• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cluster-Based Massive Access for Massive MIMO Systems

    2024-02-29 10:33:50ShiyuLiangWeiChenZhongwenSunAoChenBoAi
    China Communications 2024年1期

    Shiyu Liang ,Wei Chen ,Zhongwen Sun ,Ao Chen ,Bo Ai

    1 State Key Laboratory of Advanced Rail Autonomous Operation,Beijing Jiaotong University,Beijing 100091,China

    2 School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100091,China

    3 Frontiers Science Center for Smart High-speed Railway System,Beijing Jiaotong University,Beijing 100091,China

    4 Key Laboratory of Railway Industry of Broadband Mobile Information Communications,Beijing Jiaotong University,Beijing 100091,China

    5 Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications,Beijing Jiaotong University,Beijing 100091,China

    6 School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China

    Abstract: Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multiple input multiple output systems.By exploiting the angular domain characteristics,devices are separated into multiple clusters with a learned cluster-specific dictionary,which enhances the identification of active devices.For detected active devices whose data recovery fails,power domain nonorthogonal multiple access with successive interference cancellation is employed to recover their data via re-transmission.Simulation results show that the proposed scheme and algorithm achieve improved performance on active user detection and data recovery.

    Keywords: compressive sensing;dictionary learning;multiuser detection;random access

    I.INTRODUCTION

    With the commercialization of 5G,research on 6G has gained significant attention.Compared to the performance indicator of 1 million connections per square kilometer in 5G,6G claims an ultra-high density performance indicator with a device connection density of over 100 per cubic meter,aiming to achieve nearly seamless global connectivity for air,sky,earth,and sea [1,2].Massive machine-type communication(mMTC)aims to support sporadic transmission of small data packets by machine-type devices (MTDs),and is a key part of realizing ubiquitous communication [3].However,in the traditional grant-based random access(RA)scheme,MTDs need the grant from the base station (BS) before sending data,which includes several interactions and causes significant signaling overhead.Compared to the small data packets of MTDs,such signaling overhead is intolerable and causes a waste of resources.In addition,as many MTDs are battery-operated with limitted power,multiple interactions in handshake reduce their lifetime.

    In order to reduce the high control signaling overhead between the access phase and data transmission phase,grant-free RA(GFRA)schemes have attracted broad attention in recent years[4–6].In GFRA,MTDs directly send the data along with the pilot instead of waiting for a response/grant from the BS.Due to the sporadic activity of MTDs in the mMTC system,compressive sensing-based multiuser detection (CSMUD) has been proposed for detecting active users and recovering their data [7–9].Specifically,CSMUD consists of two phases.In the first phase,the BS performs active user detection (AUD) and channel estimation based on the pilot sent by the user.In the second phase,the BS utilizes the estimated channel to recover the data.Many CS-MUD algorithms have been proposed to improve the performance of AUD and data recovery [10–14].An enhanced block coordinate descend (BCD) algorithm is proposed in[10],which incorporates a novel candidate set pruning mechanism into the original BCD framework and leads to remarkable CS-MUD performance improvement.The use of sinusoidal spreading sequences is explored in[11].Compared with the random or Zadoff-Chu spreading sequences,using sinusoidal spreading sequences allows some non-iterative algorithms to be utilized in CS-MUD.Besides,various kinds of prior information have been applied to enhance CS-MUD.For example,the activity pattern of adjacent time slots can be exploited in the CS-MUD algorithm design.Dynamic CS-MUD(DCS-MUD)in[12]takes the information of the former time slot as prior information.Then,the bidirectional DCS-MUD (BD-DCS-MUD)proposed in[13]further exploits the prior information of both former and later time slots.The information of modulation and cyclic redundancy check is exploited in CS-MUD to improve the accuracy of pilot detection and data recovery[14].

    Furthermore,it has been proved that increasing the number of antennas at the BS enhances CS-MUD[15–18].The existing CS-MUD methods for massive multiple input multiple output(mMIMO)systems mostly treat the CS-MUD as a row-sparse recovery problem[14,15,19],which leads to improved recovery performance in comparison to the conventional elementsparse recovery problem in the single antenna case.Owing to the limited scattering in the environment,the channel of MTDs is also sparse in the angular domain.In specific,each MTD only has a limited number of paths,which leads to the power spectrum density spanning a small range in the angular domain.By exploiting the angular domain channel characteristics,a novel structural based model for massive random access in mMIMO systems is proposed to enhance the performance of AUD and channel estimation in CSMUD[16].However,if two MTDs with the same pilot sequence are close to each other,it is still unable to differentiate them in the angular domain and this kind of collision is difficult to resolve.

