• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar

    2024-02-29 08:24:18ZehouYangYongChenChunliChenYongkeZhangJihuiDongTaoPengXiaofengLiDingfuZhou
    Defence Technology 2024年1期

    Ze-hou Yang , Yong Chen , Chun-li Chen , Yong-ke Zhang , Ji-hui Dong ,Tao Peng , Xiao-feng Li ,c, Ding-fu Zhou

    a School of Physics, Beijing Institute of Technology, Beijing 100081, China

    b Southwest Institute of Technical Physics, Chengdu 610041, Sichuan, China

    c School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

    Keywords: Differential absorption LIDAR Coherent Doppler lidar Remoting sensing Atmospheric pollution

    ABSTRACT An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL)and coherent-doppler lidar(CDL)techniques using a dual tunable TEA CO2 laser in the 9-11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection, the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product (CL), front distance, and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45° to 65°,with a radial resolution of 30 m and 10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns, thereby ensuring the protection of public safety.

    1.Introduction

    As industry advances, air pollution becomes a more and more serious problem.The rapid expansion of industries, encompassing energy, chemicals, metallurgy, textiles, and pharmaceuticals, has led to the substantial emission of gas pollutants.These pollutants not only have a significant impact on the daily lives of residents but also pose serious threats to human safety [1,2].The detection and identification of atmospheric pollutant gases play a pivotal role in safeguarding the atmospheric environment as they provide valuable insights for tracing pollutant sources, categorizing hazard levels, and formulating effective control strategies [3-5].

    Lidar, as an active remote sensing technology and tool, has unique advantages in the height, spatial resolution, time continuous monitoring and measurement accuracy of remote sensing detection, especially in atmospheric detection [6-9].And Laser detection ranges can be on the order of a few hundred meters to several kilometers and concentration levels on the order of parts per million to parts per billion [10].Given that the majority of pollutant gases exhibit characteristic spectra in the longwavelength range, which coincides with the output wavelength of CO2lasers, integrated-path differential absorption lidar (DIAL)systems based on mature and high-energy CO2lasers have been widely adopted [11-16].

    In recent years, there has been a growing need for comprehensive three-dimensional monitoring of atmospheric pollution,encompassing the integration of pollution diffusion information and spatial location [17].This has propelled advancements in multifunctional complex lidar technologies.Around the year of 2000, the institute of Laser Technics and Technology in Russia developed a Mobile lidar Complex (MLC) system deployed on a mobile platform.Operating at infrared wavelengths of 9-11 μm,as well as 1064 nm and 532 nm,this system exhibited the capability to detect various atmospheric parameters, including aerosol concentration, gas-phase chemical compositions, wind, turbulence, etc.[18].Nevertheless, the aforementioned system has intricate structure and considerable physical dimensions.In 2017, the National Physical Laboratory (NPL) in the United Kingdom introduced a vehicle-mounted DIAL system tailored explicitly for monitoring methane emissions emanating from landfill sites.To acquire wind speed and direction data, a portable mast was deployed in close proximity to the DIAL system[19].However,it should be noted that this system exhibited limitations when it came to retrieving comprehensive wind field information across larger areas and at higher altitudes [20].In 2022, scholars from the University of Science and Technology of China and etc.presented and validated a lidar system that integrated the techniques of Differential Absorption lidar(DIAL)and Coherent Doppler lidar(CDL).Employing a wavelength of 1.55 μm,this system effectively captured the spatial distribution of both CO2concentration and wind fields, thereby facilitating the precise estimation of localized CO2emissions.Nevertheless, it is essential to acknowledge that the system’s wavelength constraints limited its applicability solely to the measurement of CO2concentration [21].

    An innovative complex lidar system, deployed on an airborne platform, has been developed to facilitate remote sensing of atmospheric pollution.This system effectively combines the principles of integrated-path differential absorption and coherent Doppler laser detection.The system incorporates two small tunable TEA CO2lasers operating at a wavelength of 10.6 μm, along with a 1.55 μm fiber laser.By integrating the channels of DIAL and CDL,the system enables the comprehensive acquisition of multidimensional information pertaining to atmospheric pollutant gases concentrations, wind profiles and front distances.

    2.Methods and apparatus

    2.1.Methods

    A conventional integrated-path DIAL utilizes dual-wavelength laser emission, wherein one laser pulse is precisely tuned to the on-line wavelength λoncorresponding to the absorption coefficient α(λon) of the target gas.Similarly, the other laser pulse is tuned to the off-line wavelength λoffassociated with the absorption coefficient α(λoff) of the gas under measurement.The emitted power of these two laser pulses is denoted asP0(λon) andP0(λoff), respectively,while the received power is represented byP(λon)andP(λoff).Minimizing the absolute difference between the on-line and offline wavelengths λonand λoffis crucial to mitigate the impact of transmission,reflection,reception,and photoelectric conversion on the intensity of the echo pulses.The disparities observed in the echo signals of the two wavelengths predominantly arise from the differential absorption of gases at distinct wavelengths, as

    described by Eq.(1).

