• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shock Raman spectra and structural transformation of powdered TKX-50 by the plate impact experiments combined with real-time Raman detection

    2024-02-29 08:22:16XueYngQijunLiuYundnGnLeiYngZhengtngLiuFushengLiu
    Defence Technology 2024年1期

    Xue Yng , Qijun Liu ,*, Yundn Gn , Lei Yng , Zhengtng Liu , Fusheng Liu ,**

    a Bond and Band Engineering Group,School of Physical Science and Technology,Southwest Jiaotong University,Chengdu 610031,People's Republic of China

    b Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China

    c State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China

    Keywords: Powdered TKX-50 Hugoniot Raman Decomposition Phase transition

    ABSTRACT As an energetic material of great interest, the work capacity of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) has been questioned recently.Although some research groups have explored the reasons for the low working ability of TKX-50, the plane impact experiment on powdered TKX-50 is obviously closer to the practical application, and the conclusions based on this are more guiding.Hence,we performed shock Hugoniot measurements of powdered TKX-50 between 5.65 and 16.29 GPa.The plane impact experiments of powdered TKX-50 were carried out and the shocked Raman spectra were collected.By Raman spectroscopy analysis, a new peak of powdered TKX-50 was found between 19.47 GPa and 24.96 GPa,which may be caused by decomposition/phase transition and was related with the low work capacity.

    1.Introduction

    As a nitrogen-rich energetic material with high attention,dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50,C2H8N10O4,Fig.S1)which was reported and synthesized since 2012[1],is considered to be a high-performance energetic material and is expected to replace traditional energetic materials such as RDX and HMX [1-3].Compared with RDX, TKX-50 has good thermal stability, low toxicity and low sensitivity.So it is considered as a potential component of solid propellants and a better substitute for RDX in compound modified double base propellants[4].Because of these excellent characteristics,TKX-50 is also expected to be more widely used in the field of explosives, so it has been studied and tested in various aspects by research groups around the world[5-10].However, TKX-50 was proved to be an energetic material with high detonation speed, high detonation pressure and low work capability,not as outstanding as claimed previously[10-15].

    The reason of TKX-50's low work capability has attracted much attention, and several groups have studied it.Zhao et al.believed that C2N2is generated during the decomposition process of TKX-50,and C2N2is liable to polymerize to form solid residue under high temperature and pressure, thus reducing the gas production of TKX-50 during the decomposition process [16].Xing and Liu et al.[11,13,14] considered that the proportion of molecules with larger molecular mass(CO2,CH2O2)in the detonation products of TKX-50 is small, and the detonation products are mainly products with small molecular mass.The light weight of small molecule products may be one of the reasons for the low work capacity of TKX-50.In short,the decomposition path and the product seem to be directly related to its work capacity.In the paper, we mainly study the decomposition process of TKX-50 under shock compression.

    The thermal decomposition behavior of TKX-50 has been extensively studied, and it is widely accepted that TKX-50 undergoes hydrogen transfer [17-21] (that is, H is transferred from the O on the cation NH3OH+to the O on the anion)during thermal decomposition.It is confirmed that TKX-50 has good stability under hydrostatic pressure [6,9,22,23], and increasing pressure will inhibit hydrogen transfer during the thermal decomposition of TKX-50 [24].In the environment with high temperature and high pressure caused by shock compression, the decomposition mechanism of TKX-50 is still unclear,which is important to the practical use.Nevertheless, the very short impact time makes it extremely difficult to capture useful information in the decomposition process during the experiment.Hence, to understand the decomposition mechanism of TKX-50 under shock compression, the real-time measuring the molecular level response of shock-compressed TKX-50 must have a breakthrough.

