• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resource Allocation for IRS Assisted mmWave Wireless Powered Sensor Networks with User Cooperation

    2024-02-19 12:02:26YonghuiLinandZhengyuZhu

    Yonghui Lin and Zhengyu Zhu

    1Network Center,Zhengzhou University,Zhengzhou,450001,China

    2School of Electrical and Information Engineering,Zhengzhou University,Zhengzhou,450001,China

    ABSTRACT

    In this paper,we investigate IRS-aided user cooperation (UC) scheme in millimeter wave (mmWave) wirelesspowered sensor networks (WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of the WET and WIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.

    KEYWORDS

    Intelligent reflecting surface; millimeter wave; wireless powered sensor networks; user cooperation; resource allocation

    1 Introduction

    The rapid expansion of the number of mobile devices has brought higher requirements for wireless applications,such as more extensive radio coverage,lower latency,higher data transmission rates and higher security,while the emergence of sixth-generation(6G)wireless technologies can perfectly meet such demands[1,2]describe the vision of future 6G communication and network architecture,which presents emerging technologies such as artificial intelligence,blockchain,quantum communications,integration of wireless information and energy transfer,integrated sensing and communication,intelligent reflecting surface and big data.Millimeter-wave (mmWave) communication has been widely regarded as a key technology of 6G,which owns ultra-wide bandwidth and high transfer speed advantages to meet the enormous capacity demand for 6G wireless communications [3,4].An exhaustive survey of mmWave wireless communications for future 6G networks is described in[5],where the latest channel measurement,modeling and multiple input multiple output (MIMO)transceiver designs are summarized.

    Also,energy harvesting(EH),as one of the main techniques to power future 6G wireless networks,has been introduced as an efficient method that allows wireless devices to capture the energy from external environments [6,7].Radio frequency (RF) EH technique can enable an aggressive energy supply to the wireless devices (WDs) [8].As an promising and emerging EH technology,wireless power communication networks (WPCN) are of great interest as they have the potential to provide wireless power to energy-constrained devices such as the internet of things(IoT)and wireless sensor networks(WSN)to ensure their operation[9,10].Compared to the traditional battery-powered way,WPCN always provides more reliable and sustainable power replenishment.In WPCNs,the placement optimization of power and information access points is researched,where the WDs harvest the RF energy in the downlink and employ the harvested energy to transmit information to a base station in the uplink[11,12].

    To improve the radio coverage and signal quality in a green way,an intelligent reflecting surface(IRS)has been proposed to reshape the signal propagation environment via passive reflecting arrays[13,14].The transmitted signal can be reflected the receiver through the IRS and constitutes the received signal together with the signal transmitted by the direct link[15].Thus,the reflected signal can be enhanced by properly adjusting the passive components of IRS[16,17].

    Recently,some research on IRS-aided wireless powered sensor networks(WPSN)has been studied in [18–38].For maximizing the sum throughput in an IRS-aided WPCN,the closed-form solution for the phase shifts of the wireless information transfer has been derived,where a low complexity scheme was proposed to reduce the computational complexity of the semidefinite programming(SDP) scheme [18].Considering user cooperation (UC) in an IRS-assisted WPCN,the maximum throughput performance has been derived by jointly optimizing the power allocations,IRS phase shifts and the transmit time[19].By obtaining a closed-form solution by the Lagrange dual method and the Karush-Kuhn-Tucker conditions in an IRS-aided WPSN,Chu et al.[20]optimally designed the bandwidth allocation and the transmit time schedule.Li et al.[21]have maximized the minimum throughput performance for IRS-aided UC in a WPCN.To simultaneously improve the performance of uplink information transmission and downlink energy transfer,Lyu et al.[22]investigated a hybridrelaying self-sustainable IRS WPCN.Zhai et al.[23]has considered multicast transmissions in a gametheoretic way in an IRS-aided WPCN,where the closed-form optimal phase shifts have been derived.For a backscatter-assisted WPCN with an IRS,Ramezani et al.[24] have studied the maximization of total network throughput through a two-stage algorithm.In an IRS-assisted multiuser MISO WPCN,Zheng et al.[25] have maximized the weighted sum rate of all the energy-harvesting users by applying a block-structured optimization method.A novel dynamic IRS beamforming framework has been proposed to boost the sum throughput of an IRS-aided WPCN in[26].In order to strictly guarantee device quality-of-service(QoS)requirements,Zeng et al.[27]have considered the non-linear energy harvesting in an IRS WPCN.In a multi-user IRS WPCN,Cao et al.[28]have maximized the system throughput by optimizing jointly the energy beamforming,phase shift and time allocation.To maximize the sum throughput by applying the Lagrange dual method,a closed-form solution has been derived for the optimal power allocation,transmission time slots and phase shift for IRS-aided wireless powered IoT system[29].

