• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OFDMA-Based Unsourced Random Access in LEO Satellite Internet of Things

    2024-02-29 10:33:44JiaqiFangGangleSunWenjinWangLiYouRuiDing
    China Communications 2024年1期

    Jiaqi Fang ,Gangle Sun ,Wenjin Wang,* ,Li You ,Rui Ding

    1 National Mobile Communications Research Laboratory,Southeast University,Nanjing 210096,China

    2 Purple Mountain Laboratories,Nanjing 211100,China

    3 Institute of Telecommunication Satellite,CAST,Beijing 100094,China

    Abstract: This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access (OFDMA) framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing (CS) problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.

    Keywords: LEO;OFDMA;satellite;unsourced random access;UPA

    I.INTRODUCTION

    The Internet of Things (IoT) plays a pivotal role in 5G,aiming to provide services for massive devices to make the Internet more immersive and pervasive [1–3].However,current terrestrial networks,restricted by geographical limitations and high costs,struggle to serve remote areas like deserts,oceans,and forests.Recognizing the wide coverage of low earth orbit(LEO) satellites,the 3rd Generation Partnership Project(3GPP)has initiated a study on supporting the LEO satellite-enabled IoT networks with the 5G New Radio (NR) to provide services in these remote areas [4].In the wide coverage area of a single LEO satellite,there may be a vast number of devices to serve,with their data packets being sporadic and short[5].For such scenarios grant-based random access schemes result in significant excessive overhead,network congestion,and high transmission latency[6,7].To address this issue,there has been a surge in researches dedicated to incorporate the LEO satelliteenabled IoT networks with the grant-free random access,in which devices transmit signals to LEO satellites directly without a scheduling process[8–11].

    Preceding researches mainly focus on integrating the grant-free sourced random access (SRA) with the LEO satellite-enabled IoT networks[8–11].Each device in the SRA should be allocated a unique pilot for the channel estimation (CE) and the active user dectection (AUD).As the number of devices in the LEO satellite-enabled IoT network proliferates,however,the SRA scheme becomes increasingly inefficient and unfeasible due to the arduous task of allocating unique pilots to each device.Alternatively,the grant-free unsourced random access (URA) is more competitive[12].In the URA scheme,all the devices share a common codebook,and the primary responsibility of the receiver is to recover the transmitted messages without necessarily identifying the specific devices.As it is independent from the number of devices in the network,the URA scheme,in theory,supports an unlimited number of devices[13–16].However,the original URA encounters a challenge in that its codebook size expands exponentially with the number of information bits transmitted,resulting in high decoding complexity [17].To mitigate this computational burden,the coded compressed sensing(CCS)URA is proposed to divide device messages into shorter segments,considerably reducing the codebook size [18–20].In current terrestrial IoT networks,CCS URA stands out for its low implementation cost[21–25].Considering the power limitations of LEO satellites,investigating the CCS URA is crucial for the LEO satellite-enabled IoT networks[26].

    In order to mitigate the implementation costs and optimize the interaction procedure,it is essential for the LEO satellite-enabled IoT networks to exploit the technology commonalities with the current 5G NR,where the orthogonal frequency division multiple access (OFDMA) is adopted [3].In this context,we propose the LEO satellite-enabled CCS URA scheme in the OFDMA framework,where a massive uniform planar array (UPA) is equipped on the satellite for improving the system spectral and energy efficiency[27,28].In LEO satellite communications,long propagation delay and large Doppler frequency offset,attributable to the long transmission distance and the high relative speed between the satellite and devices,can be mitigated to an extent through the precompensation at the device side [26].However,for IoT devices operating under stringent cost constraints,residual timing and frequency offsets after compensation are inevitable [29,30].These residuals induce phase shifts in signal transmissions,rendering conventional terrestrial CCS URA receivers ineffective.We delve into addressing this challenge,and our primary contributions are summarized as follows:

    ? We propose the OFDMA-based CCS URA scheme for the UPA-equipped LEO satelliteenabled IoT networks.

    ? We expand the inner codebook with predefined timing and frequency offsets,and then formulate the inner decoding as a tractable compressed sensing(CS)problem.

    ? By harnessing the intrinsic sparsity of the UPAequipped LEO satellite angular domain channels,we design an outer decoder that leverages the discriminating power of the angles to supprot more active devices.

    ? Building on the proposed inner decoder and outer decoder,a joint inner and outer decoder is proposed to further enhance the system performance,where the output of the outer decoder are employed to reduce the search space of the inner decoder,thereby reducing the computational complexity and facilitating the convergence of the inner decoding.

    The rest of this paper is organized as follows: Section II illustrates the system overview and the channel model.The details of the proposed OFDMA-based CCS URA is given in Section III.Section IV elaborates the design of the receiver.Numerical simulation results are presented in Section V.Finally,Section VI concludes this paper.