    In this paper,we propose a new massive access method that exploits the angular domain channel characteristics in mMIMO systems to enhance the performance of CS-MUD.Different from the approach in[16],we propose to separate MTDs into several clusters.MTDs within the same cluster are difficult to differentiate in the channel spatial or angular domain,and are assigned with different pilots to avoid collisions.MTDs in distinct clusters can be differentiated in the channel spatial or angular domain,so pilots are reused across different clusters.To accurately differentiate MTDs from different clusters,we propose to learn a cluster-specific dictionary.Under the learned dictionary,the spatial channel has more prominent block sparse characteristics.When an MTD is active,it directly sends the pre-assigned pilot and data.The BS performs AUD,channel estimation and data recovery using the learned dictionary and the proposed corresponding algorithm.For detected active MTDs whose data recovery fails,as the BS already knows their activity,we exploit power domain nonorthogonal multiple access(PD-NOMA)with successive interference cancellation (SIC) to recover their data via retransmission.Numerical results demonstrate the superiority of the proposed method against conventional methods.

    The rest of the paper is organized as follows: Section II describes the system model and the proposed cluster-based CS access scheme.Section III provides the receiver algorithm designed to conduct clusterbased dictionary learning,AUD,channel estimation,and PD-NOMA.Numerical results are presented in Section IV,followed by conclusions in Section V.

    II.SYSTEM MODEL AND THE PROPOSED CLUSTER-BASED CS ACCESS SCHEME

    We consider a typical mMTC scenario containing a BS equipped withMantennas andNstationary singleantenna MTDs.Nactdevices are active in a coherence time,i.e.,have messages to transmit,and perfect synchronization is assumed in this paper.The spatial MIMO channel described in[20]is considered,which is affected by the geometry characteristics of the cell scattering.For the active MTDk,the spatial MIMO channel is given as

    whereNcandNsdenote the number of scattering clusters and the number of propagation subpaths,respectively.Scattering clusters includeNuprimary clusters andNffar scattering clusters (FSCs),and thusNc=Nu+Nf.βi,j,kis the gain of thel-th subpath of thei-th scattering channel cluster of thek-th MTD.α(θi,j,k)=is the array response vector,whereθi,l,kis the angle of arrival(AOA)of thel-th path of the MTDk,and the antenna spacingdis set as half-wavelength,i.e.,d=.The limited scattering clusters restricts the AOAs,and thus the channel becomes sparse in the angular domain.

    To support more devices with limited resources,we propose a cluster-based alternating access scheme,which is illustrated in Figure 1.Based on the angular information of MTDs,we separate stationary MTDs into 2Cclusters,whereCis the number of cluster allowed to access in one frame,so half of the clusters are served in one frame.To avoid the influence caused by angle spread between adjacent clusters,we allow non-adjacent clusters to access in one frame.In specific,the BS emits beams of different angles in different frames,and each MTD’s cluster index is determined by the beam index,where it has the strongest receive signal strength.Besides,all clusters share the same pilot pool,and MTDs within the same cluster are pre-assigned with different pilots.Actually,MTDs can randomly select pilots to send,but intra-cluster collision needs to be resolved.Here,we consider the scenario of pre-assigned pilots for simplicity.As pilots are reused in different clusters,the number of needed pilots in the proposed scheme isof that in traditional non-cluster based scheme,which can reduce inter-pilot interference and improve the performance.Although collision may happen between nonadjacent clusters,collided MTDs could be differentiated by their AOAs,i.e.,the sparse structure of channel representation in the angular domain.Without loss of generality,we consider the AUD and data recovery problem for one frame in the sequel.

    Figure 1. Cluster-based alternating access scheme.

    LetP=denote the pilot pool,whereLpandNpare the length and the number of pilots,respectively.Elements in the pilot can be generated randomly followingCN(0,).Corresponding to each pilot,there is a unique spreading sequence for data transmission,which is denoted asS=,whose elements can be generated randomly followingCN(0,).Each active MTD directly transmitsLppilot symbols and multiple data symbols to the BS.The BS first detects transmitted pilots and estimates the channel,then performs data recovery with the estimated channel.

    DefineKas the index set of active MTDs.pkandhkdenote the pilot and channel of the MTDk∈K,respectively.Then,the received pilotYp∈at the BS is

    whereH=andNp∈denote the channel matrix and the white Gaussian noise matrix,respectively.hpis the superposition channel of MTDs transmitting thep-th pilot,and we denotePpas the set of active MTDs that transmit thep-th pilot.His a row-sparse matrix with non-zeros rows indicating transmitted pilots.

    Denotedk∈andsk∈as the transmitted symbols and the spreading sequence of thek-th MTD,respectively.Then the received data of them-th antenna at the BS is given as

    III.RECEIVER ALGORITHM DESIGN

    The mMIMO channel matrixHin Eq.(2) is a rowsparse matrix owing to the sporadic activity,and can be estimated by sparse recover algorithms,e.g.,OMPMMV[21].The index of non-zero rows in the recovered channel matrixindicates the set of detected active pilots.As the data matrixXin Eq.(4) and the channel matrixHin Eq.(2) have the same support,the recovered datacan be obtained via the least square(LS)method

    Given the estimated channel,the transmitted datadpcorresponding to thep-th pilot can be recovered by

    If the recovered data passes the cyclic redundancy check (CRC),it suggests the AUD and channel estimation are successful for the MTD transmitting thepth pilot.If MTDs in different clusters select the same pilot,the recovered channel is the superposition of all these MTD’s channel.In this case,the recovered data is not likely to pass the CRC.

