合| 国产精品免费一区二区三区在线| 精品一品国产午夜福利视频| 免费在线观看完整版高清| 一个人免费在线观看的高清视频| 在线观看免费日韩欧美大片| 亚洲欧美精品综合久久99| 成人三级做爰电影| 亚洲aⅴ乱码一区二区在线播放 | 午夜精品在线福利| 国产激情久久老熟女| 久久国产亚洲av麻豆专区| av天堂久久9| 岛国在线观看网站| 日韩成人在线观看一区二区三区| 成人免费观看视频高清| 一级作爱视频免费观看| 日日夜夜操网爽| 大型黄色视频在线免费观看| www.999成人在线观看| 欧美乱妇无乱码| 正在播放国产对白刺激| 亚洲va日本ⅴa欧美va伊人久久| 热re99久久精品国产66热6| 国产成人系列免费观看| 亚洲性夜色夜夜综合| 露出奶头的视频| 欧美在线黄色| 日韩欧美免费精品| 国产精品美女特级片免费视频播放器 | 国产高清国产精品国产三级| 成年版毛片免费区| 黑人巨大精品欧美一区二区蜜桃| 午夜免费观看网址| 精品一品国产午夜福利视频| 国产免费男女视频| ponron亚洲| 国产亚洲欧美在线一区二区| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 久久婷婷成人综合色麻豆| 国产成年人精品一区二区 | 亚洲欧美一区二区三区久久| 99国产极品粉嫩在线观看| 中文字幕人妻丝袜一区二区| av网站免费在线观看视频| 精品日产1卡2卡| 国产黄色免费在线视频| 十分钟在线观看高清视频www| 国产片内射在线| 无限看片的www在线观看| 日韩一卡2卡3卡4卡2021年| 午夜福利在线观看吧| 日本三级黄在线观看| 日韩精品中文字幕看吧| 日本欧美视频一区| 欧美激情高清一区二区三区| 制服诱惑二区| 亚洲免费av在线视频| 这个男人来自地球电影免费观看| 精品第一国产精品| 成人av一区二区三区在线看| 日韩欧美免费精品| 久久久久久亚洲精品国产蜜桃av| 色综合婷婷激情| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 国产色视频综合| 精品久久久久久成人av| av电影中文网址| 亚洲欧美精品综合一区二区三区| 亚洲欧美激情综合另类| 国产精品秋霞免费鲁丝片| 色综合欧美亚洲国产小说| 免费一级毛片在线播放高清视频 | 18禁黄网站禁片午夜丰满| 久久久国产成人精品二区 | 美女扒开内裤让男人捅视频| 丰满迷人的少妇在线观看| 午夜福利影视在线免费观看| 欧美成人午夜精品| 国产精品1区2区在线观看.| 国产精品久久久人人做人人爽| 99精国产麻豆久久婷婷| 国产亚洲精品久久久久久毛片| 在线观看免费视频网站a站| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| 热99国产精品久久久久久7| 动漫黄色视频在线观看| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| 精品欧美一区二区三区在线| 一级黄色大片毛片| 久久精品影院6| 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影 | 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 色老头精品视频在线观看| 大陆偷拍与自拍| 一级毛片精品| 国产黄a三级三级三级人| 久久热在线av| 精品乱码久久久久久99久播| 国产人伦9x9x在线观看| 国产成人系列免费观看| 99在线视频只有这里精品首页| 9热在线视频观看99| 琪琪午夜伦伦电影理论片6080| 国产人伦9x9x在线观看| 久久久国产欧美日韩av| 欧美日韩视频精品一区| 成人永久免费在线观看视频| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人不卡在线观看播放网| 真人一进一出gif抽搐免费| 国产1区2区3区精品| 亚洲,欧美精品.| www国产在线视频色| 亚洲全国av大片| 亚洲一区二区三区欧美精品| 精品国产国语对白av| 88av欧美| 法律面前人人平等表现在哪些方面| 精品人妻1区二区| 91国产中文字幕| 欧美不卡视频在线免费观看 | x7x7x7水蜜桃| 亚洲精品在线美女| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 亚洲色图av天堂| 国产一区二区在线av高清观看| 亚洲欧美精品综合久久99| 国产精品免费视频内射| 在线观看一区二区三区| av网站免费在线观看视频| 午夜免费鲁丝| 亚洲国产毛片av蜜桃av| 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 天堂动漫精品| 成人精品一区二区免费| 91av网站免费观看| 午夜激情av网站| av有码第一页| 黄片播放在线免费| 欧美最黄视频在线播放免费 | 动漫黄色视频在线观看| cao死你这个sao货| 99国产精品99久久久久| 国产av一区二区精品久久| 久久久久九九精品影院| 免费日韩欧美在线观看| 国产一区二区激情短视频| 制服人妻中文乱码| av在线播放免费不卡| 视频区图区小说| 欧美亚洲日本最大视频资源| 亚洲五月天丁香| 9191精品国产免费久久| 亚洲国产看品久久| 热99re8久久精品国产| 一级黄色大片毛片| 成在线人永久免费视频| 欧美最黄视频在线播放免费 | 色精品久久人妻99蜜桃| av免费在线观看网站| 午夜免费激情av| 老司机靠b影院| 美女 人体艺术 gogo| 波多野结衣av一区二区av| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| 国产精品野战在线观看 | 