    II.SYSTEM MODEL

    2.1 System Overview

    In the considered scenario,a LEO satellite equipped with a half-wavelength spacedM=MxMyUPA provides services toKtotsingle-antenna devices.Within a given time interval,Ka?Ktotdevices are active and send messages to the LEO satellite.Taking into account the implementation cost,we propose the OFDMA-based CCS URA scheme for this LEO satellite-enabled network,where all active devices transmit on the shared OFDMA resource elements.Within the OFDMA resource elements grid,an OFDM symbol encompassesNTsubcarriers,in whichNcadjacent subcarriers are available for active devices.The transmission of each active device occupies the sameNsymOFDM symbols,i.e.,the total number of available resource elements isNcNsym.

    DenoteLas the set of messages transmitted by active devices.The system performance is expressed in terms of the PUPE

    2.2 Channel Model

    In light of the considerable altitude of the LEO satellite,it is reasonable to posit that the angles of arrival(AoA) of all propagation paths emanating from the same device are congruent.Following this,the channelhk∈CM×1of device-kcan be written as[27]

    where?represents the Kronecker product,βkrepresents the channel gain exhibiting the Rician fading distribution with the Rician factorκ,i.e.,

    III.OFDMA-BASED CCS URA

    Following the works in[13],we propose the OFDMAbased CCS URA scheme shown in Figure 2,which includes the outer encoding,the inner encoding,the OFDMA mapping,the inner decoding,and the outer decoding processes.The outer encoder partitions original messages into numerous segments,each of which is appended with parity check bits.Subsequently,in the inner encoding process,the outer codewords are mapped to codewords in a common inner codebook,which will be further mapped to different OFDMA resouce elements to be transmitted.Upon successful transmission,the inner decoder identifies the transmitted segmented messages,and then the outer decoder stitches these segmented messages to recover the origianl messages.

    Figure 1. The LEO satellite-enabled CCS URA system.

    Figure 2. The block diagram of the OFDMA-based CCS URA.

    3.1 Outer Encoding

    Letwk∈{0,1}B×1denote the original message of device-k.In the outer encoding process,wkis divided intoLsegments,i.e.,wk,1,wk,2,...,wk,L,wherewk,l∈and=B.The parity check bitspk,l∈is generated by

    whereGl,i∈is the generation matrix whose elements follow the Bernoulli distribution with the parameterindependently,andpk,lis computed using modulo-2 arithmetic which makespk,lremain binary.Subsequently,pk,lis appended towk,lto form the fixed-length outer codewordvk,l∈{0,1}J×1,whereJ=Bl+Pl,i.e.,

    3.2 Inner Encoding

    The inner encoder maps the outer codewordvk,lto the inner codeword employing the inner codebookA∈,whereAis a Gaussian random matrix with entries followingCN(0,) andR=[13].More precisely,the inner codewordck,l∈CR×1of device-kin segment-lis given by

    wheremk,l∈denotes the inner codeword indicator vector with only its((vk,l)b→d+1)-th entry being one,and (·)b→ddenotes the binary to decimal conversion.

    3.3 OFDMA Mapping and Signal Transmission

    In the OFDMA mapping process,the inner codewords are mapped to the OFDMA resource elements for being transmitted to the LEO satellite.As illustrated in Figure 3,the inner codewordck,lis uniformly devided intoNs=fragments,i.e.,=ck,l,1,ck,l,2,...,,and thenck,l,t=∈=is transmitted over the ((l?1)Ns+t)-th OFDM symbol.

    Figure 3. The OFDMA resource elements grid.

    In LEO satellite communications,long propagation delay and large Doppler frequency offset can be ameliorated to a certain degree via the pre-compensation mechanism implemented on the device side.However,for cost-constrained IoT devices,residual timing and frequency offsets persist following the compensation process.Letτk∈{0,1,...,τmax} and?k∈[??max,?max]denote the inevitable residual timing and frequency offset coefficients of device-k,respectively.The frequency domain received signals of thel-th segment(specifically,the signals received over the((l?1)Ns+1)-th to thelNs-th OFDM symbols)Yl∈CR×Mcan be written as[3]

    whereKawith the cardinality |Ka|=Karepresents the active devices set,Zl∈CR×Mrepresents the noise matrix with its entries independently followingCN(0,),Dk,l∈CR×Rrepresents the phase shift matrix associated withck,l,which is given by

    the phase shift matrixDk,l,t∈associated withck,l,tis given by

    Ncprepresents the length of the cyclic prefix,andQk∈represents theτkleft cyclic shift matrix.