    To differentiate active MTDs of different clusters who transmitting the same pilot,we propose a dictionary learning assisted AUD method.Dictionary learning is a highly effective approach for extracting crucial features of the signals from a training dataset,particularly when the signals have sparse representations.Previous researches have proved its effectiveness when applied to classification tasks [22–24].Concretely,we could learn a cluster-specific dictionary,where the channel of MTDs in different clusters could be represented by different sub-dictionaries,and its representation possesses more prominent block sparse characteristics.To improve the accuracy of classification,it is essential to minimize similarities between the atoms of different sub-dictionaries,which makes it easier to distinguish MTDs from different clusters.

    3.1 Dictionary Learning Assisted AUD

    We consider to represent the active MTDs’ channel with a learned cluster-specific dictionaryD=[D1,D2,...,DC]∈CM×G,whereCdenotes the number of clusters,Gdenotes the number of atoms in the dictionary,andDi∈CM×g(i=1,2,...,C) denotes thei-th sub-dictionary corresponding to theith cluster,withg=G/Cdenoting the number of dictionary atoms in the sub-dictionary.Letbe the training data set,wherecontainsNsdifferent channels of MTDs in thei-th cluster.Mathematically,we can express,whereis the coefficient matrix of thei-th cluster corresponding to thej-th sub-dictionary.To differentiate the MTDs in different clusters,we would likeDito capture the features of channels for thei-th cluster,so thatcontains non-zero elements.A similar approach of learning sub-dictionaries for image classification is investigated in[24].Now,we can formulate the overall dictionary learning problem as follows

    where‖·‖F(xiàn)denotes the Frobenius norm,D?i=[D1,...,Di?1,Di+1,...,DC]∈CM×(C?1)gdenotes the submatrix by removingDifromD.I∈Rp×pis an identity matrix.The termandare proposed to improve the irrelevance of atoms within one sub-dictionary and reduce the similarity between different sub-dictionaries,respectively.Similar to [24],λ1=>0 andλ2=>0 are the regularization coefficients for the self-incoherent term and cross-incoherent term,respectively.Ns,Candgdenote the number of training samples in one cluster,the number of clusters allowed to access in a frame,and the number of atoms in a subdictionary.η1>0 andη2=2Cη1>0 are adjustable parameters.We constrain dictionary atoms with normalized energy to avoid trivial solutions.

    Since the objective function is not convex,we alternatively update the sparse coefficient of each cluster and the corresponding sub-dictionary with other variables fixed.First,we fixedDito update the sparse coefficient.Owing to the limited scattering,spatial channel in the MIMO system can be represented sparsely under the discrete fourier transform (DFT)[16].Thus,we initialize the dictionaryDas the redundant DFT matrix obtained by interpolation.Then,the optimization problem for updating sparse coefficients becomes

    which is a least squares(LS)problem.can be updated with the closed-form expression

    Given the sparse coefficient,the optimization problem with respect to thei-th sub-dictionary becomes

    which can be solved using the gradient descent algorithm.We choose the step size following the Armijo rule.

    By iteratively updating the dictionary and sparse coefficients until the reconstruction error no longer decreases,we obtain the learned cluster-specific dictionary.The learned dictionary is then used to identify the clusters of active MTDs.Firstly,according to the detected active pilot setand the estimated channel matrix,the recovered data symbols is given in Eq.(6).With the assistant of data recovery,the user detection problem can be formulated as

    3.2 PD-NOMA Based Data Recovery

    For MTDs selecting the same pilot,the BS is unable to correctly recover their data due to their superimposed channel.As these conflicted MTDs could be identified by the proposed CSDL-BOMP,the BS broadcasts information to inform the conflicted MTDs to retransmit their pilot on orthogonal resources for channel estimation.Then,conflicted MTDs resend their data on non-orthogonal resources via PD-NOMA,which can improve the spectrum efficiency of data transmission.The complete process of massive access and data transmission is shown in Figure 2.

    Figure 2. The complete process of massive access and data transmission.

    The basic idea of PD-NOMA is to differentiate users through different power levels [26].In uplink PDNOMA,users in the cell are divided into several user groups,each usually containing 2~3 users.The BS allocates orthogonal resources to different user groups,while users in one group share the same resource.After receiving the superimposed user signal,the BS performs SIC to recover data.In this paper,before conflicting MTDs resend their data,the BS informs the detected active MTDs to resend orthogonal pilots to estimate their channel.After obtaining the channel state information (CSI),the BS pairs MTDs with the far near pairing method[27]and allocates different power to MTDs of the same pair.Then,MTDs assigned to the same group resend data according to the specified power.

