• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dependence of impact regime boundaries on the initial temperatures of projectiles and targets

    2024-02-29 08:21:44StefanoSignettiAndreasHeine
    Defence Technology 2024年1期

    Stefano Signetti, Andreas Heine

    Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI, Ernst-Zermelo-Str.4, 79104 Freiburg im Breisgau, Germany

    Keywords: Ballistic impact Thermal effects Metallic targets Energy partitioning Homologous temperature

    ABSTRACT Towards higher impact velocities, ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial, and generally elevated, temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact, for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result, for example, from aerodynamic forces acting onto a projectile during atmospheric flight, explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events, generally known since the 1960s, but often not considered thoroughly in impact studies.

    1.Introduction

    The physical processes occurring during impact events evolve and also may change abruptly [1].They are directly related to the constitutive,failure and volumetric behavior of the materials under extreme pressures and strain-rates.

    In a precedent work[2],it has been analytically shown how for metals a transition regime between the high-velocity conditions,partly fluid-like but still strength-dominated, and hypervelocity penetration associated with fully hydrodynamic behavior can be quantitatively characterized.This domain, defined in Ref.[2] by melting thresholds of the projectile and target materials, features an overlapping of the characteristic phenomena of the respective regimes and, therefore, shows a very complex phenomenology as discussed thoroughly in the review of Ref.[1], namely: strain-rate hardening, thermal-softening from either deviatoric and volumetric deformation,strain localization,fracture and fragmentation,and melting.In a recent work [3], a transition towards hypervelocity in the phenomenology of kinetic energy partitioning into temperature increase has also been characterized and quantified via molecular dynamics simulation.These peculiar characteristics are expected to challenge the experimental and numerical investigations as well as the physical interpretation of results in this intermediate domain.

    Typically,the impact velocities or strain-rates alone are used for a coarse definition of regimes characterized by the different responses of materials [1].While the above-mentioned works have highlighted the fundamental importance of accounting for the material properties, still a thorough investigation is necessary about the influence of initial projectile and target temperatures.Related effects on impact penetration are known and have driven attention since the early phases of impact research[4-6].However,these are rarely considered in the numerical modeling or interpretation of results when thermal conditions are far from the material melting thresholds.

    The assumption of room temperature for both projectile and target represents and idealized scenario, quite uncommon in real applications.Indeed, non-ideal impact conditions in relation totemperature may easily originate from different sources.We mention,for example:(i)aerodynamic forces acting on a projectile during atmospheric flight, which may heat up the projectile by several hundred degrees,ranging from about ΔT= 100 K for artillery shells[7]up to ΔT=400-500 K for kinetic energy penetrators[8-11]; (ii) explosive shaped-charge-jet formation where the hypervelocity jet temperature can rise by several hundreds of Kelvins[12]and can also approach the material melting thresholds(see,for example, Ref.[13] where temperatures of about 1200 K are reported for copper jets);(iii)exposure of armors and shields to harsh environmental conditions,with temperatures ranging,for example,between about 100 and 400 K for low-earth-orbit (LEO) satellites[14,15].

    Table 1Threshold velocities, calculated for T0,p =T0,t = 300 K, for some material combinations of interest in terminal ballistics.For heterogeneous projectile/target combinations it is indicated whether the incipient and full melting conditions associated to the lower and upper bound velocities,respectively,are met in the projectile(p)or target(t)material.Material properties used for computations are reported Table A1 in the Appendix.This table integrates results reported in Ref.[2] with additional material combinations.

    The purpose of this work is to assess the influence of both projectile and target initial temperatures, up to about the respective melting thresholds, on the characteristic impact velocities associated to melting conditions of projectile and target materials.Therefore,by exploiting the model described in Ref.[2],the results shown in this work aim at generalizing earlier findings on the topic[1,2] and provide an insight on the materials impact behavior for actual pre-impact thermal conditions occurring in both ballistic experiments,either in light-gas gun laboratory or open field,and in real scenarios.