    In addition to good detection methods, the initial sample is extremely important to the decomposition process.For many years,single crystals of energetic materials have been used in Raman experiments of energetic materials [25-29].On the one hand, it avoids the inherent complexities in the mechanical response of inhomogeneous solid materials.On the other hand, the transmittance of single crystals is better.Even though it is difficult and costly to obtain single crystals of energetic materials that meet the experimental conditions,the homogeneity and good transmittance of single crystals are undoubtedly an important guarantee for collecting spectral signals, especially in shock wave experiments.However, in the practical use of energetic materials, the energetic materials powder is mixed with polymeric binders at a certain proportion, and then filled into the projectile.To investigate the reasons for the low work capacity of TKX-50,powdered samples are a more suitable carrier than single crystal samples.Using powdered samples to carry out impact experiments and collect Raman spectra is obviously closer to study the state of energetic materials in the actual use process,and is also conducive to provide a reference for the use, transportation and storage conditions of energetic materials.Nevertheless, since the powdered sample emits light under impact,the laser cannot enter the sample,let alone be scattered,so it is difficult to obtain the Raman spectrum of powdered TKX-50.Hence, how to capture the signal of powdered samples under shock compression is very important.

    In a word, detection technique is decisive for the study of decomposition process of TKX-50.In this work, we develop a sample preparation method to obtain Raman spectra of TKX-50 powder samples of good quality under shock.The plate impact experiments combined with real-time Raman detection are used to collect Raman spectra to explore the structural transformation and chemical decomposition of powdered TKX-50 under different shock states, hoping to give the reason of low work capability.

    2.Experimental methods

    After TKX-50 was evenly ground, the powdered TKX-50 with adhesive added(the amount of adhesive added is less than 3 wt%)was pressed into φ13mm sheets of a certain thickness by tablet press.The TKX-50 sheets were bonded in the test target using epoxy,and the structure diagram of the test target is shown in Fig.1.All experiments in this work were done using 25 mm light gas gun.And Al, Cu or Ta flyers with polished surfaces were impacted onto the target assemblies.The flyer velocity could be recorded by the magnetic velocity measurement system.And the Raman spectrum collection of TKX-50 was completed using the High-Spectral-Resolution Laser Raman System [30].The Nd-YAG laser was used as the light source, of which operating at 532 nm, pulse energy at the sample was 50-300 mJ and pulse width was 10 ns.

    3.Analysis and discussion

    3.1.Hugoniot states

    Shock-wave impedance-match(IM)measurement is a common method to generate shock equation-of-state data for different materials.By measuring the shock or particle velocities in the known materials and in the samples, using the Rankine-Hugoniot conservation relations, the pressure (P) and density (ρ) in the shocked sample can be deduced.The Rankine-Hugoniot equations are as follows [31,32]:

    whereP0and ρ0stand for the pressure and density of material ahead of the shock wave,usis the shock velocity,upis the particle velocity.

    The Hugoniot data of TKX-50 is obtained by combining the known Hugoniot curves of the impactor and base plate and using IM technology.The particle velocity(up)and shock velocities(us)of TKX-50 are presented in Table 1 and are plotted in Fig.S2.From Fig.S2, the relationship betweenupandusof TKX-50 is basically linear.Fitting these data yields a linear relationship ofus= 3.106 +1.778up(5.65-16.29 GPa).Thus, the impact Hugoniot parameter (C0= 3.106, λ = 1.778) of TKX-50 is obtained, which is the necessary parameter for calculating the pressure in part 3.2.The linear relationship betweenupandusof TKX-50 also can indicate that TKX-50 did not undergo phase transition in the range of 5.65-16.29 GPa.

    3.2.Raman spectra

    In this work, six peaks can be clearly seen in the Raman spectrum of TKX-50 under ambient pressure in the range of 800-1800 cm-1.And for further discussion, the six peaks were marked as v1 to v6 from left to right (as shown at the bottom of Fig.2,and a clearer ambient Raman spectrum of TKX-50 was shown in Fig.S3).The specific vibration assignments of the six peaks are listed in Table S1.The Raman spectra of TKX-50 at different shocked pressures were investigated by 9 plate impact experiments combined with real-time Raman detection.The relevant experimental parameters are listed in Table 2, and Fig.2 shows the Raman spectra.

    Table 1The Hugoniot data of TKX-50.

    Fig.2.Raman spectra of TKX-50 at different impact pressures.

    Fig.3.Pressure effects on v6 in TKX-50.The error is within the solid circle.