    Take a group of two MTDs as an example.The data symbols resent by MTD 1 and MTD 2 are denoted asd1∈andd2∈,respectively.The transmit power of MTD 1 and MTD 2 arep1andp2.Then,the received signalY∈at the BS is

    whereh1∈CMandh2∈CMare channel coefficient vectors of MTD 1 and MTD 2,respectively.Without loss of generality,we assume thath1andh2are accurate,i.e.,channel estimation is perfect.Ndenotes the additive white Gaussian noise.After the BS receives the superimposed signal,SIC is applied for multi-user detection.Due to the fact that users with better channel conditions have stronger signal to noise ratios(SNRs),users with better channel conditions are usually decoded first.Here,we assume the channel condition of MTD 1 is better.Then,treating the interference from MTD 2 as noise,the BS will first decode the symbol of MTD 1 utilizing the LS method

    After successfully decoding the symbol of MTD 1,the BS removes its interference from the received signalY,as the channel of MTD 1 is known to the BS.Then the signal of MTD 2 can be decoded through the LS method

    IV.SIMULATION RESULTS

    In this section,we investigate the performance of the proposed cluster-based CS massive access scheme with CSDL-BOMP for AUD and PD-NOMA for data re-transmission.The accuracy of pilot detection is defined as

    whereManddenote the set of active pilot and detected active pilot,respectively.card(.) is the Cardinality of the set.The successful AUD ratioμuseris defined as

    whereKanddenote the set of active MTDs and the set of detected active MTDs,respectively.Although the data recovery is conducted in both activity detection phase and data re-transmission phase,we use the user detection ratio to evaluate the performance in the first phase,while consider the data recovery ratio in the re-transmission to evaluate the performance of the second phase.The successful data recovery ratioμdatais defined as

    withQandNredenoting the set of re-transmitted MTDs whose data is correctly recovered and the number of re-transmitted MTDs,respectively.For competitor methods in AUD,we choose the vector approximate message passing (VAMP) [15],sparse Bayesian learning (SBL) with angular domain enhancement (SBL-ADE) [16],and generalized MMVAMP (GMMV-AMP) [19] for comparison.For resolving collisions,we consider the contention-based method re-access method for comparison against the use of PD-NOMA.

    In the experiments,we considerN=2000 stationary MTDs equipped with one antenna are randomly distributed in the cell,andNf=21 fixed FSCs are uniformly placed in the cell with the radius of 900 meters.Each channel response between the BS and the MTD consists of AOAs from 3 FSCs closest to the MTD and one AOA from a device location-related scattering.MTDs are separated into 2C=16 clusters according to their angular information.MTDs inC=8 non-adjacent clusters are allowed to access in one frame.To learn the cluster-specific dictionary,we generate a dataset containingNs=1000 channel responses per cluster and set the number of atoms in a sub-dictionarygto 8.As for the regularization coefficients for the self-incoherent term and crossincoherent term,we setη2andη1to 0.1 and 0.1/16,respectively.A common pilot pool withNp=125 andLp=64 is reused between clusters.The length of the spreading sequence isLd=18.The data is coded by using concatenated code,where the outer layer is a Reed-Solomom(RS)code with parameters(6,4)and the inner layer is a convolutional code with parameters(2,1,6).The modulation type is QPSK.Moreover,the numerical results are averaged over 300 trials.

    First,we conducted an experiment to demonstrate the performance gain brought by cluster-based scheme.The comparison is non-cluster based scheme,i.e.,not separating MTDs and assigning a unique pilot to all potential MTDs.Figure 3 shows the performance of active pilot detection under a varying numbers of active MTDs.The cluster based scheme outperforms the non-cluster based scheme,as it reduces the number of needed pilot,leading to reduced interpilot interference.

    Figure 3.Active pilot detection performance with a varying number of active MTDs.

    Figure 4 and Figure 5 show the performance of AUD under various SNRs and number of active users.The proposed method outperforms other competitors for all cases.The proposed method exploits both the the spatial channel features learned by dictionary learning and the non-orthogonal pilots to distinguish MTDs,which results in higher capability in AUD.It is worth noting that the dictionary learning is done in an offline manner using some training dataset collected from the cell.The CSDL-BOMP algorithm only uses the learned cluster-specific dictionary for AUD,which has a relatively low computational complexity.In our simulation platform,we observe that the computing time of the proposed method is only one-third of the SBLADE.

    Figure 4. AUD performance under a varying SNRs.

    Figure 5. AUD performance with a varying number of active MTDs.

    Figure 6 shows the performance of data recovery under various SNRs.Consistent with the results of AUD,the proposed method also shows superior performance in data recovery.A part of the gain comes from the improved AUD accuracy,as active MTDs of different clusters can be identified even they transmit the same pilot,and these MTDs’ data would be resolved by PD-NOMA during the re-transmission phase.For the SNR of 5 dB,the successful data recover ratio of the propose method reaches over 95%,while the other compared can only achieve about 78 ?86%.

    Figure 6. Data recovery performance under a varying SNRs in the data re-transmission phase.

    Figure 7 shows the performance of data recovery under a varying number of active users.Under the experimental settings,the successful data recovery ratio keeps at a high level with the increasing number of active MTDs,while the performance of other methods degrades severely.This result is rationale.With more MTDs activated,the number of conflicted MTDs from different clusters,who select the same pilot,tends to increase.The proposed method can identify MTDs from different cluster and resolve collisions via retransmission with PD-NOMA,while the other methods cannot differentiate these MTDs and the performance of contention based re-transmission degrades with the increasing number of involved MTDs.

    Figure 7. Data recovery performance with a varying number of active MTDs in the data re-transmission phase.