    IV.RECEIVER DESIGN

    4.1 Inner Decoding

    To overcome the path loss challenge in LEO satellite communications,the receiving beamforming technique is often adopted.Given the innate directivity of the UPA-equipped LEO satellite channels,we employ the beamforming method rooted in the extensively utilized DFT beamforming codebook [27].DenoteF=Fx?Fyas the beamforming codebook,whereFd∈,d=x,y,represents theMd-point DFT matrix.Subsequent to the receiving beamforming process,the angular-frequency domain received signals∈CR×1of angle-sin segment-lcan be written as

    The role of the inner decoder is to recover the set of the transmitted outer codewordsLl=Ll,1∪Ll,2∪···∪Ll,M,whereLl,s={vk,l|k ∈Ka,s}.For conventional terrestrial IoT networks,where the phase shift matrixDk,lcan be represented as an identity matrix,the estimation ofLl,scan be obtained employing the direct CS method based on (10) [13].However,for the LEO satellite-enabled IoT networks,the presence of the unknownDk,lmakes the direct CS method inapplicable.To circumvent this obstacle,we expand the inner codebookA=[a1,a2,...,]with predefined timing and frequency offsets,and then formulate the inner decoding as a tractable CS problem.

    To build the inner decoding model,we postulate that the timing and frequency offsets for the active devices are uniformly distributed within the discrete setsT={η1,η2,...,η|T|} andE={ν1,ν2,...,ν|E|},respectively.It should be highlighted that this assumption is employed primarily to facilitate building the inner decoding model,rather than representing an inherent property of the timing and frequency offsets.With a little bit of notations abusing,denoteEl,i,jas the phase shift matrix,where the timing and frequency offsets areηiandνj,respectively.In essence,El,i,jis obtained by replacingτkand?kinDk,lwithηiandνj,repectively.We expandAto

    for thel-th segment,where∈CR×|T||E|is given by

    As a result,the signal transmission model(10)can be rewritten as

    where the timing and frequency offsets indicator vectorek∈{0,1}|T||E|×1has only one non-zero entry whose index indicates the timing and frequency offsets of device-k,andis a sparse vector.

    Denotegl,s=withgl,s,b∈C|T||E|×1.It is important to note that,in our model,”gl,s,b0” implies that there exists at least one device from the setKa,stransmittingabin segment-l.Therefore,the inner decoding is equivalent to the estimation ofgl,sbased on (13),which is a traditional CS problem.We resort to the AMP algorithm in[31]to obtain the log-likelihood ratiorl,s∈with its entry being

    Then,the inner decoding results of angle-sin segment-l(i.e.,the estimationofLl,s),is given by

    where(·)d→brepresents the decimal to binary conversion.

    4.2 Outer Decoding

    The outer decoder should stitch the candidate outer codewords from the inner decoders across different segments together for reconstructing the original messages.The traditional tree outer decoder in the CCS URA[13]achieves this task relying solely on the discriminating power of the parity check bits.Nevertheless,such mechanism will end up with incorrect decoding results when the number of active devicesKaexceeds the discriminating power of the parity check bits.The sparsity of the UPA-equipped LEO satellite angular domain channels indicates that the discriminating power of the angles can be employed as an additional tool to stitch the candidate outer codewords.With the discriminating power of the angles,wrong decoding results will only occur when the active devices number |Ka,s| <Kaof angle-srather thanKasurpasses the discriminating power of the parity check bits.In light of this,we perform the tree outer decoding in the angular domain.Based on,the tree outer decoding is performed for getting the outer decoding resultsof angle-s(i.e.,the estimation ofLs={wk|k∈Ka,s}).Then,the outer decoding result(i.e.,the estimation ofL={wk|k∈Ka}) is obtained by aggregating the results corresponding to all angles i.e.,.

    Specifically,for any angles: Each outer codewords inis chosen as a root node.For each root node from,there arecandidate outer codewords to be stitched in segment-2,thus formingpaths.Then,the valid paths fulfilling(4)are retained.Denote the set of the valid paths in segment-2 as.Accodingly,there existpaths in segment-3.Once more,reserve the valid paths matching(4)to get the set of the valid paths in segment-3,denoted as.This segment-by-segment progression continues up until segment-L.Then,is obtained by extracting the message parts of the valid paths set.

    We summarize the proposed decoding algorithms in Section 4.1 and Section 4.2 as Algorithm 1.

    4.3 Joint Inner and Outer Decoding

    To further improve the decoding performance and reduce the decoding complexity,we propose the joint inner and outer decoder on the basis of the decoding process proposed in section 4.1 and section 4.2.Based on,the joint inner and outer decoder outputs the estimation,and thenis get by combining the results of all angles,i.e.,.As depicted in Figure 4,the operation of the inner and outer decoders is orchestrated in an alternating manner.The output of the outer decoder are utilized to reduce the search space of the inner decoder,thus reducing the computational complexity and facilitating the convergence of the inner decoding.For the sake of argument,we will detail the decoding procedure specific to angle-sin segment-(l+1)in the remainder of this section.