    In order to better distinguish the peaks in Raman spectra,all the Raman spectra of TKX-50 gained in this work were normalized.As can be seen from Fig.2, all peaks of the spectra after shocked are broadened.Coupled with the poor signal to noise ratio of shocked samples,v2 and v3 in all post-impact spectra are indistinguishable.v1 is also difficult to distinguish from the background and is completely indistinguishable after 19.47 GPa (see #7).It is easy to see the blue shift of v4 under pressure.However,with the increase of pressure, v4 cannot be resolved at 24.76 GPa, while it can be reluctantly resolved at 24.96 GPa, perhaps because of the poor signal to noise ratio.Contact Tables S1, v1 and v4 all represent vibrations on the cation ring of TKX-50.Then it can be guessed that the cation ring structure was present up to 19.47 GPa.

    Whereas,v6 can be clearly distinguished from 0 to 24.96 GPa.v6 shows obvious blue shift and the impact pressure effects on it are presented in Fig.3.Known from Table S1, v6 is caused by C-C stretching and cation rocking (about 1615 cm-1at atmospheric pressure,hereafter called the mode as C-C mode).Compared with the variation curve of C-C mode with pressure obtained by Dreger et al.[23]under static compression,the curve obtained in this work significantly moves down.That is, the blue shift of C-C mode obtained by impact test is less than that under static compression with the same pressure.The shock state contains both high temperature and high pressure.Thus, it was tentatively believed that the less blue shift could be caused by the high temperature accompanying the shock state [33].The influence of temperature and pressure on the material can be reflected in its volume change.In order to explore whether it is the effect of temperature, the specific volume of the samples under impact is calculated and compared with the results of density functional theory (DFT)method and static compression experiments[7,22].The results are shown in Fig.4.The specific volume of the primary impact samples is calculated from Eq.(1), and the specific volume of the re-shock samples is extrapolated from the Hugoniot data.The extrapolation process is provided in supporting information.From Fig.4,the impact results are basically consistent with the static compression and theoretical calculation results, only slightly offset when the specific volume is less than 0.4 cm3/g.Namely before the impact pressure reaches 24.76 GPa, the combination of temperature and pressure results in fewer blue shift in C-C mode,compared to static pressure.And the volume expansion alone cannot well explain the lower blue shift of C-C mode,perhaps more variation occurs in the sample.

    Table 2Parameters for plate impact experiments on TKX-50.

    Dreger et al.proved experimentally that with static compression until 50 GPa[22],there was no other change in C-C mode,except the blue shift.Noticing that Lu et al.[8]kept TKX-50 at 3.1 GPa and 593 K for 15 min,the C-C mode split into two peaks,although they did not point it out.Muravyev and Zhao et al.indicated that diammonium 5,5'-bistetrazole-1,1'-diolate(ABTOX)is an intermediate in the decomposition process of TKX-50[16,19,35].Dreger et al.[34]also showed the Raman spectra of the two intermediates of TKX-50 prior to complete melting or decomposition, which is mainly ABTOX at the lower temperature, and diammonium 5,5'-bistetrazolate and/or dihydroxylammonium 5,5'-bistetrazolate at the higher temperature.Both intermediates have a strong vibration mode caused by C-C stretching and its cation rocking, whose frequency is slightly lower than that of TKX-50 under ambient pressure and higher pressure[34,36].

    Fig.4.Raman shift of TKX-50 at different specific volumes.The results of static compression experiments were obtained by fitting the experimental results in Refs.[7,22].

    Fig.5.The enlarge figure of C-C mode under pressure.The blue dashed line represents the fit peak for v6 and the orange dashed line represents the fit peak for v7.