    The product of the gas concentration and the optical path length(CL) can be derived by applying the lidar equation and the Beer-Lambert Law, as represented in Eq.(2) [22-24].

    DIAL, relying on the utilization of tunable CO2laser, facilitates the identification of a wide range of atmospheric pollutant gases by leveraging the distinctive absorption line characteristics within the long-wavelength range(specifically,9-11 μm)[25].This technique utilizes two lasers that sequentially emit laser beams at preselected wavelengths, denoted as (λi,on,λi,off)i= 1,2,…,m.The received power in DIAL is determined in Eq.(3) [25,26].

    In the equation provided,A0signifies the area of the receiving optical telescope.P0(λ) represents the emitted power of the laser at wavelength λ,whilerdenotes the distance to the lambertian target.ρ represents the reflectivity of lambertian target, η(λ) symbolizes the optical efficiency of the system,and β(λ)signifies backscattered coefficient for the 1st to nth substances.Moreover,αj(λ)denotes the absorption coefficient of thejth substance at wavelength λ,CLjrepresents the product of concentration and path length for thejth substance, and ε(λ) stands for the atmospheric extinction coefficient.

    Applying the multi-wavelength DIAL algorithm, when the number of wavelengthsm≥n, the following relationship can be derived as follows [27]:

    Table 1Pollutant gases absorption wavelength and its absorption coefficient.

    whereCLj(j= 1, 2, …,n) represents the concentration-distance value for thejth substance.For each set of laser wavelength pairs(λi,on, λi,off) withj= 1, 2, …,m, the emission power is denoted asP0(λi,on) andP0(λi,off), while the received power is represented asP(λi,on,r) andP(λi,off,r).

    Based on the spectral databases such as HITRAN and NIST, it is evident that the long-wave infrared spectral range of 9-11 μm does not encompass absorption lines for the majority of atmospheric gases, including oxygen (O2) and nitrogen (N2).However, as illustrated in Table 1, several common atmospheric pollutants, such as formic acid (HCOOH), methanol (CH3OH), ozone (O3), sulfur hexafluoride (SF6), ammonia (NH3) and Ethylene(C2H4), exhibit significant absorption characteristics within the wavelength range of 9-11 μm.By selecting suitable wavelengths according to the rule demonstrated in Eq.(4) within this range, it becomes feasible to perform precise measurements for these pollutants [28,29].

    The CDL channel employs a coherent detection technique using laser pulses to accurately capture the spatial distribution information of pollutant clouds based on the intensity of reflected laser echo signals.Additionally,the motion parameters of these pollutant clouds are detected using the principle of Doppler velocity measurement.To generate a narrow linewidth continuous seed light,an Acousto-Optic Modulator (AOM) modulation is employed to produce a 200 ns pulse laser.Subsequently,the pulse laser undergoes amplification through MOPA (Master Oscillator Power Amplifier)fiber amplification technology.Then, using the transceiver telescope, the laser is emitted and the echo signals are received.The received echo signals are coherently detected using a coupler and a balanced detector.The information processing module conducts A/D conversion and Fast Fourier Transform (FFT) transformation on the echo signals.Through this transformation from time-domain signals to frequency-domain signals, the signals undergo processing steps such as incoherent accumulation.The lidar echo signal of the CDL channel is outputed from the balanced detector, and the intermediate frequency current signal obtained from the mixing of the signal light and the local oscillator light in the detector can be expressed as follows:

    wherePLrepresents the power of the local oscillator signal,PSdenotes the power of the echo signal, 2R represents the detector responsivity,fdis the frequency difference, and Δφ represents the phase difference between the local oscillator and the signal light.

    Efrepresents the energy in the signal frequency domain.By considering these parameters,the power of the echo signal(PS)in a coherent detection system can be obtained as follows:

    The calculation of the signal energy from the spectral signal provides a valuable means for determining the power of the echo signal at different distances, thus enabling the estimation of the distance to the cloud cluster.

    Furthermore, by evaluating the rate difference between the backscattered signal and the transmitted signal using Eq.(7), the derived radial wind speed data can be obtained.

    where |v| denotes the radial wind speed, λ is the probing wavelength, and dφ/dtis the rate of phase change.