    To tackle the issue of the uplink transmission of WDs in WPCNs depending on the harvested energy from the downlink,Wang et al.[30]proposed an energy efficient optimization method in IRSassisted WPCN by the variable-substitution approach.In order to ensure fairness,Zeng et al.[31]studied a weighted sum throughput maximization in an active IRS-aided WPCN by applying three beamforming setups.Using the semidefinite relaxation method,Lyu et al.[32]considered a sum rate maximization for the IRS-aided WPCN by jointly iteratively optimizing the time scheduling and the phase shift.In the presence of eavesdropper,Cao et al.[33]proposed three secure modes in physical layer security of an IRS-aided WPC system,where asymptotic ergodic secrecy capacity is analyzed and closed-form expression is obtained.A new transmission policy for an IRS-assisted WPSN with certain phase shifts is proposed by maximizing the system sum throughput in[34],in which IRS can collect energy to achieve its self-sustainability.In a MISO transmission form,a practical IRS can work in EH with a power budget constraint,and then utilize the harvesting energy to sustain its operations in the signal reflecting phase [35].Considering cognitive loT devices,two transmission policies are studied with a successive interference cancellation technique [36],where the interaction between primary and secondary networks is characterized by a Stackelberg game strategy.An IRSaided wireless powered over-the-air computation Internet-of-Things network is investigated to propose a joint design of energy beamforming at the access point,downlink and uplink phase-shift matrices,as well as transmit power,in order to minimize the mean-squared error[37].With the aid of an IRS,in wireless powered non-orthogonal multiple access(NOMA)IoT networks,by jointly optimizing the time allocation and phase shift matrices of wireless energy transfer and wireless information transfer,a novel resource allocation approach is proposed by maximizing the sum throughput in[38].

    Integrating the IRS technology with sensor networks can achieve a self-sustaining system,specifically by embedding the IRS to the existing WPSN to reflect energy and information signals to improve the wireless energy transfer(WET)and wireless information transfer(WIT)capabilities of the WPSN.Also,to achieve a better performance with the IRS-assisted scheme,we consider a mmWave WPSN UC system in the uplink,i.e.,one user not only completes his own signal transmission task,but also assists other users in completing signal transmission as a relay.Different from the existing works on the IRS-aided WPCN system,the research of transmission strategies in an IRS-assisted WPSN systems with UC in the mmWave band has not been made yet.We summarize our contributions as follows:

    1.First,an IRS has been used to improve the performance of the WPSN system with UC in the mmWave channel,where two single-antenna wireless devices can harvest energy radiated by a hybrid access point (AP) to support the separate information transmission to the AP.Here,the IRS play a role in promoting the system performance of the downlink wireless energy harvesting and the uplink wireless information transmission by energy and information reflection for the IRS,respectively.

    2.Second,it aims to maximize the weighted sum-rate through jointly optimizing the power,the time slots allocation and the IRS phase shift of the WET and WIT is used to evaluate the performance of the proposed system model.Since the original problem is non-convex with respect to the coupled variables of the power and the IRS phase shift,it is hard to solve directly.

    3.Finally,to deal with the non-convexity of the original formulated problem,the semidefinite programming relaxation (SDR) technique is applied to convert the weighted sum-rate maximization(WSRM)problem to a convex optimization framework,which can obtain the global optimal solution.Simulation results proved that the IRS and the UC can improve the system performance compared with the two latest benchmarks.

    The rest of the paper is organized as follows.Section 2 introduces the system model of an IRSaided WPSN system with mmWave channel.In Section 3,a weighted throughput maximization problem with user cooperation is discussed carefully,and we develop a SDR-based algorithm to solve the original problem.In Section 4,our simulation results demonstrate the effectiveness of the proposed SDR algorithm.In Section 5,the paper is summarized.

    2 System Model

    As shown in Fig.1,we investigate an IRS-aided mmWave WPSN system,which contains a singleantenna AP and two single-antenna wireless users(WUs).Due to the constrained energy of devices,the wireless communication links(WCLs)of harvesting energy in the UL are established between AP and WUs.In the downlink(DL),information signals also can be transmitted through these links.Without loss of generality,we assume that WU2is used as a relay between WU1and AP in the meantime.An IRS withNdynamically adjustable elements is equipped to strengthen WCLs,and only one-time signal reflection by the IRS is considered owing to the path loss.The phase shift matrix of IRS is defined asθ=[θ1,...,θN]andΘ=diag(ejθ1,...,ejθn,...,ejθN).Denote g ∈CN×1and gRk∈CN×1as the mmWave channel matrix for the channel of AP to IRS,IRS to WUk,wherek=1,2.hk,h21are the channel between AP and WUk,WU1and WU2,k=1,2,and all channel gains areg=‖g‖2,gRk=‖‖gRk

    ‖‖2,ζk=|hk|2,ζ21=|h21|2,respectively.Also,we assume that all channels between different transceiver and receiver are independent and identically distributed complex Gaussian distribution ofCNwhereκ2depending on the path loss.In this paper,our research focuses on finding a suitable optimal algorithm for IRS phase shifting,the power,the time slots allocation and deriving an upper bound on the weighted sum-rate performance of the system model under study.Therefore,we assume that CSI is perfect and we can get the CSI acquisition method under the IRS assisted WPSN system.In the paper,we further elaborate on the reasons for assuming a perfect CSI and how to obtain it.