国产精品98久久久久久宅男小说| 国产不卡一卡二| 在线观看午夜福利视频| 很黄的视频免费| 精品国产国语对白av| 黄色女人牲交| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 成人黄色视频免费在线看| 韩国av一区二区三区四区| 99在线人妻在线中文字幕| 欧美中文日本在线观看视频| 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 国产熟女xx| 久久精品影院6| 国产高清国产精品国产三级| 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码| 不卡一级毛片| 亚洲五月天丁香| 韩国av一区二区三区四区| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 十八禁网站免费在线| 伦理电影免费视频| 日韩欧美一区视频在线观看| 成人三级做爰电影| 九色亚洲精品在线播放| 一进一出好大好爽视频| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网| 欧美丝袜亚洲另类 | 在线观看66精品国产| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 久久久久久久精品吃奶| 岛国在线观看网站| 电影成人av| 美女国产高潮福利片在线看| 日韩欧美免费精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲九九香蕉| 国产亚洲精品综合一区在线观看 | 99久久精品国产亚洲精品| 91成人精品电影| 亚洲欧美激情综合另类| 天天躁夜夜躁狠狠躁躁| 国产极品粉嫩免费观看在线| 97碰自拍视频| 人人妻人人澡人人看| 日韩免费av在线播放| av欧美777| 欧美日韩视频精品一区| 精品福利观看| 一夜夜www| 亚洲一区二区三区不卡视频| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 十分钟在线观看高清视频www| 天堂俺去俺来也www色官网| 亚洲五月天丁香| a级毛片黄视频| 最近最新中文字幕大全免费视频| 不卡av一区二区三区| 日日干狠狠操夜夜爽| 岛国在线观看网站| cao死你这个sao货| av免费在线观看网站| 丝袜人妻中文字幕| 亚洲一区二区三区色噜噜 | 国产国语露脸激情在线看| 韩国精品一区二区三区| 免费在线观看亚洲国产| 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 国产欧美日韩一区二区三区在线| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 国产成人av激情在线播放| 黄色视频不卡| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久5区| 国产乱人伦免费视频| 一区二区三区精品91| 亚洲精品中文字幕在线视频| 精品国产一区二区久久| 精品人妻1区二区| 亚洲成国产人片在线观看| 日韩精品免费视频一区二区三区| 免费av中文字幕在线| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 亚洲视频免费观看视频| 9色porny在线观看| 99热只有精品国产| 国产成人啪精品午夜网站| 男女下面进入的视频免费午夜 | 国产精品永久免费网站| 乱人伦中国视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 99在线人妻在线中文字幕| 男男h啪啪无遮挡| 国产一区二区三区综合在线观看| 国产成人影院久久av| 夜夜看夜夜爽夜夜摸 | 一区二区三区精品91| 亚洲成人久久性| 国产精品秋霞免费鲁丝片| 午夜免费成人在线视频| 精品日产1卡2卡| 日韩欧美三级三区| 日日摸夜夜添夜夜添小说| 中文字幕人妻丝袜制服| 国产精品99久久99久久久不卡| 如日韩欧美国产精品一区二区三区| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 国产欧美日韩一区二区三区在线| 亚洲一区高清亚洲精品| 久久精品aⅴ一区二区三区四区| 黑人猛操日本美女一级片| 亚洲片人在线观看| 搡老乐熟女国产| 欧美激情 高清一区二区三区| 淫妇啪啪啪对白视频| 黄色视频不卡| 欧美乱色亚洲激情| 老鸭窝网址在线观看| 夜夜看夜夜爽夜夜摸 | 午夜日韩欧美国产| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 欧美日韩视频精品一区| 亚洲精品在线观看二区| 亚洲avbb在线观看| 亚洲男人天堂网一区| 美女国产高潮福利片在线看| x7x7x7水蜜桃| 日本精品一区二区三区蜜桃| 成年版毛片免费区| e午夜精品久久久久久久| 亚洲男人天堂网一区| 激情在线观看视频在线高清| x7x7x7水蜜桃| 91精品三级在线观看| 9热在线视频观看99| 操美女的视频在线观看| 99精品欧美一区二区三区四区| 国产精品国产高清国产av| 老司机午夜十八禁免费视频| 99国产精品免费福利视频| 国产乱人伦免费视频| 国产区一区二久久| 国产一区二区三区综合在线观看| 一级a爱视频在线免费观看| 国产97色在线日韩免费| 19禁男女啪啪无遮挡网站| 国产精品亚洲一级av第二区| 亚洲第一欧美日韩一区二区三区| 国产一区二区激情短视频| 亚洲中文字幕日韩| 亚洲精品国产一区二区精华液| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区色噜噜 |