    2.Summary of the shock-based energy partitioning model

    The characterization of the impact melting thresholds as in Ref.[2]relies on a shock-based partitioning model which computes the energy density of the projectile and target materials arising from impact loading at the crater propagation front.In the following, this model is briefly recalled and further discussed.The sudden increase of the internal energy due to shock compression in the projectile(p)and target(t)at the interface of the two bodies can be synthetically expressed, in per volume terms,as

    where v0is the projectile impact velocity andthe corresponding specific impact kinetic energy;μp=((up/ut)/(1+up/ut))2and μt=(up/ut)/(1+up/ut)2are velocity-dependent partition factors describing the fraction ofk0converted into internal energy for projectile and target, respectively, whereutis the material (particle) velocity of the target,which is computed through shock-impedance mismatch considerations between the colliding materials[2],andup=v0-utis thematerial velocity in the projectile.Eq.(1) shows that the impact velocity is an important parameter to classify the phenomenological impact regimes but also the material properties have a significant role in the induced pressure levels by determining μ(p/t),and therefore must not be neglected [2].

    Table 2Regime boundaries for WHA projectile against steel target at different homologous temperatures,referenced at 300 K,for the two bodies.Each cell reports,in the order,the two impact velocities,in km·s-1,corresponding to incipient and full melting conditions,vlow and vup,respectively(cf.Fig.1).For each temperature combination,it is also specified whether the thresholds are met in the projectile(p) or in the target (t).Material properties used for computations are reported in Table A1 in the Appendix.

    Table 3Regime boundaries for steel projectile against steel target at different homologous temperatures,referenced at 300 K,for the two bodies.Each cell reports,in the order,the two impact velocities,in km·s-1,corresponding to incipient and full melting conditions,vlow and vup,respectively(cf.Fig.1).For each temperature combination,it is also specified whether the thresholds are met in the projectile(p)or in the target(t).In the case of impact of identical materials,they occur indiscriminately in either projectile and target when their initial temperature is the same, cf.entries along the table diagonal.Material properties used for computations are reported in Table A1 in the Appendix.

    Table 4Regime boundaries for copper projectile against steel target at different homologous temperatures,referenced at 300 K,for the two bodies.Each cell reports,in the order,the two impact velocities, in km·s-1, corresponding to incipient and full melting conditions, vlow and vup, respectively (cf.Fig.1).For each temperature combination, it is also specified whether the thresholds are met in the projectile (p) or in the target(t).Material properties used for computations are reported in Table A1 in the Appendix.

    The retained internal energy in either projectile or target materials after a full shock compression-release cycle - under the assumption that the unloading isentrope can be approximated by the shock Hugoniot[2] in the pressure-density (p-ρ) plane - is:

    The incipient melting conditions for each phase are met when the respective retained internal energies,given by Eq.(2),equal the following quantity:

    wherecvis the specific heat capacity at constant volume andTmis the melting temperature.We highlight thatemis also depending on the initial temperatureT0of the material.A further amount of energy,corresponding to the latent heat of fusion(efus)is necessary to reach the complete melting of each phase, without further increase in the temperature.Therefore,complete melting eventually occurs when the following condition is satisfied:

    We remark that melting conditions here relate to the volume in the interaction zone, not to the full projectile or target.It is then possible to identify the values of the impact velocity v0at which the threshold conditions related to phase transitions, above expressed by Eqs.(3) and (4), are reached for the projectile and target,respectively.Therefore, a total of four characteristic velocities can be identified,corresponding to incipient(vm,p,vm,t)and full melting(vfus,p,vfus,t)thresholds of projectile or target material,respectively.The transition regime is then defined by the velocity range corresponding to [2]:

    Note that in case of projectile and target of identical materials and same initial temperatures is vm,p=vm,tand vfus,p=vfus,tsince both the melting thresholds and stored energies of projectile and target are equal,cf.Eq.(1)forut=up.When the impact velocity is higher than vupthe directly interacting parts of both projectile and target are liquid, thus their behavior is ideally hydrodynamic.However,this does not imply that full melting would always occur when materials display hydrodynamic-like behavior,rather both typically go along with each other [1].

    Table 1 reports the regime boundaries for several material combinations of interest in terminal ballistic assuming for both projectile and target materials an initial temperature of 300 K.In Refs.[1,2]the computations have been shown to be consistent with direct experimental observations of melting thresholds[16],related impact velocities [17-19] and, indirectly, with measures of kinetic energy partition into quasi-stationary target temperature increase[20].Qualitative considerations on regime boundaries were further supported by the analysis of penetration efficiency curves [2,21].