    Denote then-th valid path in the valid paths setof angle-sin segment-las

    wherevl,s,n,i∈{0,1}J×1represents thei-th outer codeword from the inner decoding of segment-iassociated with the valid path.According to the parity check equation (4),the check components for the transmitted outer codewords of angle-sin segment-(l+1),which can be stitched to the valid path,are confined within the check pattern:.Consequently,any transmitted inner codewordabof angle-sin segment-(l+1)must adhere to the condition:

    In segment-(l+1),we prune the inner codebookAtoAl+1,s∈by only reserve the inner codewords that comply with (17),where the dimensionKl+1,s≤2J.Following this pruning operation,we expandAl+1,stowith the predefined timing and frequency offsets to acquire the inner decoding resultof angle-sin segment-(l+1)(See section 4.1.),and then the valid paths setof angle-sin segment-(l+1) is obtained with the tree outer decoder(See section 4.2.).It is pertinent to note that the search space in segment-(l+1)’s inner decoding of angle-shas been reduced form 2J|T||E|toKl+1,s|T||E|.

    Remark 1.Given the sparsity of UPA-equipped LEO satellite channels in the angular domain,|Pl,s|is significantly less than |Pl,1∪Pl,1∪··· ∪Pl,M|.The result suggests that angle distinctiveness aids in further pruning the inner codebook,thereby reducing the computational complexity and facilitating the convergence of the inner decoding.

    The proposed joint inner and outer decoding algorithm is summarized in Algorithm 2.

    V.SIMULATION RESULTS

    In this section,we provide numerical simulations to evaluate the performance of the proposed OFDMAbased CCS URA scheme in the LEO satellite IoT network.The energy per bit to noise power spectral density ratio is given by

    The OFDMA-based CCS URA is configured as follows: The length of original message isB=24,the number of segment isL=7,the length of the outer codeword isJ=9,the lengths of the parity check bits are [P1,P2,P3,P4,P5,P6,P7]=[0,5,5,5,6,9,9],the number of the total subcarriers isNT=2048,the length of the cyclic prefix isNcp=144,the number of the available subcarriers isNc=72,the available subcarriers indices are 1001,...,1072,and the number of OFDM symbols for transmission isNsym=14.Besides,the channel Rician factor is set asκ=10dB,the physical angle,?kand,?kare uniformly distributed in(?1,1][27],devices’timing offsetsτk,?kand frequency offsets?k,?kdistribute uniformly in {0,1,...,τmax} and [??max,?max],whereτmax=20 and?max=0.2[32].In the proposed receiver,we setT={0,5,...,20} andE={?0.2,?0.1,...,0.2}.

    We compare the following decoding schemes,with their respective computational complexities delineated in Table 1.

    Table 1. Computational complexity of different decoding schemes.

    1.Proposed decoding algorithm in section 4.1 and section 4.2(PD).

    2.Joint inner and outer decoding algorithm in section 4.3(JD).

    3.Decoding with original tree outer decoder(DOT):This method aligns closely with the PD,with the key distinction that the outer decoding in DOT exclusively utilizes the distinguishing capacity of the parity check bits(In essence,it inputs,l=1,...,L,to the tree outer decoder to directly get.).

    4.Decoding with original inner codebook and original tree outer decoder(DOCT):The DOCT is the conventional terrestrial CCS URA decoder [13].It parallels the DOT,but the inner decoding in DOCT employs the original inner codebookA,as opposed to the expanded inner codebook.

    In Figure 5,we assess the PUPE performance for various algorithms under the assumption of zero timing and frequency offsets.The result validates the effectiveness of the baseline DOCT approach.Additionally,in the absence of the timing and frequency offsets,the performance of DOCT is equivalent to that of DOT.Figures 6 through 8 illustrate the performance of the proposed OFDMA-based CCS URA under conditions involving timing and frequency offsets.In Figure 6,the decoding performance of several algorithms is investigated against the variation in the number of active devices.We can observe that the DOCT is almost ineffectual.All the algorithms manifest degradation in performance with the increase of the number of active devices.Comparing the DOT and the DOCT,it can be inferred that the expanded inner codebook significantly mitigates the effects of timing and frequency offsets.Moreover,the distinguishing capacity of the angles enables the PD to outperform the DOT.Due to the reduced search space which expedites the convergence of the inner decoding,the JD with lower computational complexity,demonstrates superior performance compared to the PD.Figure 7 shows the performance of different algorithms with respect to the number of antennas.As the number of antennas escalates,the distinguishing power of the angles is progressively augmented.This results in a widening performance gap between the DOT and the proposed algorithms PD and JD.Figure 8 illustrates the decoding performance of several algorithms against the.The proposed algorithms PD and JD outstrip the baseline algorithms across an extensiverange.Furthermore,consistent with previous observations,the proposed JD algorithm achieves the optimal performance.

    Figure 5. The PUPE of different decoding schemes versus,where Ka=50 and Mx=My=4.

    Figure 6. The PUPE of different decoding schemes versus the number of active devices Ka,where =5dB and Mx=My=4.

    Figure 7. The PUPE of different decoding schemes versus the number of antennas M,where Mx=My=,=3dB,and Ka=50.

    Figure 8. The PUPE of different decoding schemes versus,where Ka=50 and Mx=My=4.