    In this work,it is obvious that a new peak v7 appears when the impact pressure reaches 24.76 GPa (see #8), whose frequency is slightly less than v6.For clarity,the enlarge figure of C-C mode in#4, #7 and #8 is presented in Fig.5.The peaks are fitted and the result is also shown in Fig.5.The blue dashed line represents the fit peak for v6 and the orange dashed line represents the fit peak for v7.Fig.5 shows that a Lorentz peak can be used to fit the peak curve well at 19.47 GPa.At 24.76 GPa,two Lorentz peaks are needed to fit the Raman peak well.At 24.96 GPa, there are clearly two distinct peaks.The new peak v7 firstly appears at 24.76 GPa.And the relative intensity of the v7 to v6 is enhanced with the increasing pressure.It is reasonable to believe that the emergence of v7 is due to decomposition of TKX-50.While Lu et al.[8] reported the temperature-induced TKX-50 phase transition before TKX-50 decomposition.They argued that the temperature-induced phase transition reduces the symmetry of the crystal, and induces the broadening of Raman peaks and emergence of new peak.Therefore,it cannot be ruled out that TKX-50 underwent a phase transition under these shock states.In other words,a part of TKX-50 is likely to decompose or phase transition before it exploded.In this case,either a slower decomposition process relative to the explosion resulting in a lag in energy release, or the reduction in gas production due to the generation of C2N2from the decomposition process [16], or the energy consumption of the phase transition would reduce the work ability of TKX-50.As the structure changes,the Hugoniot state of the sample would change, and the specific volume derived based on the Hugoniot data would be problematic.This can also explain the slightly more deviation between the impact experimental results and the calculated results when the specific volume is less than 0.4 cm3/g in Fig.4.

    In conclusion,it is possible that TKX-50 still maintains the same structure as at ambient pressure until the impact pressure reaches 19.47 GPa in our experimental test precision.It's sure that, from impact pressure 19.47 GPa-24.96 GPa, a structural transformation has taken place,possibly due to decomposition or phase transition.However, more and higher-precision experiments are needed to measure what the new peak is and whether there are other changes from 19.47 GPa to 24.76 GPa.

    4.Conclusions

    In this work, the Hugoniot curve of powdered TKX-50 is firstly obtained,which provides important parameters for the subsequent powdered TKX-50 impact experiments[37].Then,the high-spectral resolution laser Raman system is used to collect the Raman spectra of powdered TKX-50 samples under different impact pressures.And it turns out experimentally that there is a new Raman peak at the impact pressure from 19.47 GPa to 24.96 GPa,which is probably caused by decomposition or phase transition of TKX-50.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request and available within the article.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.12072299), the Fundamental Research Funds for the Central Universities (Grant No.2682020ZT102).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2023.05.023.