    By employing the aforementioned equations and relevant signal processing algorithms, the CDL channel is able to obtain the echo intensity information with a distance resolution of 30 m,as well as the Doppler frequency shift information.This enables the inverse calculation of the spatial position,motion velocity,and direction of the pollutant cloud clusters.

    2.2.Apparatus

    The developed lidar system,as illustrated in Fig.1,encompasses an integrated structure that incorporates various components including the DIAL channel, CDL channel, Charge-Coupled Device(CCD) video monitoring unit, integrated control processor, inertial navigation, and system power supply.The DIAL channel operates on the fundamental principle of integrated-path differential absorption detection, facilitating the determination and measurement of different atmospheric pollutant gas types and their respective concentrations.On the other hand,the CDL based on the pulse coherent detection principle to effectively measure the radial wind velocity and accurately determine the distance to the cloud cluster.The utilization of a scanning device enables the measurement of radial wind speeds in diverse directions, thereby enabling the comprehensive acquisition of atmospheric wind field information within the designated measurement range.The key system parameters that play a crucial role in ensuring the system’s operational efficacy and performance are presented in Table 2.

    The primary source of noise in the developed lidar systems is the combined effect of detector dark noise and received background radiation.In the infrared range, the contribution from solar and ground thermal radiation is negligible and can be disregarded.However, in the visible and near-infrared bands, the dark noise of high-quality detectors may be insignificant, whereas infrared detectors tend to exhibit significant dark noise.In a coherent detection channel with ample local oscillator power,the detector noise is limited by scatter noise.On the other hand, for differential absorption lidar channels with weak echo signals, the detector noise is constrained by dark current in the infrared spectral region.

    The system error of Differential Absorption lidar (DIAL) is not only determined by the signal-to-noise ratios of the lasers,but also influenced by the correlation between the energy emitted and received by the two lasers.In DIAL,two lasers are employed to emit laser light separately at a target distance of 300 m.Due to the laser emitting at 5 Hz, the average ofandafter receiving signals 5 times per second can be obtained as follows:

    Fig.1.Configuration of lidar system for remote sensing of air pollution.

    Table 2Main lidar system parameters.

    Fig.2.Comparison of the ratio of transmitting and receiving power between two lasers: (a) Time Series plot; (b) Regression plot.

    Fig.3.Analyzer measurements of NH3 based on DIA and CDL: (a) Echo-spectrum intensity curves by CDL; (b) Echo curves by DIAL; (c) Concentration-length product (CL) measurements of NH3.

    Fig.4.Comparison of the wind speed and wind direction data retrieved by the complex lidar-CDL and the reference lidar: (a) Comparison plot; (b) Regression plot.

    Table 3System parameters of the reference lidar.

    where,Numis the total number of pulses repeatedly emitted by the laser per second.In the paper,Numis 5.In Fig.2, a comparison is presented between the ratio of received energy and emitted energy for wavelengths λonand λoff.Upon closer inspection, it can be observed that the trend ofaligns with the curve, exhibiting a correlation coefficient of 0.882.And their standard deviation is 0.063.

    2.3.Advantages of the complex system

    The complex lidar system encompasses numerous advantages.Firstly, through the utilization of a shared comprehensive control module, the DIAL and CDL can operate concurrently, enabling simultaneous measurements of wind profiles and concentrations of atmospheric pollutant gases.The long-wave infrared differential absorption lidar is capable of detecting atmospheric pollutant gases over long distances while effectively mitigating the influence of environmental background factors.This feature allows for highly sensitive detection of pollutant gases in aerosol form along the optical path.Furthermore,the 1.55 μm coherent detection channel provides integrated-path and high-resolution measurements of atmospheric wind fields.By combining these two channels, the complex lidar system acquires information on atmospheric wind fields while simultaneously assessing the concentration of atmospheric pollutant cloud clusters.This integrated approach enhances the traceability of atmospheric pollutant movement and facilitates the prediction of diffusion trends.As such, it contributes to decision-making for future protective measures.

    Fig.5.The liar and flight experiment: (a) the lidar system installed on the lower side of the aircraft; (b) Site and flight trajectory.