    The results are also consistent with the use of surrogate material for scaled experiments[19,22-24].For example,a factor of about 1/3 and 1/2 in the velocity-scaling when using Cadmium →Cadmium or Zinc →Zinc impacts, respectively, to replicate hypervelocity conditions of Aluminum → Aluminum [25,26] is well reflected by the ratios of the computed characteristic velocities corresponding to material melting thresholds (vlow,Cd/ vlow,Al=0.356, vup,Cd/vup,Al= 0.366, vlow,Zn/vlow,Al= 0.520, vup,Zn/ vup,Al=0.523, cf.Table 1).

    Fig.1.Dependency of the characteristic melting thresholds of the impact event in metals, vlow and vup, respectively, on the initial temperatures of projectile and target for selected material combinations.Some of the computed values of these boundary surfaces are reported in Tables 2-4.

    3.Results and discussion

    The computations reported in this section are rationalized in terms of the dimensionless temperature termT*= (T-Tref)/(Tm-Tref)[27],also known as homologous temperature,whereTrefis a reference temperature, generally corresponding to room temperature.In this work,the explored domain of initial projectile and target temperatures is-0.05 <<0.95,withTref= 300 K for all computed cases.Therefore, we account for pre-heating temperatures up to close to the melting point of materials while the lower bound can be seen as representative of harsh lowtemperature conditions, about -25°C to -50°C depending onTmof the considered materials in this study.For the latter purpose,we extend the homologous temperature slightly toward negative values.

    Among the different material combinations reported in Table 1,we here include extensive computation for selected exemplary results, namely:

    Fig.2.Representative sections of the 3D diagrams of Fig.1 at= 0 = const., left panels, and = 0 = const., right panels.The dots report the discrete computed values from Tables 2-4 while the connecting lines are just a guide to the eye,still representing a good approximation of the actual boundaries.The different colors identify whether the incipient and full melting conditions occur in the projectile (orange), in the target (blue) or undetermined (dark grey).

    ·WHA(TungstenHeavyAlloy)→Steelas representative case of a high-density projectile penetration where,generally, the incipient melting threshold is first overcome in the target material and full melting at the very end occurs in the projectile material;

    ·Steel→Steelas representative of impact between identical materials;

    ·Copper→Steelas representative case for a shaped-charge jet penetration where,generally,the incipient melting threshold is first overcome in the penetrator (solid jet) and full melting ultimately occurs in the target material.

    The computations for the three material configurations, calculated for discrete initial temperature combinations within the above defined domain,are reported in Tables 2-4.The evolution of the impact melting thresholds at different initial temperatures is then visualized in the form of three-dimensional diagrams (v0vs.) in Fig.1.To better highlight the role of the initial temperatures, Figs.2 and 3 report selected cross-sections of the surfaces for constant initial temperature of either projectile or target.

    Fig.3.Representative sections of the 3D diagrams of Fig.1 at =0.5=const.,left panels,and =0.5=const.,right panels.The dots report the discrete computed values from Tables 2-4 while the connecting lines are just a guide to the eye,still representing a good approximation of the actual boundaries.The different colors identify whether the incipient and full melting conditions occur in the projectile (orange), in the target (blue) or undetermined (dark grey).

    Fig.4.Crater volume resulting from impact of 0.18 g,5.01 km·s-1 steel spheres against copper as a function of the target temperature from experiments by Allison et al.[5].An increase of the crater volume occurs around T0,t = 573 K.Consistently, the analytical model discussed in the present work predicts that above this initial target temperature the full melting threshold is overcome for the heated copper target at the given impact velocity.The threshold velocities for full melting of the target predicted by the model for the different experimental temperature conditions are reported in the graph.

    First, it further clearly emerges that the computations reported in Ref.[2] and Table 1 are a particularization corresponding to the ideal condition, while the location of both velocity boundaries corresponding to incipient and full melting conditions may significantly change for different initial temperatures, and so does their mutual distance.

    In the case of WHA-onto-steel impact, for constant initial temperature of the projectile the upper bound velocity is unaffected by the target temperature, while the velocity corresponding to the lower bound (incipient melting condition for the target) monotonically decreases approaching the steel melting temperature(Fig.2).For constant target temperature,vupconsistently decreases with increasing initial temperature of the projectile.The lower bound velocity remains constant, except for higher initial temperatures of the projectile,namely?0.8,where also vlowis defined by the incipient melting condition of the projectile (Table 2).Similar trends are observed at room (= 0, Fig.2) and intermediate(=0.5,Fig.3)initial temperatures of both materials.

