• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bifurcation Analysis of a Nonlinear Vibro-Impact System with an Uncertain Parameter via OPA Method

    2024-02-19 12:01:54DongmeiHuangDangHongWeiLiGuidongYangandVesnaRajic

    Dongmei Huang,Dang Hong,Wei Li,★,Guidong Yang and Vesna Rajic

    1School of Mathematics and Statistics,Xidian University,Xi’an,710071,China

    2Department of Mathematics,Changzhi University,Changzhi,046011,China

    3Department for Statistics and Mathematics,Faculty of Economics,University of Belgrade,Belgrade,11000,Serbia

    ABSTRACT

    In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of the mean value.Afterwards,the stochastic vibro-impact system can be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincaré sections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the random intensity may result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.

    KEYWORDS

    Orthogonal polynomial approximation;vibro-impact systems;non-smooth systems;grazing bifurcation

    1 Introduction

    As it is well known,the phenomena of impacts and dry frictions exist widely in a large number of engineering devices [1–3],which can induce the instability and insecurity of these devices.Thus,studying the dynamical properties has been an epoch-making field for solving the relative problems of these non-smooth devices[4–6].In the last few years,numerous papers have concentrated on the study of non-smooth systems[4–8],in particular,on vibro-impact systems.This kind of vibro-impact system appears when a moving mass collides with a barrier and its displacement is greater than a critical value.

    Various complex impact structures and models were designed and developed in the past decade;the study of these systems was extensively performed.Namely,since the 1960s,the theoretical and experimental analyses of an impact system under periodic excitation have been performed by Masri[8,9].Based on the local Poincaré mapping method,the stabilities of non-smooth systems have been considered by Nordmark [10],Zhang et al.[11],and Jin et al.[12].Furthermore,the transition phenomena between different bifurcation phenomena of an impact oscillator with viscous damping have been studied by Peterka[13].Luo et al.[14]have researched the bifurcation characteristic of twodegree-of-freedom vibro-impact systems with weak and strong resonance.The global dynamics have been studied in a vibro-impact system with special friction by Gendelman et al.[15].The chaotic attractors and the periodic behavior of an inelastic,forced-impact oscillator near subharmonic resonance conditions have been explored by Rounak et al.[16].Additionally,random factors are unavoidable in the operation of dynamical systems [17,18].By means of the mean Poincaré map,the responses of a vibro-impact system have been analyzed by Feng et al.[19].By using the non-smooth variable transformation in[20],the energy losses induced by the impact and the probability density functions of the impact systems under stochastic excitation have been considered by Dimentberg et al.[21,22].An averaging approach to researching the nonlinear dynamics of the vibro-impact system under the effect of random perturbations has been developed by Namachchivaya et al.[23].Along with researching the multi-valued response of a nonlinear vibro-impact system with the existence of random narrow-band noise [24],Huang et al.have also considered the principal resonances of an elastic impact oscillator under stochastic excitation[25].The stochastic dynamics of the contact force models with elastic impact phenomena under additive noise have been investigated by Kumar et al.[26].By using the traditional theoretical analysis,the stochastic dynamical property of a nonlinear vibroimpact system with Coulomb friction under stochastic noise has been researched by Su et al.[27].Besides investigating the stochastic response of SDOF vibro-impact oscillators under wide-band noise excitations,Qian et al.[28]have also studied the response of vibro-impact systems by the RBF neural network method[29].Although numerous papers have been published,some stochastic non-smooth systems cannot be investigated by these theoretical methods due to the limited application.

    In order to overcome the difficulty of studying dynamical systems with an uncertain parameter,the orthogonal polynomial approximation (OPA) method has been utilized to study the stochastic dynamics of some kinds of smooth dynamical systems[30–32]with uncertain parameters.Although different kinds of orthogonal polynomials can be chosen,the Chebyshev polynomial approximation[30,31] and the Laguerre polynomial approximation [33] are the main methods in the stochastic analysis.By using the method based on the derived approximate formula of the Laguerre polynomials,Wang et al.[33]have investigated the stochastic response of a nonlinear elastic impact system,along with studying the global dynamic behavior of this kind of system with an uncertain parameter [34].Utilizing the method of Chebyshev polynomial approximation,Feng et al.[35] have studied the bifurcation of a stochastic nonlinear system with a one-sided constraint.Li et al.[36]have considered the bifurcations of the van der Pol system with two-side barriers.Recently,Huang et al.[37] and Zhang et al.[38]have extended the Chebyshev polynomial approximation method to study nonlinear harvesters.However,so far there have been only few papers on the non-smooth dynamical systems with the OPA method.Therefore,in this paper,we mainly concentrate on studying the stochastic responses of the vibro-impact system with nonlinear stiffness and damping under an uncertain parameter subjected to periodic impulse excitation and harmonic excitation according to the OPA method.