    VI.CONCLUSION

    In this paper,we combined the CCS URA and the LEO satellite communication in the framework of the OFDMA to serve massive devices in remote areas.With the presence of the inevitable timing and frequency offsets,we formulated the inner decoding of the CCS URA as a soveable CS problem,and proposed the angular domain outer decoding algorithm.Then,the joint inner and outer decoding algorithm was proposed to reduce the computational complexity and further improve the system performance.Simulations revealed the effectiveness of the proposed scheme.

    ACKNOWLEDGEMENT

    This work was supported by the National Key R&D Program of China under Grant 2023YFB2904703,the National Natural Science Foundation of China under Grant 62341110,62371122 and 62322104,the Jiangsu Province Basic Research Project under Grant BK20192002,and the Fundamental Research Funds for the Central Universities under Grant 2242022k30005 and 2242023K5003.

    日韩精品有码人妻一区| av.在线天堂| 国产亚洲av片在线观看秒播厂 | 亚洲美女视频黄频| 久久精品91蜜桃| 亚洲av日韩在线播放| 国产成人精品久久久久久| 国产精品人妻久久久久久| 中文字幕免费在线视频6| 好男人在线观看高清免费视频| 国产高清有码在线观看视频| 91在线精品国自产拍蜜月| 国产黄片视频在线免费观看| 一个人免费在线观看电影| 亚洲熟妇中文字幕五十中出| 久久精品影院6| 精品午夜福利在线看| 国产精品一及| 亚洲怡红院男人天堂| 男人舔女人下体高潮全视频| 97人妻精品一区二区三区麻豆| 亚洲精品久久久久久婷婷小说 | 久久久久久伊人网av| 在线免费观看的www视频| 一边亲一边摸免费视频| 丰满乱子伦码专区| 国产亚洲91精品色在线| 美女黄网站色视频| 国产精品av视频在线免费观看| av国产免费在线观看| 亚洲自拍偷在线| 精品人妻视频免费看| eeuss影院久久| 亚洲精品,欧美精品| 3wmmmm亚洲av在线观看| 国产精品av视频在线免费观看| 少妇被粗大猛烈的视频| 久久久午夜欧美精品| 精品人妻视频免费看| 国产三级在线视频| 成人国产麻豆网| 菩萨蛮人人尽说江南好唐韦庄 | 欧美一区二区精品小视频在线| 纵有疾风起免费观看全集完整版 | av线在线观看网站| 如何舔出高潮| 国产精品av视频在线免费观看| 国产黄片美女视频| 亚洲国产精品合色在线| 国产精品99久久久久久久久| 欧美高清成人免费视频www| 国产色婷婷99| 黄色欧美视频在线观看| 麻豆一二三区av精品| 级片在线观看| 亚洲在线观看片| 成年av动漫网址| 别揉我奶头 嗯啊视频| 成年免费大片在线观看| 性插视频无遮挡在线免费观看| 亚洲伊人久久精品综合 | av免费在线看不卡| 亚洲av.av天堂| 亚洲乱码一区二区免费版| 久久久久久九九精品二区国产| 日韩一区二区三区影片| 亚洲av免费高清在线观看| 嫩草影院新地址| 久久久久久大精品| 国产精品爽爽va在线观看网站| www.色视频.com| 久久久久久久久大av| 小说图片视频综合网站| 国产在线男女| 国产精品乱码一区二三区的特点| 午夜免费男女啪啪视频观看| 免费一级毛片在线播放高清视频| 赤兔流量卡办理| 欧美3d第一页| 乱系列少妇在线播放| 毛片一级片免费看久久久久| 国产精品一区www在线观看| 麻豆av噜噜一区二区三区| 97热精品久久久久久| 五月玫瑰六月丁香| 3wmmmm亚洲av在线观看| 日本黄大片高清| 国产人妻一区二区三区在| 国产一区二区在线观看日韩| 婷婷色麻豆天堂久久 | 欧美一区二区亚洲| 国产高清国产精品国产三级 | 久久久久久久久大av| 亚洲精品色激情综合| 一级毛片久久久久久久久女| a级毛片免费高清观看在线播放| 国产精品三级大全| 女人十人毛片免费观看3o分钟| 国产精品三级大全| 丰满少妇做爰视频| 一边摸一边抽搐一进一小说| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲网站| 亚洲不卡免费看| videos熟女内射| 日日摸夜夜添夜夜添av毛片| 色网站视频免费| 欧美又色又爽又黄视频| 国产成人91sexporn| 