    For steel-onto-steel impact the symmetry given by identical materials is evidenced in Figs.2 and 3.The cross-section at intermediate temperatures (Fig.3) highlights the complexity of the melting surfaces, showing that they follow complex and counterintuitive trends depending on whether for the specific temperatures combination the overcoming of the melting threshold switches from the projectile to the target material, or vice versa.Interestingly, the minimum difference between vlowand vup, cf.Figs.2 and 3, appears when the projectile and the target have the same initial temperatures, reflecting the symmetric material properties.In the nearby of these configurations,a relatively small increment in the impact velocity may result in quite different phenomenology of the impact event.

    Last, the case of copper-onto-steel shows, to some extent, a more generalized behavior where the trend of melting threshold cannot be intuitively defined a-priori.Interestingly, similar to the steel-onto-steel case, a narrow minimum distance between the melting boundaries emerges, showing that the material phenomenology can be very sensitive to the impact velocity under specific initial thermal conditions.

    As a further and indirect verification of our model, we finally report the impact experiments by Allison et al.on copper targets heated up to 900 K [5].Fig.4 depicts the evolution of the crater volume in heated targets hit by steel spheres at 5.01 km·s-1.It is observed a sharp increase in the crater volume when the target is pre-heated above 573 K.The model reported in the present work predicts that forT0,t?570 K the full melting condition in the target is met for the adopted impact velocity, namely vfus,t(T0,t)<v0.Similar experiments were conducted in Ref.[4] up to target temperatures of 1255 K (close to the melting point of copper, cf.Table A1):there,an abrupt change in crater volume is not observed since the maximum adopted impact velocity is 3.5 km·s-1and,consistently with our predictions, the threshold condition is not met even at the maximum adopted initial target temperature, being vfus,t(T0,t=1255 K)= 3.76 km·s-1.

    4.Conclusions

    In this work we have exploited a model developed in a precedent article[2]to generalize the computation of the boundaries of the material melting threshold in impact events of metals for arbitrary initial temperatures of both projectile and target.Selected results for representative material combinations of interest in terminal ballistics have been shown.Additional results from the literature were also used for further validation of the model predictions.This work further highlights how a characterization of impact regimes on the basis of the velocity is meaningful only in combination with material propertiesandactual initial temperatures.While the used definition of the regime boundaries for highvelocity and hypervelocity impact is not unique, the underlying model clearly is capable of quantifying to which extent the increased initial temperatures of projectiles and targets may bring the phenomenology closer to hydrodynamic behavior.We believe that the generalized results shown in this work extend the understanding of impact phenomenology for hydrocode modeling of impact events, for the interpretation of ballistic experiments, and for effects assessment.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors acknowledge funding by Bundesministerium der Verteidigung (BMVg), Germany.

    Appendix A.Material parameters

    Table A.1Material properties used for the analytical computation in this study and related source references.