    The remaining part of this paper is organized as follows:the equivalent high-deterministic system is derived by the OPA method in Section 2;in Section 3 the effectiveness of the OPA method is proved.Afterwards,the bifurcation phenomena of the system by means of deterministic numerical methods are studied,summarizing the conclusions listed in Section 4.

    2 Orthogonal Polynomial Approximation

    As for stochastic vibro-impact system with nonlinear stiffness and damping under periodic impulse excitation and harmonic excitation,the non-smooth property is induced by the existence of a rigid barrier,as shown in Fig.1,whose non-dimensional differential equation is given as follows:

    wherefcos(ωt) is the harmonic excitation,ais the coefficient of the linear stiffness andcis the coefficient of the nonlinear stiffness.ηis the restitution coefficient(0<η≤1).Δis the rigid constraint constant.μis an uncertain parameter,denoted asμ=+σξin whichξis a random variable,is the mean value,andσis the intensity ofμ.

    When the displacement isx<Δ,the system(1)is a stochastic smooth nonlinear system as follows:

    When the constraint condition isx<Δand the constraint plane isH={(x,)|x=Δ},the jump equation is=-η,is the velocity before the instant of impacts,andis the velocity after the instant of impacts.

    According to the OPA method,the responses of the system(1)without the effect of impact can be expanded into the following sequence:

    whereHi(ξ)is theith orthogonal polynomial,herein,the Chebyshev orthogonal polynomials are used[39,40];N=0,1,2,...is the largest number of the expanded terms:xi(t)=∫1-1p(ξ)x(t,ξ)Hi(ξ)dξand

    The orthogonality of the polynomials is:

    Based on the property of the Chebyshev orthogonal polynomials,the recurrent formula among them is:

    As for the case without any constraints,when substituting Eq.(3)into Eq.(2),it has:

    By Eq.(5),the cubic terms of Eq.(6) can be expanded into a linear combination of the related single polynomials.The coefficient ofHi(ξ)in the linear combination is denoted asXi(t)andYi(t),(i=0,1,2,...);thus,the nonlinear terms on the left side of Eq.(6)can be expanded into:

    The expressions ofXi(t) andYi(t)(i=0,1,2,...) can be derived using software or manual calculation.

    Substituting Eqs.(5),(7)and(8)into Eq.(6),the following can be derived:

    In order to simplify Eq.(9),both sides of Eq.(9) are multiplied byHi(ξ) and then taken the expectation aboutξby means of the orthogonality of the Chebyshev polynomials,the equivalent deterministic equation without any constraints can be derived:

    wherex-1,xN+1,Y-1andYN+1are supposed to be zero due to the approximation in Eq.(3).WhenN→∞in Eq.(3),is strictly equivalent tox(t,ξ);however,in the real calculation,Nis finite and it is also enough to satisfy the basic requirement of the approximation.In the numerical analysis,N=4 will be taken.The expressions ofXi(t),i=0,1,2,3,4,5,which may be used in the discussion,can be found in[37].Additionally,if the derivative ˙xNis denoted asyN,the expressions ofYi(t),i=0,1,2,3,4,5 are given as follows:

    Sinceξis a random variable,when a group of sample{ξi}is taken between-1 and 1,each sampleξicorresponds to a deterministic sample system (2); thus,it is necessary to take the mean value to the sample system.The ensemble mean response(EMR)of the stochastic vibro-impact system can be derived by Eq.(3):

    By means of Eq.(20),the following relations can be defined:

    the mean constraint condition

    the mean constraint plane

    and the mean jump condition

    Substituting Eqs.(9)–(13)and(21)–(23)into the system(1),the stochastic nonlinear vibro-impact system can be simplified as follows:in case ofx<Δ,

    and in case ofx=Δ,the relationship is given as follows:

    Eqs.(24)–(28) are the equivalent high-dimensional deterministic systems derived by the mean jump equation,the mean constraint condition,and the Chebyshev polynomial approximation.Consequently,the numerical results of the system with an uncertain parameter can be obtained by effective numerical methods.