    黄色怎么调成土黄色| 欧美日韩乱码在线| 久久国产精品影院| 精品国内亚洲2022精品成人 | 一级片免费观看大全| 午夜福利免费观看在线| 国产不卡av网站在线观看| 国产一区有黄有色的免费视频| 黑人巨大精品欧美一区二区蜜桃| 老汉色∧v一级毛片| 999精品在线视频| 久久国产精品影院| 又紧又爽又黄一区二区| 高清欧美精品videossex| 精品亚洲成国产av| 国产淫语在线视频| 国产99久久九九免费精品| 免费看十八禁软件| 亚洲精品一二三| 国产主播在线观看一区二区| 成年动漫av网址| 国产精品香港三级国产av潘金莲| av欧美777| 天天影视国产精品| 新久久久久国产一级毛片| 国产精品影院久久| 亚洲精品在线观看二区| 国产精品影院久久| 极品少妇高潮喷水抽搐| 午夜福利视频在线观看免费| 亚洲少妇的诱惑av| tube8黄色片| 午夜影院日韩av| 涩涩av久久男人的天堂| videos熟女内射| 国产又爽黄色视频| 亚洲欧美色中文字幕在线| 免费看a级黄色片| av欧美777| 一级a爱片免费观看的视频| 色在线成人网| 老熟女久久久| 久久婷婷成人综合色麻豆| 黄色 视频免费看| 嫩草影视91久久| 亚洲全国av大片| av线在线观看网站| 久久久久久久国产电影| 极品少妇高潮喷水抽搐| 精品国产一区二区三区四区第35| 日韩成人在线观看一区二区三区| 在线视频色国产色| 欧美黑人精品巨大| 国产精品久久久人人做人人爽| 精品乱码久久久久久99久播| 午夜影院日韩av| 99在线人妻在线中文字幕 | 极品人妻少妇av视频| 性少妇av在线| 国产亚洲欧美精品永久| 欧美大码av| 丁香六月欧美| 在线国产一区二区在线| 在线国产一区二区在线| 搡老熟女国产l中国老女人| 色老头精品视频在线观看| 又紧又爽又黄一区二区| 飞空精品影院首页| 精品人妻1区二区| 亚洲成人免费av在线播放| 精品视频人人做人人爽| avwww免费| 欧美老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频| 亚洲av成人av| 午夜福利在线免费观看网站| 国产有黄有色有爽视频| 人成视频在线观看免费观看| 十八禁人妻一区二区| 十八禁人妻一区二区| 如日韩欧美国产精品一区二区三区| 国产色视频综合| 欧美日韩福利视频一区二区| 国产亚洲欧美98| 欧美成人免费av一区二区三区 | 欧美日韩精品网址| 动漫黄色视频在线观看| 人人妻,人人澡人人爽秒播| 日韩 欧美 亚洲 中文字幕| 国产精品国产av在线观看| 久久久水蜜桃国产精品网| 午夜亚洲福利在线播放| 高清毛片免费观看视频网站 | 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜制服| 日韩大码丰满熟妇| 老司机午夜十八禁免费视频| 老司机福利观看| 黄色a级毛片大全视频| 王馨瑶露胸无遮挡在线观看| 热99国产精品久久久久久7| 亚洲五月色婷婷综合| 男人舔女人的私密视频| 午夜影院日韩av| 99热只有精品国产| 黄频高清免费视频| 桃红色精品国产亚洲av| 国产成人免费观看mmmm| 50天的宝宝边吃奶边哭怎么回事| 国产成+人综合+亚洲专区| 天堂俺去俺来也www色官网| 欧美av亚洲av综合av国产av| 一本一本久久a久久精品综合妖精| 99国产综合亚洲精品| 99riav亚洲国产免费| 十分钟在线观看高清视频www| 成人18禁在线播放| 窝窝影院91人妻| 下体分泌物呈黄色| 国产99白浆流出| 国产成人系列免费观看| 宅男免费午夜| 国产一区二区激情短视频| 亚洲aⅴ乱码一区二区在线播放 | 久久久精品免费免费高清| 久久久水蜜桃国产精品网| 欧美日韩亚洲综合一区二区三区_| 老鸭窝网址在线观看| 国产成人一区二区三区免费视频网站| 国产亚洲欧美精品永久| 高潮久久久久久久久久久不卡| 亚洲自偷自拍图片 自拍| 妹子高潮喷水视频| 男女午夜视频在线观看| 少妇被粗大的猛进出69影院| 免费高清在线观看日韩| 十八禁人妻一区二区| 精品午夜福利视频在线观看一区| 免费在线观看日本一区| 无限看片的www在线观看| 国产亚洲av高清不卡| 欧美在线黄色| 久久香蕉国产精品| 国内毛片毛片毛片毛片毛片| 欧美精品一区二区免费开放| 中出人妻视频一区二区| 国产激情欧美一区二区| 一二三四在线观看免费中文在| 亚洲国产欧美日韩在线播放| 国产不卡一卡二| 亚洲性夜色夜夜综合| 欧美色视频一区免费| 亚洲精品国产一区二区精华液| 99精品在免费线老司机午夜| 国产精品一区二区精品视频观看| 人人妻,人人澡人人爽秒播| 亚洲av美国av| 亚洲七黄色美女视频| 老司机午夜十八禁免费视频| 男女高潮啪啪啪动态图| 久久国产亚洲av麻豆专区| 国产视频一区二区在线看| 国产在线精品亚洲第一网站| tocl精华| 免费久久久久久久精品成人欧美视频| 亚洲色图综合在线观看| 