    3.Results and discussion

    3.1.Static experiment

    The field test was conducted with the background object positioned approximately 5 km away from the lidar system.In order to measure the target gas, an ammonia cloud was intentionally released at a distance of approximately 400 m in front of the background object.During the experiment, the CL values (representing the product of concentration and path length) and the distance to the cloud cluster were determined and recorded.The obtained measurement results,as depicted in Fig.3,were obtained using the pollute analyzer integrated with the developed lidar system.The measurement from the CDL channel indicated a distance of 4560 m to the front of the pollutant cloud cluster,while the CDL channel provided a lambertian target distance of 4990 m,and the DIAL channel yielded a target distance of 5030 m.These variations in distance values can be attributed to the differences in calculation methods, accuracy, and the requirement for distance calibration between the two approaches.At approximately the 177th second,the lidar system was initiated,and the pollutant gas was released,forming a radius of approximately 1 m.Based on the estimated amount of spray,the average concentration of ammonia aerosol was approximately 55 mg/m3.Utilizing the multiwavelength DIAL algorithm, CL value for ammonia exceeded the threshold of 20 mg/m3,confirming the presence of ammonia as the target gas.The average CL value of the measured pollutant gas is 120 mg/m2, and the length of the cloud cluster is 2 m, so the measured concentration value of the pollutant gas is 60 mg/m3,and the relative error compared with the estimated value is 9.1%.Moreover,the CL value gradually increased over time.The spraying process was halted at approximately the 305th, and subsequently,the CL value of ammonia began to gradually decrease.The results obtained from the field test successfully provided both the distance to the front of the pollutant cloud and the CL values, which are achieved not achieved with conventional integrated-path DIAL systems.

    Fig.4 shows the comparison between the CDL of the system and the wind field measurement of a reference wind lidar.Table 3 shows the basic parameters of the reference lidar.Through comparison,it can be found that the trend of wind profiles measured by the two lidars in the test is consistent,with a correlation coefficient of 0.998 for horizontal wind and 0.899 for wind direction.

    3.2.Flight experiment

    The field measurements reported in this study were carried out in Chengdu, China, marking the inaugural airborne evaluation of the developed lidar system.A Bell 407 helicopter was employed for the experiment,with the lidar system installed on the lower side of the aircraft, as depicted in Fig.5(a).Fig.5(b) shows site and flight trajectory.The flight test was conducted over a period of 12 h,from 6:20 a.m.to 6:20 p.m.Before takeoff, a sprayer was positioned before the designated lambertian target location.During the flight,the helicopter maintained a constant altitude of 300 m above ground level,with the maximum distance from the target reaching 4 km.While in flight, the lidar system was directed towards the target for evaluation,and the lidar’s orientation was adjusted using video tracking to precisely target the intended spray location.The lidar system automatically detected and recorded data related to ammonia concentration distances,radial wind measurements,and other pertinent parameters.Horizontal Plan Position Indicator(PPI)scans were conducted to capture the spatial distribution and diffusion patterns of ammonia.The lidar system was positioned at a distance of approximately 1 km above the ground, with the elevation angle ranging from 45°to 65°in 1°increments.Fig.5 illustrates the results of the horizontal scans at three distinct time points.Fig.6(a)depict the concentration of ammonia aerosol following ground spraying, while Fig.6(b) present the wind field data measured within the scanning range of the lidar.These figures provide insights into the movement patterns of the measured ammonia aerosol, which exhibit a correlation with the wind flow.The information obtained from these scans can be shared with relevant authorities to enhance their understanding of pollution trends and facilitate effective measures to safeguard public safety.

    Fig.6.Horizontal scanning results at three time points: (a) presents NH3 Concentration; (b) presents wind field data.