    3 Bifurcation Analysis

    3.1 Deterministic Response

    Naturally,in the deterministic case the parametersσ=0.0 orξ=0.0 are satisfied; hence,the original system can be reduced to a deterministic one-side constraint system as follows:

    Due to the deterministic property of Eq.(29),the response can be named the deterministic response (DMR).Therefore,for the equivalent system in Eqs.(24)–(28),by setting the parameterσ=0.0,the deterministic response of the high-dimensional system can be derived and denoted by EMR0.Correspondingly,the stochastic response of the equivalent system is denoted as EMR.Thus,the validity of the polynomial approximation for this kind of vibro-impact system with nonlinear stiffness and damping can be verified by comparing EMR0with DMR.The differences between EMR and DMR can show the effect of the uncertain parameter on the responses.

    In order to calculate the response,the initial condition of Eq.(29)is chosen asx(0)=-1.0,(0)=0.0.In addition,the initial condition of Eqs.(24)–(28)could be obtained asx(0)=[-1.0,0.0,0.0,0.0],(0)=[0.0,0.0,0.0,0.0].The parameters of the system are given as follows:f=2.0,ω=2.8,a=1.0,=0.8,η=0.8,Δ=0.0,n=2.

    Here,two different Poincaré sections(the phase plane and the constraint plane)are taken,while the value ofcvaries between 0.01 and 0.1.The bifurcation diagrams are plotted in Fig.3.It depicts that the properties are the same in Figs.3a and 3b,having been derived based on different Poincaré sections.In order to verify the response results in Fig.3,the phase portraits,the time histories,and the Poincaré sections are exhibited in Fig.4.As Fig.4 displays,whencincreases from 0.035 to 0.05,the 4/4 periodic response of the system converts into the 2/2 response with the asterisk presenting the points of the Poincaré sections.It is also verified the bifurcation properties shown in Fig.3,which are depicted by the points(A1A2A3A4,C1C2C3C4,B1B2,D1D2).In the symbolz=n/p,pis the number of impacts andnis the number of the periods of the excitation force with the periodT=2π/ω.Furthermore,the DMR and EMR0also present very well the consistent base on the phase portraits in Fig.4,showing the availability of the approximation method in Section 2.

    Figure 3 :Bifurcation diagrams of DMR and EMR0 vs.c,(a)the phase plane as Poincaré section,(b)the constraint plane as Poincaré section

    Figure 4 :(a)The phase portraits and Poincaré sections for c=0.05,(b)the time histories for c=0.05,the periodic 2/2 motion,(c) the phase portraits and Poincaré sections for c=0.035,(d) the time histories for c=0.035,the periodic 4/4 motion

    3.2 Effects of an Uncertain Parameter on Period-Doubling Bifurcation

    In order to consider the effects of an uncertain parameter on period-doubling bifurcation,the following system parameters are chosen:a=0.5,c=0.05,F0=0.1,f=1.5,u=0.8,η=0.8,Δ=0.0,andn=2.When the excitation frequencyωchanges between 3.98 and 4.2,two examples of numerical results are obtained as displayed in Fig.5 forσ=0.0.Taking the value ofω=3.98,the response characteristics of DMR and EMR0are obtained as shown in Fig.5a.Moreover,with increasingω,DMR and EMR0from the periodic 6/2 motion turn to the approximate 3/1 motion.As for Poincaré section,the mark “■” presents the corresponding Poincaré section,and the periodic properties also can be observed clearly from Poincaré section.

    Figure 5 : The phase portraits (a) ω=3.98,the periodic 6/2 motion,(b) ω=4.2,the periodic 3/1 motion

    As forω=3.98,when the random intensityσincreases to 0.01,the phase portrait can be seen as plotted in Fig.6a.Even though,the trajectory of the system has certain diffusion,it does not change the property of the motion,the period is still 6T.With the further increase ofσ,EMR in Fig.6b greatly differs from DMR in Fig.5a;actually,it is no longer the periodic motion under the strict sense.For the case ofω=4.2,it also appears to be the same phenomenon,which is plotted in Figs.6c and 6d forσ=0.02 andσ=0.03,respectively.Evidently,the strong diffusion phenomenon results in the change of the topological property of the response in Fig.6d.