    Figure 1 :The IRS-aided mmWave WPSN system model

    For the mmWave channel of AP to IRS,IRS to WUk,k=1,2,the antenna response can be written as

    whereφandθrepresent the incident signal’s angles of azimuth and elevation,λanddare the wavelength and antenna spacing,respectively.Therefore,the mmWave channel matrix written as

    whereNtandNrrepresent the number of transmitting and receiving antennas,andLdenotes the total number of paths,including one LOS direct path and(L-1)NLOS paths.ρis the path loss andρ=δd-γ,whereδ,d,andγare a constant,the geographical distance and the path-loss exponent,respectively.The WET and WIT processes are considered within the time periodTthat usually be assumedT=1s.In the WET,the AP charges WUs during time periodτ0T(τ0∈(0,1])in the DL.At the same time,part of the energy transmitted by the AP will be reflected to the WUs through the IRS,and the received energy contains two parts,i.e.,AP →WUk,AP →IRS →WUk,k=1,2.Thus,the received information signals at WUs can be expressed as

    wherep0is the transmit power of the AP,and theΘ1=denotes the coefficient matrix of reflected energy by IRS.Defineθ1,ndenotes the phase shift of the IRS and=1,n∈[1,N],xis the energy signals satisfyingx~CN(0,1),andn(t)~at WUk,k=1,2.Hence,the harvested energy at WUkwas donated as

    whereηrepresents the efficiency of energy harvesting during the WET phase.

    The time of the WIT phase is(1-τ0)T,where WUs transmit the information to the AP and the IRS by using the harvested energy.In the WIT scenario,we assume that WU1and WU2can transmit information signals directly to the AP simultaneously,and WU2can act as a passive relay,reflecting some information signals from WU1to AP.As shown in Fig.2,to further express this process,the time allocation of the WIT phase is divided into three sub-phases:

    Figure 2 :System time allocation of WET and WIT

    1.In the first sub-phase,i.e.,τ1T,WU1transmits the information signal to the AP and WU2using the harvested energy(i.e.,WU1→AP,WU1→WU2).Also,the signal of WU1is reflected to the AP and WU2via the IRS(i.e.,WU1→IRS →AP,WU1→IRS →WU2);

    2.In the second sub-phase,i.e.,τ2T,WU2first decodes WU1’s information signal and then forwards it to the AP and the

    3.In the third sub-phase,i.e.,τ3T,WU2transmits the information signal to the AP and the IRS(i.e.,WU2→AP,WU2→IRS →AP).

    In the first sub-phase,the harvested energy obtained in WET is used in WET and the transmit power of WU1is

    Then,the information signal received at AP and WU2are expressed respectively as

    wheres1is the information signal from WU1withE[|s1|2]=1,Θ2=denotes the IRS’s reflection coefficient matrix with=1,n∈[1,N],nAPandn2denote the received noise power of the AP and WU2with varianceandσ22,respectively.The achievable rates in this phase are expressed as

    In the second sub-phase,the signal received at AP given by

    wherep(2)2is the transmit power of WU2within the subphase,Θ3=denotes the reflection coefficient matrix withrepresents the transmit information symbol of WU2associated with WU1’s information.Then,the achievable direct rates from WU2to the AP are expressed as

    The information signals transmitted from WU1to AP have four different paths,where the signal of AP in the first path is the direct link from WU1(i.e.,WU1→AP),the signal of AP in the second path is secondarily transmitted by WU2with proposed UC scheme(i.e.,WU2AP),the signal of AP in the third path is the direct link from WU1via IRS (i.e.,WU1→IRS →AP),and the signal in the fourth path is secondarily transmitted by WU2with UC scheme via IRS to AP(i.e.,WU2IRS →AP).Therefore,the achievable rate from WU1to AP is given by

    where

    In the third sub-phase,the information signal received at AP is written as

    wherep(3)2denotes the transmit power of WU2in this sub-phase and the achievable rate from WU2to AP is expressed as

    The energy obtained by WU2inτ0Ttime period should be greater than that consumed in the latter two sub-phases,so that the later work can be completed normally.So,there is

    According to the above transmission process,the time periodτ1,τ1,τ2,andτ3in this WPSN need to satisfy the following time constraints written as

    3 Weighted Throughput Maximization with User Cooperation

    Using the derivation and definition from the previous step,a WSRM problem is formulated based on a UC scheme and then solved by jointly optimizing the phase shift matrices,time allocation,and power allocation.First,the WSRM problem is given by

    whereαand 1-αare preference constants ofRAP,1andRAP,2,respectively.Problem (P1) is not convex due to the objective function and the constant modulus constraint in the phase shift matricesΘ1,Θ2,Θ3,which leads to the time allocationτ={τ0,τ1,τ2,τ3},and power allocation p=cannot be solved efficiently.