    ACKNOWLEDGEMENT

    This research was supported by Natural Science Foundation of China (62122012,62221001),the Beijing Natural Science Foundation(L202019,L211012),the Fundamental Research Funds for the Central Universities(2022JBQY004).

    V.CONCLUSION

    In this paper,we proposed a new massive access method for mMIMO systems,which separates MTDs into clusters and the same pilot pool could be reused among clusters.A cluster-specific dictionary can be learned form the historical channel dataset of the cell,and used to differentiate active MTDs of different clusters.For detected active MTDs whose data recovery fails,we utilized PD-NOMA with SIC to recover the re-transmitted data.Numerical results reveal that the proposed method has superior performance in AUD and data recovery against the existing methods designed for mMIMO systems.

    一边摸一边抽搐一进一出视频| 欧美一级a爱片免费观看看 | 亚洲成人免费电影在线观看| 黄色成人免费大全| 9191精品国产免费久久| 精品久久久久久久人妻蜜臀av | 国产亚洲精品久久久久久毛片| netflix在线观看网站| 中文字幕久久专区| 色综合欧美亚洲国产小说| 国产97色在线日韩免费| 国产亚洲欧美98| 亚洲免费av在线视频| 亚洲第一欧美日韩一区二区三区| 法律面前人人平等表现在哪些方面| 国产精品 欧美亚洲| 国产av一区在线观看免费| 成熟少妇高潮喷水视频| 亚洲成国产人片在线观看| 后天国语完整版免费观看| 成人手机av| 成年人黄色毛片网站| 人人澡人人妻人| 亚洲国产精品成人综合色| 国产精品久久久久久精品电影 | 制服丝袜大香蕉在线| 亚洲一区中文字幕在线| 国产精品 欧美亚洲| 亚洲人成77777在线视频| av在线天堂中文字幕| 日本a在线网址| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美在线一区二区| 欧美在线黄色| 变态另类成人亚洲欧美熟女 | 午夜精品在线福利| 免费人成视频x8x8入口观看| 人成视频在线观看免费观看| 51午夜福利影视在线观看| 亚洲人成77777在线视频| 极品教师在线免费播放| 99国产精品免费福利视频| 久久久久久国产a免费观看| 天天添夜夜摸| 免费看美女性在线毛片视频| 欧美日韩乱码在线| 叶爱在线成人免费视频播放| 19禁男女啪啪无遮挡网站| 欧美黑人欧美精品刺激| 99热只有精品国产| 19禁男女啪啪无遮挡网站| 久久香蕉国产精品| 淫秽高清视频在线观看| 久久久久久久午夜电影| 91成年电影在线观看| 少妇裸体淫交视频免费看高清 | 国产精品 欧美亚洲| 色尼玛亚洲综合影院| 最新美女视频免费是黄的| 欧美一级a爱片免费观看看 | 久久久精品欧美日韩精品| 亚洲狠狠婷婷综合久久图片| 久久中文字幕人妻熟女| 亚洲人成77777在线视频| 欧美激情高清一区二区三区| 亚洲 欧美一区二区三区| 亚洲人成电影观看| 亚洲精品久久国产高清桃花| 午夜精品久久久久久毛片777| 欧美一级毛片孕妇| 99精品在免费线老司机午夜| 日日爽夜夜爽网站| 99精品在免费线老司机午夜| 真人做人爱边吃奶动态| 日日摸夜夜添夜夜添小说| 精品高清国产在线一区| 欧美日本视频| 亚洲欧美精品综合一区二区三区| 亚洲专区国产一区二区| 在线观看www视频免费| 天天躁夜夜躁狠狠躁躁| 久久久久久免费高清国产稀缺| 曰老女人黄片| 麻豆一二三区av精品| 黑人欧美特级aaaaaa片| 九色国产91popny在线| 中文字幕最新亚洲高清| www.