    As a conclusion,under the effect of the uncertain parameter with the decreasing frequencyωfrom 4.2 to 3.98,the nonlinear vibro-impact system,just like the deterministic system,experiences a period-doubling bifurcation from 3Tto 6T.However,if random intensity continues to increase,the dynamical behavior of the system will experience the essential change.The random factors result in the essential change of the dynamical behavior,the reason of this change is that the trajectories of the system are much closer to the constraint plane; thus,under the random disturbance the trajectories induce diffusion and just impact the constraint plane.

    3.3 Existence of Grazing Bifurcation

    In this section,to investigate the grazing bifurcation which is typical for the system with impact phenomenon,the same parameters are taken as in Section 3.1,except fora=3.5,f=3.5.

    When the frequency isω=4.00495,as presented in Fig.7,one trajectory of the system is tangent to the constraint plane with zero speed,and grazing bifurcation occurs which generally exists only in non-smooth systems.However,in this case with increasing the random intensityσ,the phase portraits undergoes a few changes; as shown in Fig.7.Actually,at some critical points the nonsmooth dynamical response becomes insensitive around the grazing point.Even with relatively large disturbance,the system can also keep the original motion state quiet well(Fig.7b).

    At the same time,in case ofω=3.98,the phenomenon of grazing bifurcation also occurs,as shown in Fig.8,but it differs from the case ofω=4.00495 in Fig.7.Whenσ=0.1,the trajectories of the system experience certain diffusion in Fig.8a,and then there is a serious diffusion for biggerσ(as shown in Fig.8b forσ=0.18).This shows that at this grazing bifurcation point,the effect of the uncertain parameter on the response occurs in the same phenomena with period-doubling bifurcation.

    Figure 6 : EMR for different values of σ as (a) ω=3.98,σ=0.01,(b) ω=3.98,σ=0.014,(c)ω=4.2,σ=0.02,(d)ω=4.2,σ=0.03

    Figure 7 :EMR for different values of σ as ω=4.00495,(a)σ=0.1;(b)σ=0.2

    Figure 8 :EMR for different values of σ as ω=3.98,(a)σ=0.1,(b)σ=0.18

    In order to present the effect of an uncertain parameter on bifurcation,for different values of intensityσ,the bifurcation diagrams of EMR with the variation ofωare plotted in Figs.9a–9d,respectively.The reasons for the diffusion of the system trajectories are that,on the one hand,the trajectories of the system are much closer to the constraint plane;thus,under the random disturbance the trajectories experience diffusion and then impact the constraint plane.On the other hand,with increasing random intensityσ,the grazing bifurcation appears in advance,which can be seen in Fig.9.

    Figure 9 :The bifurcation diagrams of EMR vs.ω for different values of σ,(a)σ=0.0;(b)σ=0.1;(c)σ=0.16;(d)σ=0.18

    3.4 Influence of the Impulse Force

    When it comes to the influence of the impulse signal on the bifurcation properties the following ideas are considered: the stronger impulse signals are chosen withF0=10.0; the casesn=2 andn=4 are also considered,respectively;and the fact that the different numbers ofnlead to different appearance time and values of impulse.Having compared the bifurcation diagrams plotted in Figs.2 and 10,the following conclusions can be drawn.As it can be seen,at most of the points,the topological properties have not changed,but the diffusion phenomenon apparently has a stronger impulse force,and under larger values ofnthe diffusion phenomenon is more obvious.

    Figure 10 : The bifurcation diagrams of EMR0 vs.c with stronger impulse force,(a) the phase plane as Poincaré section with n=2,(b)the constraint plane as Poincaré section with n=2,(c)the phase plane as Poincaré section with n=4,(d)the constraint plane as Poincaré section with n=4

    The phase portraits in Fig.11 also verify the results.As illustrated,under smaller impulse force,different values ofnunder the influence of the response are not obvious.With larger value of impulse force and under smaller value ofn,the diffusion phenomenon can be noticed;however,larger value ofncan induce a serious diffusion phenomenon.