欧美性猛交黑人性爽| 日韩高清综合在线| 午夜福利视频1000在线观看| 国产真实乱freesex| 久久久久久久国产电影| 精品国内亚洲2022精品成人| 成年版毛片免费区| 国内少妇人妻偷人精品xxx网站| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久亚洲| 91av网一区二区| 亚洲中文字幕一区二区三区有码在线看| 永久免费av网站大全| 午夜福利在线观看免费完整高清在| 亚洲美女视频黄频| 校园人妻丝袜中文字幕| 国产成人aa在线观看| 嫩草影院入口| 高清av免费在线| av在线观看视频网站免费| 国产av在哪里看| 亚洲伊人久久精品综合 | 久久6这里有精品| 毛片女人毛片| 啦啦啦啦在线视频资源| 大又大粗又爽又黄少妇毛片口| 国产毛片a区久久久久| 一个人看的www免费观看视频| 精品一区二区三区人妻视频| 日日啪夜夜撸| 亚洲综合色惰| 美女xxoo啪啪120秒动态图| 日本猛色少妇xxxxx猛交久久| 91在线精品国自产拍蜜月| 男人和女人高潮做爰伦理| 国产一级毛片在线| 国产免费又黄又爽又色| 黄色配什么色好看| 高清午夜精品一区二区三区| 亚洲精品成人久久久久久| 亚洲精品成人久久久久久| 久久久亚洲精品成人影院| 欧美日韩精品成人综合77777| 亚洲内射少妇av| 天美传媒精品一区二区| av卡一久久| 国产成人aa在线观看| 91精品国产九色| 国产淫语在线视频| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 人体艺术视频欧美日本| av天堂中文字幕网| 国产老妇女一区| 日韩人妻高清精品专区| 久久精品国产自在天天线| 美女黄网站色视频| 亚洲av熟女| 嘟嘟电影网在线观看| 国产中年淑女户外野战色| 青青草视频在线视频观看| 一级毛片久久久久久久久女| 色综合亚洲欧美另类图片| 哪个播放器可以免费观看大片| 亚洲欧美成人综合另类久久久 | 我要看日韩黄色一级片| 国产精品久久久久久精品电影| 久久精品夜夜夜夜夜久久蜜豆| 久久久久免费精品人妻一区二区| 熟妇人妻久久中文字幕3abv| 久久99精品国语久久久| 亚洲精品国产成人久久av| 欧美xxxx性猛交bbbb| 欧美成人一区二区免费高清观看| 国产精品美女特级片免费视频播放器| 欧美成人午夜免费资源| 网址你懂的国产日韩在线| av播播在线观看一区| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 亚洲美女搞黄在线观看| 精品午夜福利在线看| 国产高潮美女av| 久久久成人免费电影| 丰满乱子伦码专区| 嫩草影院新地址| 午夜激情福利司机影院| 国产精品麻豆人妻色哟哟久久 | 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 天天躁夜夜躁狠狠久久av| 亚州av有码| 国产一区二区亚洲精品在线观看| 97热精品久久久久久| 韩国高清视频一区二区三区| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久久久久婷婷小说 | 我要搜黄色片| 国产淫片久久久久久久久| 国产av一区在线观看免费| 国产激情偷乱视频一区二区| 国产免费福利视频在线观看| 爱豆传媒免费全集在线观看| 亚洲婷婷狠狠爱综合网| av女优亚洲男人天堂| 日韩三级伦理在线观看| 欧美性感艳星| 成人av在线播放网站| 久久精品国产亚洲av天美| 欧美高清成人免费视频www| 亚洲在久久综合| 国产爱豆传媒在线观看| 免费观看a级毛片全部| 成人漫画全彩无遮挡| 简卡轻食公司| 国产亚洲一区二区精品| 蜜桃久久精品国产亚洲av| 啦啦啦韩国在线观看视频| 国产精品.久久久| 亚洲成人中文字幕在线播放| АⅤ资源中文在线天堂| 美女cb高潮喷水在线观看| 久久久国产成人精品二区| 小蜜桃在线观看免费完整版高清| kizo精华| 欧美精品一区二区大全| 亚洲伊人久久精品综合 | 91久久精品国产一区二区成人| av国产久精品久网站免费入址| 免费看美女性在线毛片视频| 国内少妇人妻偷人精品xxx网站| 国产不卡一卡二| 18禁在线无遮挡免费观看视频| 亚洲国产精品国产精品| 国产av码专区亚洲av| 日韩欧美三级三区| 日韩亚洲欧美综合| 丝袜喷水一区| .国产精品久久| 国产极品精品免费视频能看的| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 偷拍熟女少妇极品色| 麻豆成人午夜福利视频| 久久精品熟女亚洲av麻豆精品 | 看黄色毛片网站| 99久国产av精品国产电影| 日本av手机在线免费观看| 色哟哟·www| 永久网站在线| 精品熟女少妇av免费看| 精品不卡国产一区二区三区| 国语自产精品视频在线第100页| 久久亚洲国产成人精品v| 国产精品乱码一区二三区的特点| 你懂的网址亚洲精品在线观看 | 亚洲欧美成人综合另类久久久 | 插阴视频在线观看视频| 久久久色成人| 欧美丝袜亚洲另类| 色尼玛亚洲综合影院| 伊人久久精品亚洲午夜| h日本视频在线播放| 精华霜和精华液先用哪个| 久久久久久久午夜电影| 热99re8久久精品国产| 一级毛片aaaaaa免费看小| 汤姆久久久久久久影院中文字幕 | 日本免费在线观看一区| 国内揄拍国产精品人妻在线| 一级毛片久久久久久久久女| 免费黄色在线免费观看| 