    日本一区二区免费在线视频| 国产亚洲av高清不卡| 性少妇av在线| 啪啪无遮挡十八禁网站| 久久久国产精品麻豆| 又紧又爽又黄一区二区| 少妇猛男粗大的猛烈进出视频| 中文字幕色久视频| 最新美女视频免费是黄的| 久久性视频一级片| 国产又色又爽无遮挡免费看| 久久婷婷成人综合色麻豆| 侵犯人妻中文字幕一二三四区| 国产无遮挡羞羞视频在线观看| 色婷婷久久久亚洲欧美| 久久 成人 亚洲| 欧美性长视频在线观看| 91成人精品电影| 人人妻人人澡人人爽人人夜夜| 国产精华一区二区三区| 一区在线观看完整版| 青草久久国产| 91av网站免费观看| 乱人伦中国视频| 丰满饥渴人妻一区二区三| 中文字幕制服av| 女人被躁到高潮嗷嗷叫费观| 免费在线观看影片大全网站| 午夜激情av网站| 水蜜桃什么品种好| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 天堂中文最新版在线下载| 午夜福利,免费看| 亚洲熟女毛片儿| 亚洲免费av在线视频| 国产成人影院久久av| 国产av又大| 午夜精品久久久久久毛片777| 精品一区二区三区四区五区乱码| 亚洲av欧美aⅴ国产| cao死你这个sao货| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| 国产av一区二区精品久久| 交换朋友夫妻互换小说| xxx96com| 啦啦啦视频在线资源免费观看| 丁香六月欧美| 日本vs欧美在线观看视频| 高清毛片免费观看视频网站 | 99久久国产精品久久久| 欧美精品一区二区免费开放| 天天操日日干夜夜撸| 国产欧美日韩一区二区精品| 国产亚洲欧美98| 精品久久蜜臀av无| 女人爽到高潮嗷嗷叫在线视频| 婷婷精品国产亚洲av在线 | 国产1区2区3区精品| 在线观看66精品国产| 一区二区三区国产精品乱码| 激情在线观看视频在线高清 | 亚洲熟妇中文字幕五十中出 | 曰老女人黄片| 老司机在亚洲福利影院| 中文字幕精品免费在线观看视频| 777久久人妻少妇嫩草av网站| 脱女人内裤的视频| 国产成人欧美在线观看 | 国产成人系列免费观看| 欧美午夜高清在线| 亚洲男人天堂网一区| 国产真人三级小视频在线观看| 老司机靠b影院| 亚洲精品在线美女| 国产视频一区二区在线看| 人人澡人人妻人| 黄色毛片三级朝国网站| 成年人午夜在线观看视频| 人人妻人人添人人爽欧美一区卜| 91九色精品人成在线观看| 纯流量卡能插随身wifi吗| 日韩制服丝袜自拍偷拍| 村上凉子中文字幕在线| 老熟妇乱子伦视频在线观看| 在线观看免费高清a一片| 国产亚洲精品一区二区www | 一区二区三区激情视频| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲高清精品| 老司机靠b影院| 欧美亚洲日本最大视频资源| 精品一区二区三区视频在线观看免费 | 国产精品成人在线| 人人妻人人澡人人看| 波多野结衣一区麻豆| 99香蕉大伊视频| 日本撒尿小便嘘嘘汇集6| 男人操女人黄网站| 女人精品久久久久毛片| 久久人妻av系列| 在线播放国产精品三级| 久久人妻av系列| 天天躁日日躁夜夜躁夜夜| 美女 人体艺术 gogo| 18在线观看网站| 久久久精品国产亚洲av高清涩受| av一本久久久久| 啦啦啦视频在线资源免费观看| 黄色成人免费大全| 成人特级黄色片久久久久久久| 美女视频免费永久观看网站| 久热爱精品视频在线9| 成人精品一区二区免费| netflix在线观看网站| 91在线观看av| 日韩欧美在线二视频 | av国产精品久久久久影院| 精品卡一卡二卡四卡免费| 国产精品一区二区免费欧美| 性色av乱码一区二区三区2| 一级a爱片免费观看的视频| 精品福利观看| 性少妇av在线| 丝袜美腿诱惑在线| 亚洲av美国av| 国产无遮挡羞羞视频在线观看| 亚洲成人免费电影在线观看| av天堂在线播放| 国产精品98久久久久久宅男小说| 久久 成人 亚洲| 国产极品粉嫩免费观看在线| 人人妻人人澡人人爽人人夜夜| 国产免费av片在线观看野外av| 亚洲精品中文字幕在线视频| 美女扒开内裤让男人捅视频| 最新美女视频免费是黄的| 人人澡人人妻人| 王馨瑶露胸无遮挡在线观看| 91成人精品电影| 大型av网站在线播放| 国产97色在线日韩免费| 久久久久久亚洲精品国产蜜桃av| 成年女人毛片免费观看观看9 | 中文字幕色久视频| 久久影院123| 黑人欧美特级aaaaaa片| 亚洲av成人一区二区三| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av香蕉五月 | 亚洲专区国产一区二区| 好男人电影高清在线观看| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 