成年版毛片免费区| 亚洲少妇的诱惑av| 天堂动漫精品| 99riav亚洲国产免费| 十分钟在线观看高清视频www| 看免费av毛片| 水蜜桃什么品种好| 日本五十路高清| 日韩三级视频一区二区三区| 男女免费视频国产| 国产国语露脸激情在线看| 色尼玛亚洲综合影院| 91在线观看av| 亚洲国产欧美日韩在线播放| 日韩欧美一区二区三区在线观看 | 国产麻豆69| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 每晚都被弄得嗷嗷叫到高潮| 一a级毛片在线观看| 国产男女超爽视频在线观看| 国产av又大| 亚洲国产中文字幕在线视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 一区二区日韩欧美中文字幕| 久久精品91无色码中文字幕| 亚洲成a人片在线一区二区| 欧美最黄视频在线播放免费 | 国产99久久九九免费精品| 日本黄色视频三级网站网址 | 日韩欧美在线二视频 | 免费女性裸体啪啪无遮挡网站| 欧美色视频一区免费| 久久ye,这里只有精品| 亚洲专区字幕在线| 嫩草影视91久久| 大香蕉久久网| 嫁个100分男人电影在线观看| 大片电影免费在线观看免费| 色综合婷婷激情| 精品一区二区三区视频在线观看免费 | 国产伦人伦偷精品视频| 国产极品粉嫩免费观看在线| 怎么达到女性高潮| 国产精品1区2区在线观看. | 国产免费现黄频在线看| 在线观看午夜福利视频| 国产激情久久老熟女| 欧美 亚洲 国产 日韩一| 日韩免费av在线播放| 日韩欧美一区二区三区在线观看 | 91麻豆av在线| 欧美日韩国产mv在线观看视频| 中文字幕制服av| 日本黄色日本黄色录像| 99riav亚洲国产免费| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 一进一出抽搐gif免费好疼 | 成年人免费黄色播放视频| 这个男人来自地球电影免费观看| www.精华液| 手机成人av网站| 久久狼人影院| 免费人成视频x8x8入口观看| 久久久国产一区二区| 高清欧美精品videossex| 欧美在线黄色| 亚洲精华国产精华精| 国产高清videossex| 亚洲成人免费电影在线观看| 久热这里只有精品99| 国产色视频综合| 99国产精品99久久久久| 午夜影院日韩av| 99精国产麻豆久久婷婷| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 国产在线一区二区三区精| 国产精品一区二区在线观看99| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 欧美日韩乱码在线| 大片电影免费在线观看免费| 久久国产精品影院| 久久久国产欧美日韩av| 国产精品九九99| 久久午夜亚洲精品久久| 精品国产乱子伦一区二区三区| 精品一区二区三区视频在线观看免费 | 精品第一国产精品| 麻豆乱淫一区二区| 在线免费观看的www视频| 国产精品久久视频播放| 中文字幕最新亚洲高清| 美女视频免费永久观看网站| av有码第一页| 国产区一区二久久| 又黄又爽又免费观看的视频| 午夜福利乱码中文字幕| 国产成人影院久久av| 伦理电影免费视频| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| 一区二区三区精品91| 亚洲欧美日韩高清在线视频| 老司机靠b影院| 国产高清激情床上av| 亚洲国产精品一区二区三区在线| 日本wwww免费看| 亚洲国产欧美网| 自线自在国产av| 国产精品一区二区在线观看99| 十分钟在线观看高清视频www| 欧美精品啪啪一区二区三区| 国产又色又爽无遮挡免费看| 一级片免费观看大全| 久久午夜综合久久蜜桃| 老司机在亚洲福利影院| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 人妻丰满熟妇av一区二区三区 | 亚洲精品粉嫩美女一区| 日本一区二区免费在线视频| 午夜日韩欧美国产| 久久久国产欧美日韩av| 满18在线观看网站| 国产片内射在线| 999精品在线视频| 亚洲人成77777在线视频| 两人在一起打扑克的视频| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美一区二区综合| 午夜久久久在线观看| 日韩中文字幕欧美一区二区| 19禁男女啪啪无遮挡网站| 老司机午夜十八禁免费视频| av不卡在线播放| 久久亚洲精品不卡| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片 | 男男h啪啪无遮挡| 国产在线观看jvid| 视频在线观看一区二区三区| 精品第一国产精品| 亚洲全国av大片| 天堂中文最新版在线下载| 国产男女内射视频| 又紧又爽又黄一区二区| 