    4.Conclusions

    The study culminates by introducing an airborne laser complex system that integrates DIAL and CDL techniques for remote sensing of atmospheric pollution.This advanced system demonstrates the capability to monitor gaseous pollutants,real-time,and accurately measure the distances of cloud clusters within a 4-km range.Flight experiments were conducted utilizing a Bell 407 helicopter equipped with the developed airborne lidar system.The results obtained from these experiments vividly illustrate the effectiveness of the system in monitoring atmospheric pollutants, issuing alerts when necessary, and detecting atmospheric wind fields.The system enables the retrieval of crucial information such as spatial distribution and diffusion trends of atmospheric pollutants.Future research should focus on further refining key algorithms,including the enhancement of the multi-wavelength DIAL inversion algorithm and the establishment and optimization of aerosol diffusion models.These advancements hold the potential to augment the system’s overall accuracy, ultimately contributing to the enhancement of public safety in relation to atmospheric pollution.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    欧美日韩精品成人综合77777| 久久九九热精品免费| 亚洲av免费在线观看| 97碰自拍视频| 12—13女人毛片做爰片一| 欧美日韩瑟瑟在线播放| 十八禁国产超污无遮挡网站| 国产单亲对白刺激| 亚洲一区高清亚洲精品| 一区二区三区免费毛片| 国产高清有码在线观看视频| 观看美女的网站| 国产一区二区激情短视频| 最新中文字幕久久久久| 久久热精品热| 九九在线视频观看精品| 亚洲av五月六月丁香网| 黄色日韩在线| 在线观看66精品国产| 不卡视频在线观看欧美| 国产精品一区二区免费欧美| 亚洲美女搞黄在线观看 | 国产视频一区二区在线看| 欧美+日韩+精品| 久久久久久久亚洲中文字幕| 欧美一级a爱片免费观看看| 尤物成人国产欧美一区二区三区| 黄色丝袜av网址大全| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久爱视频| 美女 人体艺术 gogo| 麻豆国产av国片精品| 精品欧美国产一区二区三| www.www免费av| 久久亚洲真实| 99国产精品一区二区蜜桃av| 我要搜黄色片| 最近视频中文字幕2019在线8| 亚洲精品粉嫩美女一区| avwww免费| av国产免费在线观看| 久久亚洲精品不卡| 91av网一区二区| 婷婷精品国产亚洲av在线| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 日韩一区二区视频免费看| 亚洲最大成人中文| 干丝袜人妻中文字幕| 三级毛片av免费| 国产成人aa在线观看| 久久午夜亚洲精品久久| 99精品久久久久人妻精品| 一进一出抽搐动态| 美女高潮的动态| 夜夜夜夜夜久久久久| 成年免费大片在线观看| 啦啦啦啦在线视频资源| 欧美3d第一页| 啦啦啦啦在线视频资源| 男人狂女人下面高潮的视频| 校园春色视频在线观看| 国产单亲对白刺激| 色av中文字幕| 亚洲不卡免费看| 亚洲一区高清亚洲精品| x7x7x7水蜜桃| 两人在一起打扑克的视频| 国产精品美女特级片免费视频播放器| 久久午夜亚洲精品久久| 毛片女人毛片| 日韩高清综合在线| 禁无遮挡网站| 麻豆成人午夜福利视频| 国产麻豆成人av免费视频| 午夜老司机福利剧场| 亚洲精品影视一区二区三区av| 亚洲国产精品成人综合色| 免费看美女性在线毛片视频| 一区二区三区四区激情视频 | 精品人妻一区二区三区麻豆 | 亚洲内射少妇av| 亚洲美女视频黄频| 丰满的人妻完整版| 久久中文看片网| 亚洲熟妇熟女久久| 琪琪午夜伦伦电影理论片6080| 免费看美女性在线毛片视频| 