精华液| 日韩欧美在线二视频| 中文字幕最新亚洲高清| 日韩欧美国产在线观看| 人妻久久中文字幕网| 最新在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 黄色片一级片一级黄色片| 欧美成人一区二区免费高清观看 | 757午夜福利合集在线观看| 免费无遮挡裸体视频| 国语自产精品视频在线第100页| 国产亚洲精品久久久久久毛片| 男人舔女人的私密视频| 美女大奶头视频| 日韩精品免费视频一区二区三区| 国产91精品成人一区二区三区| 在线天堂中文资源库| 他把我摸到了高潮在线观看| 91精品三级在线观看| 成人亚洲精品一区在线观看| 亚洲七黄色美女视频| 国产精品久久久久久人妻精品电影| 亚洲人成电影观看| 久久久精品国产亚洲av高清涩受| 久热这里只有精品99| 激情视频va一区二区三区| 中文亚洲av片在线观看爽| 久久国产乱子伦精品免费另类| 免费观看人在逋| 欧美不卡视频在线免费观看 | 国产精品精品国产色婷婷| 国产亚洲精品第一综合不卡| 天堂影院成人在线观看| 欧美激情 高清一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产成人精品在线电影| 性色av乱码一区二区三区2| cao死你这个sao货| 午夜福利视频1000在线观看 | 亚洲av五月六月丁香网| 久久国产精品影院| 欧美日本亚洲视频在线播放| 精品国产美女av久久久久小说| 亚洲无线在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区高清视频在线| 好男人电影高清在线观看| 久久国产乱子伦精品免费另类| 国产精品久久久人人做人人爽| 久久中文看片网| videosex国产| 亚洲五月天丁香| 欧美日韩一级在线毛片| 国产成人欧美在线观看| av天堂久久9| 色播在线永久视频| 97人妻天天添夜夜摸| 12—13女人毛片做爰片一| 一进一出抽搐gif免费好疼| 在线视频色国产色| 欧美激情 高清一区二区三区| 亚洲狠狠婷婷综合久久图片| 中国美女看黄片| 免费在线观看亚洲国产| 久久久久九九精品影院| 日本一区二区免费在线视频| 日本三级黄在线观看| 国产99久久九九免费精品| 搞女人的毛片| 99久久久亚洲精品蜜臀av| 美女午夜性视频免费| 美女高潮喷水抽搐中文字幕| 精品免费久久久久久久清纯| 99香蕉大伊视频| 99久久综合精品五月天人人| 国产aⅴ精品一区二区三区波| 女人爽到高潮嗷嗷叫在线视频| 国语自产精品视频在线第100页| 免费在线观看影片大全网站| 免费少妇av软件| 免费高清视频大片| 中文字幕另类日韩欧美亚洲嫩草| 一级片免费观看大全| 国产极品粉嫩免费观看在线| 亚洲第一电影网av| 在线国产一区二区在线| 9热在线视频观看99| 日韩av在线大香蕉| a在线观看视频网站| 三级毛片av免费| 国产精品 欧美亚洲| 亚洲色图av天堂| 99久久久亚洲精品蜜臀av| 国产精品综合久久久久久久免费 | 日韩欧美国产在线观看| 日日摸夜夜添夜夜添小说| 手机成人av网站| 亚洲全国av大片| 国产av一区二区精品久久| 90打野战视频偷拍视频| 一级,二级,三级黄色视频| e午夜精品久久久久久久| 精品国内亚洲2022精品成人| 天天一区二区日本电影三级 | 一边摸一边抽搐一进一小说| 十分钟在线观看高清视频www| 亚洲在线自拍视频| 欧美不卡视频在线免费观看 | 1024视频免费在线观看| 首页视频小说图片口味搜索| 精品国产乱子伦一区二区三区| 黄片播放在线免费| 欧美日韩精品网址| 亚洲国产精品成人综合色| 精品国产一区二区三区四区第35| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦韩国在线观看视频| 老司机福利观看| 日韩欧美免费精品| 亚洲国产高清在线一区二区三 | 国产精品久久久av美女十八| 午夜两性在线视频| 日日夜夜操网爽| 国产亚洲欧美98| 成人亚洲精品一区在线观看| 国产精品亚洲一级av第二区| 麻豆久久精品国产亚洲av| 午夜激情av网站| 最好的美女福利视频网| 亚洲午夜精品一区,二区,三区| 国内久久婷婷六月综合欲色啪| 可以免费在线观看a视频的电影网站| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 91九色精品人成在线观看| 在线国产一区二区在线| 亚洲 欧美一区二区三区| www.熟女人妻精品国产| 欧美人与性动交α欧美精品济南到| 搡老妇女老女人老熟妇| 亚洲无线在线观看| 久久香蕉国产精品| 欧美在线黄色| 国产精品98久久久久久宅男小说| 少妇熟女aⅴ在线视频| 国产精品免费视频内射| 国产午夜福利久久久久久| 熟妇人妻久久中文字幕3abv| 看免费av毛片| 国产激情久久老熟女| 桃色一区二区三区在线观看| 免费看十八禁软件| 亚洲黑人精品在线| 久久精品影院6| 亚洲av成人不卡在线观看播放网| 国产av在哪里看| 午夜免费成人在线视频| 97人妻精品一区二区三区麻豆 | 日韩欧美一区二区三区在线观看| 日韩中文字幕欧美一区二区| 日韩欧美一区视频在线观看| 国产野战对白在线观看| netflix在线观看网站| 国产片内射在线| 免费在线观看亚洲国产| 丝袜人妻中文字幕| 精品免费久久久久久久清纯| 18禁观看日本| 丝袜美足系列| 成人亚洲精品av一区二区| 人成视频在线观看免费观看| 午夜a级毛片| 国产精品永久免费网站| 99国产精品一区二区蜜桃av| 久久精品91无色码中文字幕| 真人一进一出gif抽搐免费| 亚洲免费av在线视频| 久久国产精品人妻蜜桃| 国产精品秋霞免费鲁丝片| 欧美成人性av电影在线观看| 18禁裸乳无遮挡免费网站照片 | 少妇 在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜激情av网站| 一区二区三区激情视频| 777久久人妻少妇嫩草av网站| 久久久久久免费高清国产稀缺| 黄色成人免费大全| 免费在线观看视频国产中文字幕亚洲| 亚洲av五月六月丁香网| 侵犯人妻中文字幕一二三四区| 757午夜福利合集在线观看| 亚洲自偷自拍图片 自拍| 亚洲专区字幕在线| 人人澡人人妻人| 