久久久久精品人妻al黑| 国产成人一区二区三区免费视频网站| 免费日韩欧美在线观看| 国产不卡一卡二| 国产成人影院久久av| 精品国内亚洲2022精品成人 | 女性生殖器流出的白浆| 亚洲欧美激情综合另类| 9热在线视频观看99| 人人妻人人爽人人添夜夜欢视频| 国产熟女午夜一区二区三区| 亚洲成人手机| 午夜福利欧美成人| 色精品久久人妻99蜜桃| xxxhd国产人妻xxx| av中文乱码字幕在线| 国产精品久久久久久人妻精品电影| 伦理电影免费视频| 亚洲专区中文字幕在线| 日韩欧美免费精品| svipshipincom国产片| 建设人人有责人人尽责人人享有的| 成人亚洲精品一区在线观看| 精品欧美一区二区三区在线| 水蜜桃什么品种好| 一二三四社区在线视频社区8| 免费不卡黄色视频| 女性被躁到高潮视频| 热99久久久久精品小说推荐| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人免费无遮挡视频| 欧美在线黄色| 成人手机av| 精品高清国产在线一区| 欧美在线黄色| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| 国产不卡一卡二| 久99久视频精品免费| 欧美性长视频在线观看| 国产欧美日韩一区二区三| 很黄的视频免费| 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 久久久精品国产亚洲av高清涩受| 无限看片的www在线观看| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 国产精品99久久99久久久不卡| 亚洲精品国产精品久久久不卡| 成人三级做爰电影| 妹子高潮喷水视频| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 亚洲色图av天堂| 国产一区二区三区综合在线观看| 大码成人一级视频| 亚洲精品在线美女| 国产精品av久久久久免费| 制服人妻中文乱码| 国产精品影院久久| 一边摸一边抽搐一进一小说 | 午夜福利,免费看| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 亚洲中文av在线| 亚洲avbb在线观看| 久久久久久久国产电影| 国产精品久久久久久人妻精品电影| 亚洲成人手机| 国产一区在线观看成人免费| 亚洲精品自拍成人| 窝窝影院91人妻| 99re在线观看精品视频| 69精品国产乱码久久久| 欧美 亚洲 国产 日韩一| 欧美黑人欧美精品刺激| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 国产一区二区三区在线臀色熟女 | 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av在线 | 亚洲专区国产一区二区| videosex国产| 成人影院久久| 国产男靠女视频免费网站| 男人的好看免费观看在线视频 | 欧美激情高清一区二区三区| 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 丁香欧美五月| 老司机影院毛片| 午夜久久久在线观看| 18禁观看日本| 中国美女看黄片| 9191精品国产免费久久| 国产精品久久久人人做人人爽| 两人在一起打扑克的视频| 国产精品久久久久久精品古装| 在线看a的网站| 亚洲中文日韩欧美视频| 亚洲第一青青草原| 久久精品国产99精品国产亚洲性色 | 黄色成人免费大全| 久久中文字幕人妻熟女| 精品一区二区三区av网在线观看| 精品国产一区二区三区四区第35| 欧美日韩一级在线毛片| 午夜两性在线视频| 亚洲欧美一区二区三区黑人| 最近最新中文字幕大全电影3 | 免费在线观看影片大全网站| 亚洲国产精品一区二区三区在线| 国产精品电影一区二区三区 | 国产精品 欧美亚洲| 精品人妻1区二区| 青草久久国产| 水蜜桃什么品种好| 露出奶头的视频| 人人妻人人添人人爽欧美一区卜| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 成人特级黄色片久久久久久久| а√天堂www在线а√下载 | 欧美日本中文国产一区发布| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩一区二区三区在线| 69av精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 捣出白浆h1v1| 高清在线国产一区| 国产在线观看jvid| 日韩免费av在线播放| 人人妻人人澡人人爽人人夜夜| 制服人妻中文乱码| 搡老岳熟女国产| 亚洲成a人片在线一区二区| 18禁观看日本| 波多野结衣一区麻豆| 手机成人av网站| 久久人妻福利社区极品人妻图片| 