    4 Conclusions

    In this paper,the OPA method is applied in the vibro-impact system with an uncertain parameter under periodic impulse excitation and harmonic excitation,and the damping coefficient is considered as an uncertain parameter.In order to study the dynamical response,the ensemble mean response of an equivalent high-dimensional system is introduced and the impact conditions are also transformed by means of the mean value; then,the deterministic high-dimensional equivalent vibro-impact system is derived.Afterward,the constraint plane and the phase plane are chosen as the Poincaré section,respectively,with the response properties being consistent in the bifurcation diagrams.By combining the analysis of the phase portraits,it is evident that the approximation method is effective in this kind of vibro-impact system.Furthermore,it has been proved that besides period-doubling bifurcation,certain grazing bifurcation exists also in the stochastic nonlinear vibro-impact system.Under the influence of the uncertain parameter,the system responds not only with the characteristic of the smooth system which can make trajectories of the systems’diffusion,but also with a special characteristic of a non-smooth system.At a critical point of bifurcation,the random factors with certain intensity make the dynamical behavior of the system change drastically.Furthermore,grazing bifurcation appears in advance with increasing random intensity.The existence of the stronger impulse force can induce the appearance of a diffusion phenomenon.An appropriate choice of impulse force can control the vibration and improve the response performance.Overall,the bifurcation analysis is helpful for further investigating of stochastic dynamics.

    Figure 11 :The phase portraits for c=0.0356,(a)F0=0.1,n=2;(b)F0=0.1,n=4;(c)F0=10.0,n=2;(d)F0=10.0,n=4

    Acknowledgement:The authors are grateful for the support by the National Natural Science Foundation of China,the Bilateral Governmental Personnel Exchange Project between China and Slovenia for the Years 2021–2023,Slovenian Research Agency ARRS in Frame of Bilateral Project,the Fundamental Research Funds for the Central Universities,Joint University Education Project between China and East European.

    Funding Statement:This work was supported by the National Natural Science Foundation of China(Grant Nos.12172266,12272283),the Bilateral Governmental Personnel Exchange Project between China and Slovenia for the Years 2021–2023 (Grant No.12),Slovenian Research Agency ARRS in Frame of Bilateral Project (Grant No.P2-0137),the Fundamental Research Funds for the Central Universities (Grant No.QTZX23004),Joint University Education Project between China and East European(Grant No.2021122).