亚洲性夜色夜夜综合| 俄罗斯特黄特色一大片| 亚洲av日韩精品久久久久久密| 美女黄网站色视频| 国产精品爽爽va在线观看网站| 国产国拍精品亚洲av在线观看| 精品一区二区免费观看| 婷婷六月久久综合丁香| 少妇被粗大猛烈的视频| 欧美日本亚洲视频在线播放| 男女做爰动态图高潮gif福利片| 成人三级黄色视频| 日韩精品有码人妻一区| 99热只有精品国产| 露出奶头的视频| 一个人免费在线观看电影| 久久国内精品自在自线图片| 久久久久国内视频| 精品一区二区三区视频在线| 好男人在线观看高清免费视频| 欧美成人一区二区免费高清观看| 中国美女看黄片| 毛片女人毛片| 亚洲一区高清亚洲精品| 一本精品99久久精品77| 小蜜桃在线观看免费完整版高清| 成年版毛片免费区| 国产一区二区三区视频了| 日日啪夜夜撸| avwww免费| 久久精品国产清高在天天线| 九色成人免费人妻av| 偷拍熟女少妇极品色| 嫁个100分男人电影在线观看| 中文字幕精品亚洲无线码一区| 久久久久精品国产欧美久久久| 成人欧美大片| 看十八女毛片水多多多| 国产高潮美女av| 久久人人精品亚洲av| 国产主播在线观看一区二区| 我的女老师完整版在线观看| 久久久久久大精品| 免费搜索国产男女视频| 国内精品宾馆在线| 亚洲人成网站在线播| 免费一级毛片在线播放高清视频| 免费人成在线观看视频色| 国产精品一区二区三区四区免费观看 | 韩国av在线不卡| 免费看日本二区| 久久久久久久亚洲中文字幕| 黄色一级大片看看| 日韩欧美 国产精品| 美女免费视频网站| 哪里可以看免费的av片| 国产精品精品国产色婷婷| 午夜老司机福利剧场| 国产日本99.免费观看| 色尼玛亚洲综合影院| netflix在线观看网站| 波野结衣二区三区在线| 深夜a级毛片| 久久这里只有精品中国| 国产欧美日韩精品亚洲av| 一个人免费在线观看电影| 春色校园在线视频观看| 99热这里只有是精品在线观看| 天堂影院成人在线观看| 亚洲国产日韩欧美精品在线观看| 日本黄大片高清| 97人妻精品一区二区三区麻豆| 亚洲精品色激情综合| 国产高清有码在线观看视频| 亚洲国产色片| 日本三级黄在线观看| 中国美白少妇内射xxxbb| 夜夜看夜夜爽夜夜摸| 一区福利在线观看| 国国产精品蜜臀av免费| 亚洲精品影视一区二区三区av| aaaaa片日本免费| 中文在线观看免费www的网站| 亚洲,欧美,日韩| 日本免费一区二区三区高清不卡| 久久久久久伊人网av| 九九热线精品视视频播放| 日韩欧美精品免费久久| 免费看av在线观看网站| 99精品在免费线老司机午夜| .国产精品久久| 国产av在哪里看| 亚洲av免费在线观看| 亚洲七黄色美女视频| 好男人在线观看高清免费视频| 午夜福利成人在线免费观看| 99久久精品一区二区三区| 在线观看66精品国产| 午夜影院日韩av| 国产男人的电影天堂91| 嫁个100分男人电影在线观看| 干丝袜人妻中文字幕| 联通29元200g的流量卡| 伊人久久精品亚洲午夜| 两个人的视频大全免费| 我的女老师完整版在线观看| 99久久无色码亚洲精品果冻| 中文字幕精品亚洲无线码一区| 亚洲天堂国产精品一区在线| 成人精品一区二区免费| 九九在线视频观看精品| 亚洲精品一区av在线观看| 精品久久久久久久久av| www.www免费av| 亚洲成a人片在线一区二区| 久久国产精品人妻蜜桃| 久久久久久久久久成人| 国产高潮美女av| 久久久久久久久大av| 欧美一区二区亚洲| 日韩 亚洲 欧美在线| 黄色丝袜av网址大全| 免费看光身美女| 亚洲精品在线观看二区| 国产精品国产三级国产av玫瑰| 99国产精品一区二区蜜桃av| 成年女人毛片免费观看观看9| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 少妇丰满av| 午夜亚洲福利在线播放| 三级毛片av免费| 国产精品一区二区免费欧美| 欧美激情久久久久久爽电影| 国产午夜精品久久久久久一区二区三区 | 老司机午夜福利在线观看视频| a级一级毛片免费在线观看| 久久香蕉精品热| 久久精品夜夜夜夜夜久久蜜豆| 18禁在线播放成人免费| 一本一本综合久久| 91精品国产九色| 中文资源天堂在线| 午夜免费成人在线视频| 久久久久久国产a免费观看| 国产欧美日韩一区二区精品| 内地一区二区视频在线| 国产精品亚洲美女久久久| 免费看a级黄色片| 丰满乱子伦码专区| av女优亚洲男人天堂| 久久人妻av系列| 久久精品91蜜桃| 国产精品一及| 中国美女看黄片| 九九爱精品视频在线观看| 熟妇人妻久久中文字幕3abv| 日韩欧美 国产精品| 日本精品一区二区三区蜜桃| 国产黄色小视频在线观看| 很黄的视频免费| 午夜免费男女啪啪视频观看 | 亚州av有码| 99riav亚洲国产免费| 日本在线视频免费播放| 久久久久国产精品人妻aⅴ院| 精品久久久久久,| 亚洲av一区综合| 国内精品久久久久久久电影| 联通29元200g的流量卡| 国产精品亚洲一级av第二区| 久久精品久久久久久噜噜老黄 | 99热只有精品国产| 久久6这里有精品| 可以在线观看的亚洲视频| 大又大粗又爽又黄少妇毛片口| 一区二区三区激情视频| 丰满的人妻完整版| 一区二区三区免费毛片| 99久久成人亚洲精品观看| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| 国产精品女同一区二区软件 | 