中文字幕高清在线视频| 高清视频免费观看一区二区| 法律面前人人平等表现在哪些方面| 久久久国产欧美日韩av| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 又大又爽又粗| 热99国产精品久久久久久7| 黄色视频,在线免费观看| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看 | 亚洲午夜理论影院| 老汉色av国产亚洲站长工具| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 久久午夜亚洲精品久久| 成年版毛片免费区| 午夜福利在线免费观看网站| 免费观看精品视频网站| 午夜免费观看网址| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 又大又爽又粗| 久热爱精品视频在线9| cao死你这个sao货| 在线十欧美十亚洲十日本专区| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| 久久久久久久午夜电影 | 丁香六月欧美| 天堂√8在线中文| 欧美久久黑人一区二区| 免费在线观看完整版高清| 校园春色视频在线观看| 丁香欧美五月| 最新在线观看一区二区三区| 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 超碰97精品在线观看| 欧美日韩成人在线一区二区| 麻豆乱淫一区二区| 99riav亚洲国产免费| 777久久人妻少妇嫩草av网站| 91av网站免费观看| 欧美乱色亚洲激情| 午夜亚洲福利在线播放| 久久精品国产综合久久久| 90打野战视频偷拍视频| 窝窝影院91人妻| 国产三级黄色录像| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 人人澡人人妻人| 美女高潮喷水抽搐中文字幕| 成人18禁高潮啪啪吃奶动态图| 热99久久久久精品小说推荐| 伦理电影免费视频| 久热这里只有精品99| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| 十分钟在线观看高清视频www| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 自线自在国产av| 日本撒尿小便嘘嘘汇集6| 99久久人妻综合| 国产麻豆69| 久久久久久人人人人人| 十八禁人妻一区二区| 国产精品1区2区在线观看. | 亚洲人成电影免费在线| 国产成人欧美| tocl精华| 亚洲专区中文字幕在线| 人人妻人人澡人人看| 91字幕亚洲| 免费不卡黄色视频| 午夜福利视频在线观看免费| 成人国语在线视频| 国产精品久久久av美女十八| 中文字幕色久视频| 一区福利在线观看| 成熟少妇高潮喷水视频| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 国产精品久久久人人做人人爽| 黄色丝袜av网址大全| 他把我摸到了高潮在线观看| av一本久久久久| 99精品欧美一区二区三区四区| 亚洲 欧美一区二区三区| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频| 国产精品一区二区在线观看99| 天天躁日日躁夜夜躁夜夜| 香蕉丝袜av| 色婷婷久久久亚洲欧美| 在线看a的网站| 在线观看66精品国产| 国产精品成人在线| 999精品在线视频| 欧美日韩一级在线毛片| 日本黄色日本黄色录像| 丝袜美足系列| 精品免费久久久久久久清纯 | 一夜夜www| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看| 妹子高潮喷水视频| 女警被强在线播放| videos熟女内射| 精品欧美一区二区三区在线| 日韩欧美一区二区三区在线观看 | 不卡一级毛片| 精品国产一区二区久久| 久久国产乱子伦精品免费另类| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 久久青草综合色| 天天添夜夜摸| 757午夜福利合集在线观看| 一边摸一边抽搐一进一小说 | 免费观看a级毛片全部| 亚洲少妇的诱惑av| 777米奇影视久久| 在线永久观看黄色视频| 91老司机精品| 久久精品人人爽人人爽视色| 欧美人与性动交α欧美软件| 免费人成视频x8x8入口观看| 亚洲精品成人av观看孕妇| 麻豆国产av国片精品| 日本五十路高清| 午夜久久久在线观看| 99热只有精品国产| 成人精品一区二区免费| 男女免费视频国产| 午夜两性在线视频| 69精品国产乱码久久久| 十八禁高潮呻吟视频| 国产成人啪精品午夜网站| 亚洲视频免费观看视频| 怎么达到女性高潮| 日韩视频一区二区在线观看| 免费日韩欧美在线观看| 亚洲人成电影观看|