啦啦啦韩国在线观看视频| 午夜福利高清视频| 男女国产视频网站| 亚洲国产色片| 国产日韩欧美在线精品| 午夜福利在线观看免费完整高清在| 亚洲av福利一区| 国产人妻一区二区三区在| 国产 一区 欧美 日韩| 啦啦啦观看免费观看视频高清| 日韩欧美在线乱码| 欧美高清成人免费视频www| 身体一侧抽搐| 国产精品,欧美在线| 亚洲国产精品成人久久小说| 午夜精品一区二区三区免费看| 中文天堂在线官网| 久久人人爽人人爽人人片va| 99热全是精品| 精品国产一区二区三区久久久樱花 | 床上黄色一级片| 免费在线观看成人毛片| 国产毛片a区久久久久| 国产精品,欧美在线| 亚洲欧美一区二区三区国产| 免费av观看视频| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 少妇熟女aⅴ在线视频| 久久精品影院6| 国产单亲对白刺激| 两个人的视频大全免费| 我要看日韩黄色一级片| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 高清av免费在线| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 国产av不卡久久| 韩国高清视频一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲国产精品专区欧美| av女优亚洲男人天堂| 国产伦理片在线播放av一区| av免费在线看不卡| 18禁在线无遮挡免费观看视频| 啦啦啦观看免费观看视频高清| 亚洲欧美精品专区久久| 69人妻影院| 99久国产av精品| 国产白丝娇喘喷水9色精品| 免费av毛片视频| 欧美色视频一区免费| 伦精品一区二区三区| 男人舔女人下体高潮全视频| 春色校园在线视频观看| 国产成人a区在线观看| .国产精品久久| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 国产亚洲av片在线观看秒播厂 | 欧美丝袜亚洲另类| 欧美日韩国产亚洲二区| 日本色播在线视频| 国内精品宾馆在线| 亚洲中文字幕一区二区三区有码在线看| 女人十人毛片免费观看3o分钟| 国产亚洲精品av在线| 久久精品综合一区二区三区| 成人一区二区视频在线观看| 长腿黑丝高跟| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 国产乱人偷精品视频| 男人舔女人下体高潮全视频| 亚洲不卡免费看| 哪个播放器可以免费观看大片| 亚洲一区高清亚洲精品| 国产 一区精品| 成人二区视频| 色噜噜av男人的天堂激情| 国产69精品久久久久777片| 91久久精品电影网| 国产精品嫩草影院av在线观看| 精品熟女少妇av免费看| 久久国内精品自在自线图片| 人妻夜夜爽99麻豆av| 男插女下体视频免费在线播放| 成年版毛片免费区| 亚洲国产最新在线播放| 亚洲性久久影院| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 99九九线精品视频在线观看视频| 99久久精品一区二区三区| 国产精品一及| 久久人妻av系列| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 亚洲av福利一区| 亚洲av不卡在线观看| 亚洲经典国产精华液单| 淫秽高清视频在线观看| 国产综合懂色| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 成人亚洲精品av一区二区| 在线观看一区二区三区| av黄色大香蕉| 日韩大片免费观看网站 | 亚洲精品日韩av片在线观看| 女人被狂操c到高潮| 91av网一区二区| 韩国av在线不卡| av在线观看视频网站免费| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 欧美另类亚洲清纯唯美| 亚洲伊人久久精品综合 | 3wmmmm亚洲av在线观看| 国产91av在线免费观看| 高清日韩中文字幕在线| 男女那种视频在线观看| 久久精品影院6| 成人午夜精彩视频在线观看| 嫩草影院精品99| 亚洲性久久影院| 久久99热这里只频精品6学生 | 日本黄色视频三级网站网址| 丰满人妻一区二区三区视频av| 欧美激情在线99| 国产乱人偷精品视频| 人妻夜夜爽99麻豆av| 国产亚洲91精品色在线| 超碰97精品在线观看| 亚洲av日韩在线播放| 亚洲aⅴ乱码一区二区在线播放| 真实男女啪啪啪动态图| 亚洲精品,欧美精品| 日本欧美国产在线视频| 一个人看视频在线观看www免费| 天堂√8在线中文| 成人欧美大片| 美女xxoo啪啪120秒动态图| 两性午夜刺激爽爽歪歪视频在线观看| 搡老妇女老女人老熟妇| 波野结衣二区三区在线| 一本久久精品| 久久久亚洲精品成人影院| 国产精品一二三区在线看| av免费观看日本| 亚洲久久久久久中文字幕| 久久亚洲精品不卡| 国产成人精品一,二区| 国产亚洲午夜精品一区二区久久 | 亚洲精品一区蜜桃| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 国产亚洲最大av| 91狼人影院| 日本av手机在线免费观看| 国产黄片美女视频| 精品欧美国产一区二区三| 亚洲精品乱码久久久久久按摩| 欧美3d第一页| 最新中文字幕久久久久| 