成人av一区二区三区在线看| 他把我摸到了高潮在线观看| 色精品久久人妻99蜜桃| 女人被狂操c到高潮| 不卡视频在线观看欧美| 亚洲国产精品sss在线观看| 18禁在线播放成人免费| 男人狂女人下面高潮的视频| 日韩,欧美,国产一区二区三区 | 久久久午夜欧美精品| 国产精品国产三级国产av玫瑰| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 亚洲第一区二区三区不卡| 国产欧美日韩精品亚洲av| 久久国内精品自在自线图片| 老女人水多毛片| 一区二区三区激情视频| 久久久久久久久久黄片| 精品一区二区三区视频在线| 精品久久久噜噜| 人妻夜夜爽99麻豆av| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 日韩一区二区视频免费看| 男女啪啪激烈高潮av片| 久久久久久国产a免费观看| 能在线免费观看的黄片| 天堂av国产一区二区熟女人妻| 精品人妻1区二区| 亚洲性夜色夜夜综合| 国产成人av教育| 91在线观看av| 亚洲美女黄片视频| 欧美成人性av电影在线观看| 欧美丝袜亚洲另类 | 亚洲美女视频黄频| 99riav亚洲国产免费| 99热这里只有是精品50| 我的老师免费观看完整版| 色哟哟·www| 国内精品久久久久久久电影| 亚洲无线观看免费| 国产一区二区三区av在线 | 亚洲精华国产精华液的使用体验 | 成人无遮挡网站| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av| 深夜精品福利| 午夜精品久久久久久毛片777| 国产精品野战在线观看| 亚洲av中文av极速乱 | 欧美日本视频| 国产男靠女视频免费网站| 91在线精品国自产拍蜜月| 91麻豆av在线| 小说图片视频综合网站| 国产成年人精品一区二区| 麻豆成人午夜福利视频| 国产亚洲精品av在线| 国产 一区精品| 黄色视频,在线免费观看| 如何舔出高潮| 日本成人三级电影网站| 亚洲av免费在线观看| 国产人妻一区二区三区在| 国产精品人妻久久久久久| 人人妻,人人澡人人爽秒播| 精品免费久久久久久久清纯| 蜜桃久久精品国产亚洲av| 日本黄色视频三级网站网址| 精品久久国产蜜桃| 最新在线观看一区二区三区| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 97热精品久久久久久| 联通29元200g的流量卡| 亚洲精品在线观看二区| 99九九线精品视频在线观看视频| 夜夜夜夜夜久久久久| 不卡视频在线观看欧美| 久久婷婷人人爽人人干人人爱| 禁无遮挡网站| 午夜免费男女啪啪视频观看 | 欧美日本亚洲视频在线播放| 69人妻影院| av黄色大香蕉| 国产爱豆传媒在线观看| 一级毛片久久久久久久久女| 色av中文字幕| 日本黄色视频三级网站网址| 国产成人福利小说| 久久久国产成人免费| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 日韩高清综合在线| 小蜜桃在线观看免费完整版高清| 无遮挡黄片免费观看| 午夜福利在线观看吧| 99精品在免费线老司机午夜| 国产一区二区三区av在线 | 午夜日韩欧美国产| 欧美+亚洲+日韩+国产| 久久久精品欧美日韩精品| bbb黄色大片| 亚洲精华国产精华液的使用体验 | 午夜爱爱视频在线播放| 搡老熟女国产l中国老女人| 婷婷六月久久综合丁香| 日本欧美国产在线视频| 波多野结衣巨乳人妻| eeuss影院久久| 桃红色精品国产亚洲av| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 午夜老司机福利剧场| 国产av麻豆久久久久久久| 日本五十路高清| 99久久无色码亚洲精品果冻| 美女被艹到高潮喷水动态| 亚洲精品成人久久久久久| 一本久久中文字幕| 成人精品一区二区免费| 亚洲成人中文字幕在线播放| 嫁个100分男人电影在线观看| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 成人精品一区二区免费| 村上凉子中文字幕在线| 免费搜索国产男女视频| 成人综合一区亚洲| 日本色播在线视频| 97热精品久久久久久| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 春色校园在线视频观看| 熟妇人妻久久中文字幕3abv| 国产91精品成人一区二区三区| 色综合站精品国产| 美女高潮的动态| 亚洲精华国产精华液的使用体验 | 男人的好看免费观看在线视频| 赤兔流量卡办理| 亚洲欧美日韩无卡精品| 色精品久久人妻99蜜桃| 窝窝影院91人妻| av中文乱码字幕在线| 午夜免费激情av| 91在线观看av| 一区福利在线观看| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 国国产精品蜜臀av免费| av黄色大香蕉| 欧美日本亚洲视频在线播放| 春色校园在线视频观看| 国产探花极品一区二区| 亚洲内射少妇av| 精品久久久久久成人av| 97碰自拍视频| 一本久久中文字幕| 看黄色毛片网站| 黄色女人牲交| 久久久久性生活片| 国产精品一区二区性色av| 国产一区二区三区在线臀色熟女| 亚洲欧美精品综合久久99| 亚洲一区二区三区色噜噜| 日本a在线网址| 久久久久久久久中文| 免费av毛片视频| aaaaa片日本免费| 