    For the non-convexity of problem(P1),we can introduce some transformation forms for the phase shift matrices to tackle it.So,we have

    Then,introducing auxiliary variablesμ2=τ2p(22)andμ3=τ3p(23),another form ofandRAP,2can be expressed as

    Accordingly,by introducing another auxiliary variable,RAP,1can be recast as

    Due to the rank-one constraint causing the problem to be non-convex,so we use the SDR approach to remove this constraint,then(P1)can be reformulated as

    Here,the problem(34)is now a convex optimization problem.Thus,the global optimal solution can be obtained by CVX in Matlab[40,41],which is denoted asThe computational complexity of the SDP relaxation scheme iswheren=

    Combined with the above derivation,we can further obtain the optimal values as

    The rank-one solution may be obtained from the relaxed WSRM (P3).So we employ the eigenvalue decomposition for Aopt1to obtain thewhereΨ∈C(N+1)×(N+1)represents a unitary matrix,T ∈C(N+1)×(N+1)represents a diagonal matrix.We can obtainwhereνis complex circularly symmetric Gaussian variables withν~CN(0,IN+1).Then,the optimal aopt1is identified byθ1,i=

    4 Simulation Results

    The simulation results are presented to evaluate the performance of the user cooperation scheme in IRS-aided mmWave WPSN.The illustration of the system is shown in Fig.3.We assume that AP and WUkare on the same level,and the distance between the IRS and this horizontal line is 4 meters and the distance between AP and IRS isd2=5 m.Finally,the settings of other parameters are shown in Table 1.In the specific simulation,some benchmark methods are introduced as the simulation comparison to show the superiority of the proposed method:

    Table 1 : Simulation parameters

    1.IRS+UC:IRS helps WUs to harvest energy through reflection in the WET phase.In the WIT phase,IRS reflects signals from WUs to AP,and WU2can receive and secondary transmit signals from WU1to AP as a relay in the UC scheme.

    2.Non IRS+UC:Following[12],WUs only harvest energy through the direct link from AP in the WET phase and the UC scheme is considered in the WIT.

    3.IRS+Non UC:Following[26],Only IRS works and UC scheme is canceled.

    4.Non IRS+Non UC:There are no IRS and UC schemes in the system.

    Figure 3 :Simulation model

    We first evaluate the sum throughputvs.the distanced1between the AP and WU1in Fig.4.Whend1changes from 5 to 10 m,the channel between AP and WU1will be influenced,which will affect the sum throughput.In this simulation,p0=30 dBm,N=25.Whether equipped with IRS or not,sum throughput using UC outperform the sum throughput without the UC scheme,which shows that the UC scheme can effectively improve sum throughput in IRS-aided mmWave WPSN.Whend1=10 m,the gap of sum throughput between “IRS + UC” and “IRS + Non UC” or “Non IRS + UC” and “Non IRS+Non UC” become smaller compared withd1=5 m.This is because the efficiency of the UC scheme will be affected when the distance between wireless users is large.At the same time,it can be known that the improvement of sum throughput by only using the UC scheme is greater than that only equipping with IRS.

    In order to observe the sum throughput improvement with increasingp0,we second compare the performance of some different schemes whenp0increases from 30 to 40 dBm in Fig.5.We setd1=8 m,N=25 here.It can be seen from the figure that the sum throughput of four schemes increases with the increasingp0,but the “IRS+UC” scheme outperforms that of other schemes.We can realize that the UC scheme can improve sum throughput significantly even if the WUs get less energy in WEL.This also provides a feasible way to make up for the lack of energy by introducing the UC scheme into WPSN.

    Finally,the impact of the elements numberNof IRS on sum throughput is shown in Fig.6.With the increasingN,the sum throughput obtained by schemes with IRS is gradually increased due to the array gain and the sum throughput of schemes without IRS not changing.When aboutN<50,“IRS+ UC” and “Non IRS + UC” outperforms “IRS + Non UC” and “Non IRS + Non UC”.Then “IRS+Non UC” is greater than “Non IRS+UC” asNcontinues to grow,and this is because the performance gain of increasingNto that only equipping with IRS is greater than that only using UC scheme in mmWave WPSN.

    Figure 4 :Sum throughput vs.d1

    Figure 5 :Sum throughput vs.P0

    Figure 6 :Sum throughput vs.N

    5 Conclusion

    In this paper,we proposed a UC scheme for IRS-aided mmWave WPSN.The WSRM problem is formulated to maximize the weighted sum throughout by jointly optimizing the phase shift matrix,time slots,and power allocation.Some efficient variable substitutions and SDP relaxation are introduced to convert the original non-convex problem into a convex problem that is easy to tackle.Finally,numerical results confirm that the weighted sum throughput of our proposed UC scheme is greater than that of non UC whether equipped with IRS or not.