日日摸夜夜添夜夜添小说| 9191精品国产免费久久| 香蕉久久夜色| 老熟妇乱子伦视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡| 美女国产高潮福利片在线看| 中文字幕高清在线视频| 老司机深夜福利视频在线观看| 精品国内亚洲2022精品成人| www国产在线视频色| 午夜免费激情av| 久久久久久久久久久久大奶| 日韩欧美免费精品| 国产成人精品无人区| 一本久久中文字幕| 免费看十八禁软件| 黄频高清免费视频| 亚洲熟妇中文字幕五十中出| 国产欧美日韩一区二区三| av视频免费观看在线观看| 精品国产一区二区三区四区第35| 国产在线观看jvid| 久久狼人影院| 国产伦人伦偷精品视频| 色播亚洲综合网| 国产精品美女特级片免费视频播放器 | 日韩免费av在线播放| 亚洲av成人一区二区三| 丁香六月欧美| 国产精品自产拍在线观看55亚洲| 一二三四在线观看免费中文在| 国产1区2区3区精品| 国产在线精品亚洲第一网站| 中出人妻视频一区二区| 国产亚洲欧美精品永久| 国产精品一区二区在线不卡| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品综合一区在线观看 | 伦理电影免费视频| 亚洲情色 制服丝袜| 日日摸夜夜添夜夜添小说| 欧美精品亚洲一区二区| 老司机在亚洲福利影院| 精品国产亚洲在线| 国产视频一区二区在线看| 波多野结衣av一区二区av| 美女大奶头视频| 精品久久久久久,| 色在线成人网| 搡老岳熟女国产| 日韩成人在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 在线观看一区二区三区| 久热这里只有精品99| 亚洲视频免费观看视频| 18禁国产床啪视频网站| 久久中文字幕一级| 精品免费久久久久久久清纯| 免费搜索国产男女视频| 久久亚洲真实| 国产成人一区二区三区免费视频网站| 欧美色欧美亚洲另类二区 | 欧美国产精品va在线观看不卡| 国产精品乱码一区二三区的特点 | 亚洲成人国产一区在线观看| 俄罗斯特黄特色一大片| 久久人人97超碰香蕉20202| 欧美丝袜亚洲另类 | 麻豆av在线久日| 亚洲av日韩精品久久久久久密| 深夜精品福利| 日韩三级视频一区二区三区| 啪啪无遮挡十八禁网站| x7x7x7水蜜桃| 亚洲av电影不卡..在线观看| 免费女性裸体啪啪无遮挡网站| 国产在线观看jvid| 一进一出抽搐gif免费好疼| 9191精品国产免费久久| 多毛熟女@视频| 首页视频小说图片口味搜索| 禁无遮挡网站| 大香蕉久久成人网| 91国产中文字幕| 日日干狠狠操夜夜爽| 51午夜福利影视在线观看| 琪琪午夜伦伦电影理论片6080| 男女之事视频高清在线观看| 长腿黑丝高跟| 男人舔女人下体高潮全视频| 亚洲美女黄片视频| 日本黄色视频三级网站网址| 久久精品亚洲精品国产色婷小说| 欧美乱码精品一区二区三区| 麻豆久久精品国产亚洲av| 国产真人三级小视频在线观看| 91精品三级在线观看| 搡老妇女老女人老熟妇| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| 久久久国产成人免费| 真人一进一出gif抽搐免费| 老司机午夜福利在线观看视频| 可以在线观看毛片的网站| 欧美精品啪啪一区二区三区| 欧美av亚洲av综合av国产av| 90打野战视频偷拍视频| 一级片免费观看大全| 黄色片一级片一级黄色片| 午夜福利影视在线免费观看| 又紧又爽又黄一区二区| 亚洲国产精品合色在线| 99久久久亚洲精品蜜臀av| 亚洲第一av免费看| 午夜福利免费观看在线| 电影成人av| 日本vs欧美在线观看视频| 亚洲av成人一区二区三| 99国产精品一区二区三区| 丝袜在线中文字幕| av天堂在线播放| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 免费人成视频x8x8入口观看| x7x7x7水蜜桃| 天天一区二区日本电影三级 | 午夜两性在线视频| 中文字幕人妻丝袜一区二区| av网站免费在线观看视频| 91av网站免费观看| 黄片大片在线免费观看| tocl精华| 脱女人内裤的视频| 久久国产精品影院| 亚洲第一青青草原| 国产成人精品久久二区二区91| 日本vs欧美在线观看视频| 国产精品亚洲美女久久久| www.自偷自拍.com| 国产免费av片在线观看野外av| www.自偷自拍.com| 日本黄色视频三级网站网址| 亚洲全国av大片| 无遮挡黄片免费观看| 国产av一区二区精品久久| 国产真人三级小视频在线观看| 国产成年人精品一区二区| 精品熟女少妇八av免费久了| 多毛熟女@视频| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 欧美日韩乱码在线| 国产高清videossex| 午夜久久久在线观看| 日日夜夜操网爽| 国产精品99久久99久久久不卡| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲第一电影网av| 久久久久国产精品人妻aⅴ院| 欧美一区二区精品小视频在线| 在线观看免费视频网站a站| 久久香蕉国产精品| 麻豆av在线久日| 国产精品 欧美亚洲| 精品福利观看| 国产精品二区激情视频| 男人的好看免费观看在线视频 | 