国产真人三级小视频在线观看| 日本精品一区二区三区蜜桃| 亚洲av电影在线进入| 日本a在线网址| 18禁黄网站禁片午夜丰满| 99热网站在线观看| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 国产亚洲精品久久久久5区| 国产男女内射视频| 黄色 视频免费看| 久久久国产精品麻豆| 久久久久久亚洲精品国产蜜桃av| xxx96com| 久久久精品区二区三区| 亚洲专区中文字幕在线| 国产欧美日韩一区二区三区在线| 在线观看舔阴道视频| 侵犯人妻中文字幕一二三四区| 久久国产精品影院| 亚洲国产毛片av蜜桃av| 国产精品综合久久久久久久免费 | 日本欧美视频一区| 国产高清激情床上av| 午夜免费观看网址| 美女午夜性视频免费| 国产成人精品在线电影| 一级,二级,三级黄色视频| 亚洲欧美激情综合另类| 亚洲精品av麻豆狂野| av线在线观看网站| 91成年电影在线观看| 欧美成狂野欧美在线观看| 欧美色视频一区免费| 首页视频小说图片口味搜索| 搡老乐熟女国产| 色老头精品视频在线观看| 岛国在线观看网站| 三上悠亚av全集在线观看| 黄色女人牲交| 免费高清在线观看日韩| 日韩有码中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 欧美激情极品国产一区二区三区| 久久久国产成人免费| 亚洲色图综合在线观看| 丝瓜视频免费看黄片| 日本黄色日本黄色录像| 欧美日韩福利视频一区二区| 久久午夜综合久久蜜桃| 91九色精品人成在线观看| 亚洲伊人色综图| 91成年电影在线观看| 久久精品亚洲av国产电影网| 成人三级做爰电影| 亚洲国产中文字幕在线视频| 国产免费男女视频| 大型黄色视频在线免费观看| 天天影视国产精品| 亚洲精品中文字幕一二三四区| a在线观看视频网站| 亚洲国产中文字幕在线视频| 欧美日韩av久久| 悠悠久久av| 亚洲,欧美精品.| 国产精品久久视频播放| 美国免费a级毛片| 另类亚洲欧美激情| 国产精华一区二区三区| 精品一区二区三区四区五区乱码| 多毛熟女@视频| 亚洲一区二区三区不卡视频| 激情视频va一区二区三区| 一本一本久久a久久精品综合妖精| 精品一区二区三卡| 国产欧美亚洲国产| 在线观看免费日韩欧美大片| 久久久久久久久免费视频了| 欧美国产精品va在线观看不卡| 欧美日韩亚洲高清精品| 久久中文看片网| 69精品国产乱码久久久| 成人国语在线视频| 50天的宝宝边吃奶边哭怎么回事| 不卡av一区二区三区| 九色亚洲精品在线播放| 亚洲伊人色综图| 久久国产精品大桥未久av| 久久精品91无色码中文字幕| 国产av又大| www.熟女人妻精品国产| 香蕉久久夜色| 国产男靠女视频免费网站| 免费观看人在逋| 婷婷丁香在线五月| 亚洲精品一卡2卡三卡4卡5卡| 国产又爽黄色视频| 一本一本久久a久久精品综合妖精| 日韩欧美免费精品| 午夜老司机福利片| 亚洲 欧美一区二区三区| 色婷婷久久久亚洲欧美| 一a级毛片在线观看| 精品福利永久在线观看| 很黄的视频免费| 精品久久久久久久久久免费视频 | 天天操日日干夜夜撸| 啪啪无遮挡十八禁网站| 高清毛片免费观看视频网站 | 亚洲国产欧美一区二区综合| 电影成人av| 人成视频在线观看免费观看| 久久久久国产一级毛片高清牌| 久久青草综合色| 日韩中文字幕欧美一区二区| 国产三级黄色录像| 国产日韩一区二区三区精品不卡| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 又紧又爽又黄一区二区| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 99热只有精品国产| 日韩有码中文字幕| 色老头精品视频在线观看| 日韩免费av在线播放| 另类亚洲欧美激情| 亚洲一区二区三区欧美精品| 精品久久蜜臀av无| 欧美乱码精品一区二区三区| 精品一区二区三卡| 午夜福利免费观看在线| 国产av又大| 夜夜躁狠狠躁天天躁| 国产精品1区2区在线观看. | 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 村上凉子中文字幕在线| 国产精品 国内视频| 99香蕉大伊视频| 国产免费男女视频| 国产淫语在线视频| а√天堂www在线а√下载 | 欧美日韩国产mv在线观看视频| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 久久久精品国产亚洲av高清涩受| 中文字幕av电影在线播放| 一区二区三区激情视频| 精品人妻熟女毛片av久久网站| 欧美日韩福利视频一区二区| 一本综合久久免费| 国产精品.