    Acknowledgement: This work was supported in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D11),in part by Sponsored by Program for Science & Technology Innovation Talents in Universities of Henan Province(23HASTIT019),in part by Natural Science Foundation of Henan Province(232300421097),in part by the Project funded by China Postdoctoral Science Foundation (2023T160596,2020M682345),in part by the Henan Postdoctoral Foundation(202001015).

    Funding Statement:This work was supported in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D11),in part by Sponsored by program for Science & Technology Innovation Talents in Universities of Henan Province(23HASTIT019),in part by Natural Science Foundation of Henan Province (20232300421097),in part by the project funded by China Postdoctoral Science Foundation(2020M682345),in part by the Henan Postdoctoral Foundation(202001015).

    Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Yonghui Lin,Zhengyu Zhu; data collection: Yonghui Lin,Zhengyu Zhu; analysis and interpretation of results:Yonghui Lin,Zhengyu Zhu;draft manuscript preparation:Yonghui Lin.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:This statement should make clear how readers can access the data used in the study and explain why any unavailable data cannot be released.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    女人被躁到高潮嗷嗷叫费观| 精品国产一区二区久久| 精品免费久久久久久久清纯 | a级毛片在线看网站| 日本午夜av视频| 成人手机av| 国产黄频视频在线观看| 在线观看免费高清a一片| av国产久精品久网站免费入址| 成人影院久久| 超色免费av| 夫妻性生交免费视频一级片| av不卡在线播放| 久久久久久久精品精品| 9色porny在线观看| 一本—道久久a久久精品蜜桃钙片| 制服丝袜香蕉在线| 日韩人妻精品一区2区三区| 精品国产一区二区三区四区第35| 一级爰片在线观看| 国产色婷婷99| 人妻一区二区av| 90打野战视频偷拍视频| 亚洲国产精品一区二区三区在线| 欧美日韩成人在线一区二区| 欧美日韩福利视频一区二区| 国产精品免费大片| 国产男女内射视频| 亚洲成人一二三区av| 黑人猛操日本美女一级片| 日韩不卡一区二区三区视频在线| 久久精品久久精品一区二区三区| 色婷婷av一区二区三区视频| 18禁裸乳无遮挡动漫免费视频| 午夜激情久久久久久久| 又粗又硬又长又爽又黄的视频| 欧美中文综合在线视频| 国产人伦9x9x在线观看| 久久人妻熟女aⅴ| 日韩精品免费视频一区二区三区| 一级爰片在线观看| 赤兔流量卡办理| 99国产精品免费福利视频| 中文天堂在线官网| svipshipincom国产片| 国产精品久久久久成人av| 高清在线视频一区二区三区| 叶爱在线成人免费视频播放| 亚洲av欧美aⅴ国产| 久久久久久久久久久久大奶| 国产男女超爽视频在线观看| 老鸭窝网址在线观看| 国产精品无大码| a级毛片在线看网站| 亚洲激情五月婷婷啪啪| 中文字幕人妻熟女乱码| 性少妇av在线| 亚洲av福利一区| 国精品久久久久久国模美| 无限看片的www在线观看| 丝袜脚勾引网站| 亚洲三区欧美一区| 九九爱精品视频在线观看| 欧美97在线视频| 亚洲男人天堂网一区| 国产男女超爽视频在线观看| 最新的欧美精品一区二区| 午夜久久久在线观看| av不卡在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| 欧美另类一区| 国产亚洲一区二区精品| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区 | 中文字幕高清在线视频| 一个人免费看片子| 黄频高清免费视频| 精品久久蜜臀av无| 亚洲精品日本国产第一区| 一个人免费看片子| 色精品久久人妻99蜜桃| 