成人亚洲精品一区在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区免费欧美| 国产精品亚洲美女久久久| 少妇被粗大的猛进出69影院| 99国产精品一区二区蜜桃av| 亚洲精品国产一区二区精华液| 国产精品亚洲一级av第二区| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 两个人看的免费小视频| 久热爱精品视频在线9| 亚洲片人在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产一区二区精华液| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 禁无遮挡网站| 欧美一级a爱片免费观看看 | 亚洲最大成人中文| 一进一出抽搐gif免费好疼| 国产蜜桃级精品一区二区三区| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 在线观看舔阴道视频| 乱人伦中国视频| 亚洲全国av大片| 人人妻人人爽人人添夜夜欢视频| 国产精品 国内视频| 狂野欧美激情性xxxx| 啦啦啦韩国在线观看视频| 九色亚洲精品在线播放| 精品少妇一区二区三区视频日本电影| 久久欧美精品欧美久久欧美| 一区二区日韩欧美中文字幕| 午夜亚洲福利在线播放| 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 亚洲一区二区三区不卡视频| 久久久久亚洲av毛片大全| 午夜免费观看网址| av超薄肉色丝袜交足视频| 欧美另类亚洲清纯唯美| 日韩国内少妇激情av| 亚洲专区国产一区二区| 91字幕亚洲| 97人妻精品一区二区三区麻豆 | 午夜精品国产一区二区电影| 国产一区在线观看成人免费| 久久精品人人爽人人爽视色| 可以在线观看的亚洲视频| 一区在线观看完整版| 女警被强在线播放| 久久这里只有精品19| 国产单亲对白刺激| 国产成人啪精品午夜网站| 亚洲欧洲精品一区二区精品久久久| 最新美女视频免费是黄的| 色播在线永久视频| 黑人操中国人逼视频| 亚洲国产欧美日韩在线播放| 久久欧美精品欧美久久欧美| 国产一区在线观看成人免费| 午夜亚洲福利在线播放| www.www免费av| 大码成人一级视频| 亚洲av五月六月丁香网| 久久婷婷人人爽人人干人人爱 | aaaaa片日本免费| 国产精品亚洲一级av第二区| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 久久这里只有精品19| 成人18禁在线播放| 国语自产精品视频在线第100页| 久久久国产精品麻豆| 操出白浆在线播放| 亚洲国产日韩欧美精品在线观看 | 精品免费久久久久久久清纯| 99久久精品国产亚洲精品| xxx96com| 国产高清视频在线播放一区| 变态另类丝袜制服| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 国产真人三级小视频在线观看| 三级毛片av免费| 精品福利观看| 国产精品二区激情视频| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 中文字幕精品免费在线观看视频| 首页视频小说图片口味搜索| 国产99久久九九免费精品| 久久久久久免费高清国产稀缺| 久久中文字幕一级| 亚洲性夜色夜夜综合| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 涩涩av久久男人的天堂| 亚洲黑人精品在线| 欧美日韩精品网址| 一级黄色大片毛片| 国产精品综合久久久久久久免费 | 亚洲国产毛片av蜜桃av| 老鸭窝网址在线观看| 国产高清videossex| 纯流量卡能插随身wifi吗| 国产av又大| 又黄又爽又免费观看的视频| 亚洲九九香蕉| 伦理电影免费视频| 大型黄色视频在线免费观看| 国产色视频综合| 9191精品国产免费久久| 久久久国产欧美日韩av| 亚洲人成电影免费在线| 久久精品亚洲精品国产色婷小说| 亚洲精品粉嫩美女一区| 操美女的视频在线观看| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频 | 国产一区二区在线av高清观看| 久久香蕉激情| 久久久久久久久中文| 成人三级黄色视频| 精品一区二区三区四区五区乱码| 成人国产综合亚洲| 一二三四社区在线视频社区8| 久久这里只有精品19| 国产高清视频在线播放一区| 午夜亚洲福利在线播放| 午夜久久久久精精品| 亚洲激情在线av| 午夜精品在线福利| 女性被躁到高潮视频| 搡老妇女老女人老熟妇| 国产成人一区二区三区免费视频网站| 欧美绝顶高潮抽搐喷水| 神马国产精品三级电影在线观看 | 国产av精品麻豆| 最新在线观看一区二区三区| 午夜精品国产一区二区电影| а√天堂www在线а√下载| 久久久久久久久免费视频了| 他把我摸到了高潮在线观看| 成年人黄色毛片网站| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 亚洲国产精品999在线| 久久久国产成人精品二区| 精品少妇一区二区三区视频日本电影| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| 日本欧美视频一区| 大香蕉久久成人网| 国产熟女xx| videosex国产| 人妻久久中文字幕网|