永久网站在线| 国产精品自产拍在线观看55亚洲| 久久国产精品人妻蜜桃| 国产 一区精品| 精品人妻熟女av久视频| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 久久精品国产亚洲av香蕉五月| 可以在线观看的亚洲视频| 亚洲av二区三区四区| av在线天堂中文字幕| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看| 久久精品国产清高在天天线| 男人狂女人下面高潮的视频| 两个人的视频大全免费| 亚洲va在线va天堂va国产| 三级男女做爰猛烈吃奶摸视频| 日韩欧美精品免费久久| 九九爱精品视频在线观看| 亚洲精品在线观看二区| 99在线视频只有这里精品首页| 99久久九九国产精品国产免费| 精品久久国产蜜桃| 又爽又黄a免费视频| 亚洲成人中文字幕在线播放| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 免费看a级黄色片| 亚洲欧美日韩高清专用| 免费av不卡在线播放| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 婷婷色综合大香蕉| 在线看三级毛片| 国产高潮美女av| 99riav亚洲国产免费| 在线观看舔阴道视频| 91麻豆精品激情在线观看国产| 简卡轻食公司| 尾随美女入室| 精品久久久久久,| 最近视频中文字幕2019在线8| 午夜爱爱视频在线播放| 精品人妻一区二区三区麻豆 | 欧美日韩综合久久久久久 | 男人的好看免费观看在线视频| 国产伦一二天堂av在线观看| 国产av不卡久久| 老师上课跳d突然被开到最大视频| 亚洲美女视频黄频| 老司机福利观看| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 亚洲性久久影院| a级毛片a级免费在线| 日日夜夜操网爽| 久久久久久久久久黄片| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女视频黄频| 欧美丝袜亚洲另类 | 精品一区二区三区视频在线| 久久香蕉精品热| 毛片一级片免费看久久久久 | 国产精品一区二区性色av| 精品欧美国产一区二区三| 夜夜看夜夜爽夜夜摸| www.www免费av| 国产精品国产高清国产av| 一个人免费在线观看电影| 欧美人与善性xxx| 欧美日韩乱码在线| 国产免费男女视频| 18禁在线播放成人免费| 熟妇人妻久久中文字幕3abv| 深爱激情五月婷婷| 在线国产一区二区在线| 少妇的逼好多水| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 日本一本二区三区精品| 国产精品国产三级国产av玫瑰| 国产精品永久免费网站| 一区福利在线观看| 免费黄网站久久成人精品| 国内少妇人妻偷人精品xxx网站| 观看美女的网站| 久久久精品大字幕| 国产三级中文精品| 免费人成视频x8x8入口观看| 黄色欧美视频在线观看| 无遮挡黄片免费观看| www.www免费av| 欧美日本视频| 他把我摸到了高潮在线观看| 亚洲成人久久爱视频| 成年版毛片免费区| 国产精品人妻久久久影院| 成年免费大片在线观看| 免费av不卡在线播放| 舔av片在线| 真实男女啪啪啪动态图| 深夜a级毛片| 一本一本综合久久| 亚洲国产精品合色在线| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 尾随美女入室| 亚洲av.av天堂| 桃色一区二区三区在线观看| 亚洲专区国产一区二区| 狂野欧美激情性xxxx在线观看| 99久国产av精品| 12—13女人毛片做爰片一| 日本免费a在线| 真实男女啪啪啪动态图| 国产av在哪里看| 国产成人影院久久av| 91在线观看av| 最新中文字幕久久久久| 欧美色视频一区免费| 欧美高清成人免费视频www| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 哪里可以看免费的av片| 联通29元200g的流量卡| 亚洲国产欧洲综合997久久,| 欧美最黄视频在线播放免费| 久久久久久久午夜电影| 日韩欧美在线乱码| 制服丝袜大香蕉在线| 看十八女毛片水多多多| 69av精品久久久久久| 99久久九九国产精品国产免费| 校园人妻丝袜中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院新地址| 伦精品一区二区三区| 亚洲av一区综合| 日韩,欧美,国产一区二区三区 | а√天堂www在线а√下载| 国产免费男女视频| а√天堂www在线а√下载| 国产乱人伦免费视频| www.www免费av| 日本黄色视频三级网站网址| 国内精品宾馆在线| 久久热精品热| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 国产在视频线在精品| 五月玫瑰六月丁香| 成人欧美大片| 国产精品女同一区二区软件 | 国产一区二区在线av高清观看| 看黄色毛片网站| 国产黄色小视频在线观看| 国产乱人伦免费视频| 99riav亚洲国产免费| 三级国产精品欧美在线观看| 成人性生交大片免费视频hd| 色在线成人网| 日本三级黄在线观看| 88av欧美| 日韩在线高清观看一区二区三区 | 成人二区视频|