黄色怎么调成土黄色| 免费看av在线观看网站| 亚洲av电影在线进入| 日本wwww免费看| 国产免费视频播放在线视频| 亚洲成人免费av在线播放| 国产熟女欧美一区二区| 女人精品久久久久毛片| av电影中文网址| 国产成人欧美| 久久久久国产精品人妻一区二区| 亚洲综合精品二区| 青春草国产在线视频| 国产又爽黄色视频| 高清不卡的av网站| 色精品久久人妻99蜜桃| 国产在线免费精品| 色网站视频免费| 黄片小视频在线播放| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠躁躁| 三上悠亚av全集在线观看| 免费看av在线观看网站| 大陆偷拍与自拍| 一级片免费观看大全| 桃花免费在线播放| 丰满迷人的少妇在线观看| 又黄又粗又硬又大视频| 日韩制服丝袜自拍偷拍| 亚洲男人天堂网一区| 精品国产乱码久久久久久男人| 女人久久www免费人成看片| 亚洲av中文av极速乱| 天天操日日干夜夜撸| 黑人巨大精品欧美一区二区蜜桃| 女的被弄到高潮叫床怎么办| 久久精品国产a三级三级三级| 国产亚洲一区二区精品| 亚洲国产欧美网| 久久久精品免费免费高清| 三上悠亚av全集在线观看| 久久精品久久精品一区二区三区| 美女国产高潮福利片在线看| 高清在线视频一区二区三区| 国产一区二区三区综合在线观看| 90打野战视频偷拍视频| 最近最新中文字幕大全免费视频 | 天堂8中文在线网| 成人影院久久| 久久久久久久久免费视频了| 女人爽到高潮嗷嗷叫在线视频| 好男人视频免费观看在线| 丰满饥渴人妻一区二区三| 国产精品久久久久久久久免| 国产精品麻豆人妻色哟哟久久| 精品人妻在线不人妻| 成人亚洲欧美一区二区av| 久久久久久久久久久久大奶| 国产麻豆69| 欧美日韩视频高清一区二区三区二| 欧美国产精品va在线观看不卡| 国产 精品1| 日日啪夜夜爽| 亚洲欧美中文字幕日韩二区| www.精华液| 欧美精品av麻豆av| 王馨瑶露胸无遮挡在线观看| 成年人午夜在线观看视频| 丝袜脚勾引网站| 欧美在线一区亚洲| 岛国毛片在线播放| 亚洲精品视频女| 精品一区二区免费观看| 亚洲成人手机| 国产精品熟女久久久久浪| 久久久久久人妻| 丁香六月天网| av在线老鸭窝| 午夜影院在线不卡| 天天影视国产精品| 日韩电影二区| 午夜免费观看性视频| 欧美黑人精品巨大| 久热这里只有精品99| 午夜免费观看性视频| 国产午夜精品一二区理论片| 日韩一区二区视频免费看| 美女午夜性视频免费| 国产又爽黄色视频| 男人添女人高潮全过程视频| 久久精品熟女亚洲av麻豆精品| 日韩一区二区视频免费看| 人妻 亚洲 视频| 国产又色又爽无遮挡免| 欧美97在线视频| 一区福利在线观看| 午夜免费观看性视频| 国产又色又爽无遮挡免| 亚洲第一青青草原| 老汉色av国产亚洲站长工具| 不卡视频在线观看欧美| 美女高潮到喷水免费观看| 国产男女超爽视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产伦人伦偷精品视频| 满18在线观看网站| 欧美精品一区二区大全| 亚洲av国产av综合av卡| 国产精品无大码| bbb黄色大片| 性少妇av在线| 亚洲人成77777在线视频| 丝袜脚勾引网站| 婷婷色av中文字幕| 日日啪夜夜爽| 日韩熟女老妇一区二区性免费视频| 日韩人妻精品一区2区三区| 丝袜人妻中文字幕| 99香蕉大伊视频| 日韩精品免费视频一区二区三区| 狂野欧美激情性bbbbbb| 少妇 在线观看| 波多野结衣av一区二区av| 人人妻人人爽人人添夜夜欢视频| 亚洲精品aⅴ在线观看| 七月丁香在线播放| 亚洲精品av麻豆狂野| 亚洲欧美激情在线| 午夜福利一区二区在线看| 一级片免费观看大全| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 老司机靠b影院| 亚洲第一青青草原| a级毛片在线看网站| 欧美另类一区| 久久青草综合色| 免费黄色在线免费观看| 亚洲av在线观看美女高潮| 亚洲国产日韩一区二区| 男人操女人黄网站| 人人澡人人妻人| 999精品在线视频| 欧美人与善性xxx| 99香蕉大伊视频| 久久97久久精品| 蜜桃国产av成人99| 黄色视频不卡| 国产一区二区三区av在线| 久久久久久久久免费视频了| 老司机靠b影院| 国产毛片在线视频| 国产精品无大码| 看免费av毛片| 欧美成人精品欧美一级黄| 国产精品国产av在线观看| 男的添女的下面高潮视频| 性少妇av在线| 一本久久精品| 啦啦啦啦在线视频资源| 一本一本久久a久久精品综合妖精| 国产精品偷伦视频观看了| 久久午夜综合久久蜜桃| 五月天丁香电影| 男女无遮挡免费网站观看| 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看 | 国产伦人伦偷精品视频| 女人久久www免费人成看片| 国产精品久久久av美女十八| 九草在线视频观看| 少妇被粗大猛烈的视频| 亚洲国产欧美网| 久久精品国产a三级三级三级| 精品国产露脸久久av麻豆| 精品久久久久久电影网| √禁漫天堂资源中文www| 一区二区三区乱码不卡18| 久久久久久人人人人人| 久久精品国产亚洲av涩爱| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 亚洲精品国产区一区二| 久久精品国产亚洲av涩爱| 一区在线观看完整版| 啦啦啦在线免费观看视频4| 老司机靠b影院| www.av在线官网国产| 精品国产一区二区久久| 一级毛片我不卡| 国产一区有黄有色的免费视频| 精品免费久久久久久久清纯 | 午夜影院在线不卡| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 成人毛片60女人毛片免费| 在线观看免费高清a一片| 国产不卡av网站在线观看| 亚洲免费av在线视频| 老汉色∧v一级毛片| www.