久久久| 精品少妇久久久久久888优播| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 日韩精品免费视频一区二区三区| 青草久久国产| 国产片内射在线| 亚洲成人免费电影在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美日韩视频精品一区| 50天的宝宝边吃奶边哭怎么回事| 国产无遮挡羞羞视频在线观看| 精品久久久久久久毛片微露脸| 黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频 | 亚洲成国产人片在线观看| 建设人人有责人人尽责人人享有的| 天堂√8在线中文| 国产区一区二久久| 国产成+人综合+亚洲专区| 精品视频人人做人人爽| 久久午夜亚洲精品久久| 在线十欧美十亚洲十日本专区| 国产一区有黄有色的免费视频| 久久人妻熟女aⅴ| 高清av免费在线| 亚洲熟女毛片儿| 国产一区二区激情短视频| 国产亚洲欧美精品永久| 飞空精品影院首页| 国产精品久久久久久人妻精品电影| 精品国内亚洲2022精品成人 | 男女午夜视频在线观看| 国产一区二区激情短视频| 中出人妻视频一区二区| 欧美 日韩 精品 国产| 国产精品av久久久久免费| 国产单亲对白刺激| 精品福利观看| 亚洲男人天堂网一区| 色婷婷av一区二区三区视频| 国产亚洲精品一区二区www | 丰满人妻熟妇乱又伦精品不卡| 久久精品熟女亚洲av麻豆精品| 大码成人一级视频| 欧美在线黄色| 久久久久视频综合| 纯流量卡能插随身wifi吗| 亚洲精品自拍成人| 精品少妇久久久久久888优播| 999精品在线视频| 久久精品人人爽人人爽视色| 99热国产这里只有精品6| 王馨瑶露胸无遮挡在线观看| 亚洲全国av大片| 露出奶头的视频| 高清在线国产一区| av中文乱码字幕在线| 亚洲av欧美aⅴ国产| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费 | 久久天堂一区二区三区四区| 国产激情欧美一区二区| 国产在线一区二区三区精| 亚洲aⅴ乱码一区二区在线播放 | 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 757午夜福利合集在线观看| 欧美日本中文国产一区发布| 亚洲黑人精品在线| 制服人妻中文乱码| 纯流量卡能插随身wifi吗| 精品免费久久久久久久清纯 | 热99久久久久精品小说推荐| 国产精品秋霞免费鲁丝片| 亚洲中文字幕日韩| 成人手机av| 欧美日韩精品网址| 亚洲中文av在线| 最新在线观看一区二区三区| 中文字幕精品免费在线观看视频| 免费看a级黄色片| 一级片免费观看大全| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 亚洲情色 制服丝袜| videos熟女内射| 久久精品91无色码中文字幕| 91在线观看av| 一本一本久久a久久精品综合妖精| 国产精品久久电影中文字幕 | 涩涩av久久男人的天堂| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 超碰97精品在线观看| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区精品| 色播在线永久视频| 在线免费观看的www视频| 精品久久久久久电影网| 午夜激情av网站| 亚洲性夜色夜夜综合| 久久人妻av系列| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 成年人午夜在线观看视频| 岛国毛片在线播放| 99久久国产精品久久久| 精品一区二区三区av网在线观看| 老熟妇仑乱视频hdxx| 在线观看午夜福利视频| 国产99久久九九免费精品| 天天影视国产精品| 成人手机av| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 成熟少妇高潮喷水视频| 午夜精品国产一区二区电影| 两性夫妻黄色片| 午夜精品国产一区二区电影| 18禁黄网站禁片午夜丰满| 亚洲欧美激情在线| 人成视频在线观看免费观看| 窝窝影院91人妻| 嫩草影视91久久| 香蕉丝袜av| 国产人伦9x9x在线观看| 久久国产乱子伦精品免费另类| 天天添夜夜摸| 成年女人毛片免费观看观看9 | avwww免费| 少妇的丰满在线观看| 日韩免费av在线播放| 中文欧美无线码| 久久国产精品影院| 国产精品av久久久久免费| 色播在线永久视频| 亚洲熟妇熟女久久| 久久人人97超碰香蕉20202| 午夜福利影视在线免费观看| 成人亚洲精品一区在线观看| 色尼玛亚洲综合影院| 午夜免费成人在线视频| 中文字幕人妻熟女乱码| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 久久影院123| 一区二区日韩欧美中文字幕| 