色尼玛亚洲综合影院| 国产一区二区在线av高清观看| 欧美高清性xxxxhd video| 可以在线观看毛片的网站| 久久久久久久久中文| 亚州av有码| 午夜精品国产一区二区电影 | 国产精品久久视频播放| 欧美高清成人免费视频www| 爱豆传媒免费全集在线观看| 99久久人妻综合| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品自产自拍| 性色avwww在线观看| 亚洲国产精品合色在线| 亚洲av免费在线观看| 超碰97精品在线观看| 身体一侧抽搐| 毛片女人毛片| 网址你懂的国产日韩在线| 日本猛色少妇xxxxx猛交久久| 尤物成人国产欧美一区二区三区| 婷婷色麻豆天堂久久 | 伊人久久精品亚洲午夜| 免费播放大片免费观看视频在线观看 | 亚洲av免费在线观看| 亚洲成人久久爱视频| 九草在线视频观看| 国产成人精品婷婷| 亚洲一区高清亚洲精品| 精品熟女少妇av免费看| 69人妻影院| a级一级毛片免费在线观看| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 成年女人看的毛片在线观看| 亚洲欧洲日产国产| 精品久久久久久久久久久久久| 大话2 男鬼变身卡| 亚洲高清免费不卡视频| 人人妻人人看人人澡| 草草在线视频免费看| 午夜激情福利司机影院| 国产三级中文精品| 一边摸一边抽搐一进一小说| 国产精品.久久久| 亚洲aⅴ乱码一区二区在线播放| 国产精品不卡视频一区二区| 国产亚洲91精品色在线| 老师上课跳d突然被开到最大视频| 草草在线视频免费看| 色尼玛亚洲综合影院| 99久久中文字幕三级久久日本| 亚洲人成网站高清观看| 久久精品影院6| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 男女那种视频在线观看| av又黄又爽大尺度在线免费看 | 精品国产露脸久久av麻豆 | 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 变态另类丝袜制服| 秋霞伦理黄片| 久久人人爽人人爽人人片va| 亚洲av电影不卡..在线观看| 亚洲精品,欧美精品| 人妻系列 视频| 日韩精品青青久久久久久| 简卡轻食公司| 日韩,欧美,国产一区二区三区 | 欧美高清成人免费视频www| 亚洲熟妇中文字幕五十中出| 精品人妻一区二区三区麻豆| 久久久久久久久大av| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久中文| 你懂的网址亚洲精品在线观看 | 国产精品美女特级片免费视频播放器| 永久网站在线| 一夜夜www| 欧美日本视频| 久久99热这里只频精品6学生 | 我的女老师完整版在线观看| 国产久久久一区二区三区| 亚洲精品日韩av片在线观看| 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 欧美激情久久久久久爽电影| 男女啪啪激烈高潮av片| 国产亚洲精品久久久com| 亚洲最大成人中文| 一级二级三级毛片免费看| 中文在线观看免费www的网站| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 中文天堂在线官网| 少妇人妻精品综合一区二区| 亚洲精品久久久久久婷婷小说 | 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| 99久久精品热视频| 又爽又黄a免费视频| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 亚洲国产精品sss在线观看| 亚洲精品456在线播放app| 国产不卡一卡二| 午夜久久久久精精品| 国产一区亚洲一区在线观看| 国产在线男女| 深爱激情五月婷婷| kizo精华| av在线天堂中文字幕| 搞女人的毛片| 能在线免费看毛片的网站| 日本与韩国留学比较| 精品无人区乱码1区二区| 日产精品乱码卡一卡2卡三| 婷婷色av中文字幕| 美女大奶头视频| 特大巨黑吊av在线直播| 久久亚洲精品不卡| kizo精华| 99久国产av精品国产电影| 黄片wwwwww| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 蜜臀久久99精品久久宅男| 免费看av在线观看网站| eeuss影院久久| 晚上一个人看的免费电影| 亚洲国产精品专区欧美| 中文字幕久久专区| 观看美女的网站| 国产成人精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品94久久精品| 插逼视频在线观看| 久久草成人影院| 国产精品三级大全| 国语自产精品视频在线第100页| 久久久久性生活片| 免费电影在线观看免费观看| 免费看光身美女| 亚洲国产色片| 久久久久精品久久久久真实原创| 国产精品人妻久久久久久| 能在线免费看毛片的网站| 91av网一区二区| 亚洲精品亚洲一区二区| 国产91av在线免费观看| 中文字幕熟女人妻在线| 国产熟女欧美一区二区| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 欧美区成人在线视频| 国产亚洲一区二区精品| 国产黄a三级三级三级人| av天堂中文字幕网| 99热这里只有是精品在线观看|