精华液| 免费在线观看黄色视频的| 各种免费的搞黄视频| 巨乳人妻的诱惑在线观看| 亚洲成色77777| 青草久久国产| svipshipincom国产片| 亚洲第一区二区三区不卡| 国产av精品麻豆| 两性夫妻黄色片| 亚洲国产中文字幕在线视频| 丝袜美足系列| 亚洲欧美色中文字幕在线| 黄色一级大片看看| 嫩草影视91久久| 亚洲,欧美精品.| 91aial.com中文字幕在线观看| 久久久久久久精品精品| 成年av动漫网址| av.在线天堂| 丰满乱子伦码专区| 老汉色∧v一级毛片| 欧美最新免费一区二区三区| 久久久久精品性色| 乱人伦中国视频| 精品免费久久久久久久清纯 | 黄色一级大片看看| 成人国语在线视频| 曰老女人黄片| 国产毛片在线视频| 国产精品秋霞免费鲁丝片| 99久国产av精品国产电影| 少妇被粗大的猛进出69影院| 欧美精品一区二区免费开放| 大片免费播放器 马上看| 日本欧美视频一区| 丝袜人妻中文字幕| 国产1区2区3区精品| 丝袜喷水一区| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| tube8黄色片| 最新的欧美精品一区二区| 国产免费视频播放在线视频| 久久久精品国产亚洲av高清涩受| 欧美日韩视频高清一区二区三区二| 妹子高潮喷水视频| 蜜桃在线观看..| 一区二区三区精品91| 久久ye,这里只有精品| 九色亚洲精品在线播放| 精品少妇黑人巨大在线播放| 成人国产av品久久久| 少妇被粗大猛烈的视频| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜| www.熟女人妻精品国产| 丝袜喷水一区| 街头女战士在线观看网站| 国产精品熟女久久久久浪| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| 国产精品免费视频内射| 成人亚洲欧美一区二区av| 国产一区二区 视频在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产 一区精品| av女优亚洲男人天堂| 国产在线免费精品| 久久久久视频综合| 欧美日韩亚洲高清精品| 国产成人精品无人区| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av | 国产老妇伦熟女老妇高清| 黄色视频不卡| 丰满乱子伦码专区| 热99国产精品久久久久久7| 久久人人97超碰香蕉20202| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频| av国产久精品久网站免费入址| 在线观看www视频免费| 成人免费观看视频高清| 日本一区二区免费在线视频| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| videosex国产| 午夜久久久在线观看| 久久久久国产精品人妻一区二区| 欧美av亚洲av综合av国产av | 日韩欧美精品免费久久| 尾随美女入室| 日本vs欧美在线观看视频| 曰老女人黄片| 十八禁网站网址无遮挡| 久久久久视频综合| 国产精品偷伦视频观看了| 久久韩国三级中文字幕| 久久精品aⅴ一区二区三区四区| 国产精品一国产av| 老司机亚洲免费影院| 捣出白浆h1v1| 国产精品免费大片| 女的被弄到高潮叫床怎么办| 国产免费福利视频在线观看| 黄片播放在线免费| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 97人妻天天添夜夜摸| 色94色欧美一区二区| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 国产黄色免费在线视频| 老熟女久久久| 日日啪夜夜爽| 成人手机av| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区 | 欧美激情高清一区二区三区 | 最近的中文字幕免费完整| 在线精品无人区一区二区三| 十八禁高潮呻吟视频| 亚洲久久久国产精品| 日韩不卡一区二区三区视频在线| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 两个人免费观看高清视频| 久久精品国产亚洲av涩爱| 色精品久久人妻99蜜桃| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 男人添女人高潮全过程视频| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 国产一区二区 视频在线| 国产又爽黄色视频| 亚洲欧洲国产日韩| 日韩一区二区三区影片| av.