人人妻人人澡人人爽人人夜夜| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 国产精品成人在线| 国产亚洲精品一区二区www | 看黄色毛片网站| 久久中文看片网| 国产高清国产精品国产三级| 国产精品香港三级国产av潘金莲| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 交换朋友夫妻互换小说| 真人做人爱边吃奶动态| 精品国产美女av久久久久小说| 欧美丝袜亚洲另类 | 日日摸夜夜添夜夜添小说| 久久中文看片网| 久久影院123| 人妻一区二区av| 久久ye,这里只有精品| 国产av一区二区精品久久| 校园春色视频在线观看| 嫩草影视91久久| a在线观看视频网站| 国产精品乱码一区二三区的特点 | 91麻豆av在线| 嫁个100分男人电影在线观看| 美国免费a级毛片| 狠狠婷婷综合久久久久久88av| 两性午夜刺激爽爽歪歪视频在线观看 | 美女福利国产在线| 亚洲成人国产一区在线观看| 久久久久视频综合| 黑人巨大精品欧美一区二区mp4| 久久亚洲真实| 一区二区三区国产精品乱码| 黄色视频不卡| 免费久久久久久久精品成人欧美视频| 久久国产乱子伦精品免费另类| 黄色片一级片一级黄色片| 自线自在国产av| 亚洲精华国产精华精| 亚洲国产精品合色在线| 黄频高清免费视频| 久久香蕉精品热| 精品国产一区二区久久| 一区福利在线观看| 成人18禁在线播放| 国产不卡av网站在线观看| www.熟女人妻精品国产| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费 | svipshipincom国产片| 男女午夜视频在线观看| 中文字幕人妻熟女乱码| 飞空精品影院首页| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片 | 水蜜桃什么品种好| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 免费看十八禁软件| 在线观看舔阴道视频| 亚洲中文av在线| 国产精品电影一区二区三区 | 夫妻午夜视频| 国产精品久久久人人做人人爽| 99热网站在线观看| av中文乱码字幕在线| 国产亚洲欧美98| 亚洲 国产 在线| 在线观看日韩欧美| 丝瓜视频免费看黄片| 香蕉国产在线看| 激情视频va一区二区三区| tocl精华| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 亚洲av美国av| 一级毛片精品| 女性生殖器流出的白浆| 亚洲欧美日韩高清在线视频| 91精品三级在线观看| 日日爽夜夜爽网站| 亚洲男人天堂网一区| 国产高清国产精品国产三级| 午夜福利,免费看| 首页视频小说图片口味搜索| 色在线成人网| 操美女的视频在线观看| 亚洲全国av大片| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 99精品久久久久人妻精品| 日本黄色视频三级网站网址 | 亚洲欧美精品综合一区二区三区| 视频在线观看一区二区三区| 亚洲欧美激情在线| 后天国语完整版免费观看| 精品福利观看| 精品福利永久在线观看| 国产精品1区2区在线观看. | 99久久综合精品五月天人人| 亚洲国产毛片av蜜桃av| 视频区图区小说| 国产一区二区三区视频了| 午夜精品在线福利| 嫩草影视91久久| 亚洲成国产人片在线观看| 一区福利在线观看| 亚洲情色 制服丝袜| 亚洲久久久国产精品| xxxhd国产人妻xxx| 免费高清在线观看日韩| 看片在线看免费视频| 欧美激情高清一区二区三区| 曰老女人黄片| 国产精品久久视频播放| 亚洲欧美激情在线| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| 制服诱惑二区| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| 少妇的丰满在线观看| 成年动漫av网址| 91大片在线观看| 亚洲熟妇熟女久久| 欧美乱码精品一区二区三区| 满18在线观看网站| 咕卡用的链子| 亚洲七黄色美女视频| 精品国产亚洲在线| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 黄色毛片三级朝国网站| 国产精品一区二区在线观看99| 色播在线永久视频| 精品福利永久在线观看| 飞空精品影院首页| 国产精品亚洲av一区麻豆| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 99热网站在线观看| 日韩欧美一区视频在线观看| 我的亚洲天堂| 亚洲熟妇熟女久久| 亚洲av片天天在线观看| videosex国产| 丝袜美足系列|