在线天堂| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 色吧在线观看| 三上悠亚av全集在线观看| 1024视频免费在线观看| 精品一区在线观看国产| 亚洲国产欧美在线一区| 久久人人爽人人片av| 国产男女超爽视频在线观看| 国产男人的电影天堂91| 欧美 日韩 精品 国产| 欧美日韩亚洲综合一区二区三区_| 国产激情久久老熟女| 亚洲伊人色综图| 成人黄色视频免费在线看| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 如何舔出高潮| 色网站视频免费| 9色porny在线观看| 欧美在线黄色| 亚洲av在线观看美女高潮| 这个男人来自地球电影免费观看 | 另类亚洲欧美激情| 各种免费的搞黄视频| 亚洲专区中文字幕在线 | 日韩一区二区三区影片| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 搡老岳熟女国产| 乱人伦中国视频| 亚洲av中文av极速乱| 午夜福利影视在线免费观看| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 麻豆乱淫一区二区| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 免费日韩欧美在线观看| 日韩制服丝袜自拍偷拍| 亚洲av日韩在线播放| 久久精品国产亚洲av涩爱| 日本wwww免费看| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 热99久久久久精品小说推荐| 别揉我奶头~嗯~啊~动态视频 | 久久久精品国产亚洲av高清涩受| 国精品久久久久久国模美| 久久性视频一级片| 丝袜脚勾引网站| 亚洲第一区二区三区不卡| 久久精品国产综合久久久| 看十八女毛片水多多多| 久久97久久精品| 久久精品国产亚洲av涩爱| 成人影院久久| 亚洲人成网站在线观看播放| 美女扒开内裤让男人捅视频| 男女无遮挡免费网站观看| 最近最新中文字幕免费大全7| www.自偷自拍.com| 一区二区av电影网| 男人舔女人的私密视频| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 天天操日日干夜夜撸| 黄色视频在线播放观看不卡| 国产免费福利视频在线观看| 卡戴珊不雅视频在线播放| 亚洲男人天堂网一区| 精品少妇久久久久久888优播| 亚洲国产日韩一区二区| 午夜免费鲁丝| 亚洲国产日韩一区二区| 伦理电影免费视频| 成人午夜精彩视频在线观看| 日韩av免费高清视频| h视频一区二区三区| 成年女人毛片免费观看观看9 | 国产精品香港三级国产av潘金莲 | 亚洲精品一区蜜桃| 久久免费观看电影| 亚洲国产欧美在线一区| 一区二区三区四区激情视频| 精品一品国产午夜福利视频| 国产成人91sexporn| 亚洲精品中文字幕在线视频| 母亲3免费完整高清在线观看| 一二三四中文在线观看免费高清| 久久久精品免费免费高清| 亚洲免费av在线视频| 国产精品久久久久久久久免| 大香蕉久久成人网| 啦啦啦啦在线视频资源| 国产精品无大码| 一级黄片播放器| 亚洲欧美一区二区三区黑人| 女人爽到高潮嗷嗷叫在线视频| 久久av网站| 丰满迷人的少妇在线观看| 久久亚洲国产成人精品v| 91老司机精品| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 久热爱精品视频在线9| 亚洲人成77777在线视频| 丝袜美足系列| 亚洲人成77777在线视频| 好男人视频免费观看在线| 大香蕉久久网| 午夜免费鲁丝| 一级黄片播放器| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 精品第一国产精品| a级片在线免费高清观看视频| 国产一区亚洲一区在线观看| 亚洲成人免费av在线播放| 国产精品亚洲av一区麻豆 | 亚洲人成77777在线视频| 大片免费播放器 马上看| 不卡视频在线观看欧美| 日韩成人av中文字幕在线观看| 十八禁网站网址无遮挡| 久久国产亚洲av麻豆专区| 天天添夜夜摸| 日日爽夜夜爽网站| 看免费成人av毛片| 久久99热这里只频精品6学生| 久久毛片免费看一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲欧美激情在线| 天天添夜夜摸| 久久久久久久精品精品| 久热这里只有精品99| 看非洲黑人一级黄片| 激情视频va一区二区三区| 亚洲精品视频女| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 黄色一级大片看看| 婷婷色麻豆天堂久久| 最近的中文字幕免费完整| 又大又爽又粗| 国产精品一二三区在线看| 日本午夜av视频| 韩国精品一区二区三区| 中国三级夫妇交换| 在线观看免费视频网站a站| www.熟女人妻精品国产| 国产成人一区二区在线| 日日爽夜夜爽网站| 精品国产一区二区三区久久久樱花| 又黄又粗又硬又大视频| 大话2 男鬼变身卡| 欧美日韩精品网址| 亚洲人成电影观看| 制服诱惑二区| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区 | 一级爰片在线观看| 午夜久久久在线观看| 亚洲欧美成人精品一区二区| 国产成人av激情在线播放| 黄色视频不卡| 丰满少妇做爰视频| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 国产精品无大码| 自线自在国产av| xxx大片免费视频| 少妇被粗大的猛进出69影院| 天堂8中文在线网| 色94色欧美一区二区| 老司机深夜福利视频在线观看 | 黄色 视频免费看| 性少妇av在线| 成年动漫av网址| 青青草视频在线视频观看| 人人妻人人澡人人爽人人夜夜| 亚洲四区av| 免费高清在线观看视频在线观看| 18禁观看日本| 可以免费在线观看a视频的电影网站 | 欧美日韩视频精品一区|