    Author Contributions:The authors confirm contribution to the paper as follows:Conceptualization,Methodology,Validation:Dongmei Huang;analysis and interpretation of results:Dongmei Huang,Dang Hong,Wei Li;Writing-Original Draft:Dongmei Huang,Dang Hong,Wei Li,Guidong Yang and Vesna Rajic.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:Data will be made available on request.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产有黄有色有爽视频| 美女扒开内裤让男人捅视频| 日日爽夜夜爽网站| 欧美日韩精品网址| 97在线人人人人妻| 久久久水蜜桃国产精品网| av网站免费在线观看视频| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影小说| 丝瓜视频免费看黄片| 国产精品二区激情视频| 黄片大片在线免费观看| 欧美精品av麻豆av| 亚洲精品一卡2卡三卡4卡5卡 | 久久精品成人免费网站| 777米奇影视久久| 91精品伊人久久大香线蕉| 不卡一级毛片| 欧美黑人欧美精品刺激| 超色免费av| 成人三级做爰电影| 在线观看舔阴道视频| 妹子高潮喷水视频| 不卡一级毛片| 另类精品久久| 亚洲精品一区蜜桃| h视频一区二区三区| 18禁国产床啪视频网站| kizo精华| 久久久水蜜桃国产精品网| 90打野战视频偷拍视频| 国产精品av久久久久免费| 精品免费久久久久久久清纯 | www.自偷自拍.com| 国产亚洲av片在线观看秒播厂| 久久国产精品男人的天堂亚洲| 欧美黑人精品巨大| 黄片小视频在线播放| 19禁男女啪啪无遮挡网站| 天天添夜夜摸| 99国产精品一区二区蜜桃av | 国产深夜福利视频在线观看| 涩涩av久久男人的天堂| avwww免费| 中文字幕人妻丝袜一区二区| 免费高清在线观看日韩| 国产日韩一区二区三区精品不卡| 亚洲美女黄色视频免费看| 99久久国产精品久久久| 亚洲综合色网址| 欧美国产精品一级二级三级| 久久99热这里只频精品6学生| 丝袜美足系列| 欧美日韩精品网址| 丰满少妇做爰视频| 亚洲精品久久午夜乱码| 亚洲欧美清纯卡通| 午夜激情av网站| 亚洲三区欧美一区| 狠狠精品人妻久久久久久综合| 97在线人人人人妻| av欧美777| 亚洲男人天堂网一区| 久久精品人人爽人人爽视色| 人成视频在线观看免费观看| 桃花免费在线播放| 99九九在线精品视频| 韩国精品一区二区三区| 国产一区二区三区在线臀色熟女 | 韩国精品一区二区三区| 国产亚洲欧美在线一区二区| 日本wwww免费看| 精品高清国产在线一区| 久久精品国产a三级三级三级| 午夜福利免费观看在线| 99热网站在线观看| 亚洲精品国产av成人精品| 亚洲成人免费av在线播放| 国产精品av久久久久免费| 国产成人欧美在线观看 | av在线老鸭窝| 亚洲欧美色中文字幕在线| 亚洲av成人不卡在线观看播放网 | 最近最新中文字幕大全免费视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品在线美女| 三上悠亚av全集在线观看| 搡老岳熟女国产| 国产不卡av网站在线观看| 成人免费观看视频高清| 国产成人精品无人区| 国产欧美日韩一区二区精品| 狂野欧美激情性xxxx| 久久影院123| 不卡av一区二区三区| 99久久人妻综合| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 咕卡用的链子| 久久久欧美国产精品| 一级,二级,三级黄色视频| 国产高清videossex| 日韩一区二区三区影片| 久久亚洲国产成人精品v| 桃红色精品国产亚洲av| 啦啦啦在线免费观看视频4| 欧美+亚洲+日韩+国产| 免费高清在线观看日韩| 成人三级做爰电影| 午夜两性在线视频| 大香蕉久久网| 国产男人的电影天堂91| 国产精品1区2区在线观看. | 色老头精品视频在线观看| 日韩视频在线欧美| 伊人亚洲综合成人网| 搡老乐熟女国产| 国产日韩欧美视频二区| 日韩,欧美,国产一区二区三区| 亚洲人成电影免费在线| 久久久久国产一级毛片高清牌| 色视频在线一区二区三区| 男男h啪啪无遮挡| 丰满饥渴人妻一区二区三| 午夜免费成人在线视频| 亚洲视频免费观看视频| 免费观看人在逋| 久9热在线精品视频| 欧美另类亚洲清纯唯美| 亚洲av成人一区二区三| 久久久精品区二区三区| 亚洲国产毛片av蜜桃av| 啦啦啦 在线观看视频| 啪啪无遮挡十八禁网站| 午夜老司机福利片| 青青草视频在线视频观看| 久久久久网色| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美日韩在线播放| 欧美在线黄色| 久久狼人影院| 男女床上黄色一级片免费看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲美女黄色视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看日本一区| 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 美女高潮到喷水免费观看| 在线观看免费日韩欧美大片| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 久久天堂一区二区三区四区| 女警被强在线播放| 欧美国产精品va在线观看不卡| 日韩欧美一区视频在线观看| 青草久久国产| 免费观看人在逋| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 美女高潮喷水抽搐中文字幕| 亚洲国产av影院在线观看| av一本久久久久| av天堂久久9| 精品久久久精品久久久| 一级黄色大片毛片| 精品一品国产午夜福利视频| 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 一级毛片女人18水好多| 嫩草影视91久久| 男女之事视频高清在线观看| 国产精品一区二区在线不卡| 国产精品影院久久| 满18在线观看网站| 亚洲欧美日韩高清在线视频 | 国产真人三级小视频在线观看| 久久免费观看电影| 亚洲成人手机| 精品一品国产午夜福利视频| 国产国语露脸激情在线看| 老司机影院成人| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 日韩中文字幕欧美一区二区| 五月开心婷婷网| 亚洲精品久久久久久婷婷小说| 亚洲欧美精品自产自拍| 伊人亚洲综合成人网| 成人黄色视频免费在线看| 日本猛色少妇xxxxx猛交久久| 王馨瑶露胸无遮挡在线观看| 婷婷成人精品国产| av在线app专区| 亚洲精品粉嫩美女一区| 一区二区三区精品91| 伦理电影免费视频| 老熟妇乱子伦视频在线观看 | 免费在线观看完整版高清| 视频区欧美日本亚洲| 国产一区二区三区av在线| 夫妻午夜视频| 亚洲一区中文字幕在线| 蜜桃国产av成人99| 午夜福利一区二区在线看| 老鸭窝网址在线观看| 大片电影免费在线观看免费| 高清欧美精品videossex| 韩国精品一区二区三区| 精品人妻熟女毛片av久久网站| 最新的欧美精品一区二区| 一级毛片电影观看| 午夜激情av网站| 久久久精品免费免费高清| 日韩人妻精品一区2区三区| 久久久国产一区二区| 日日爽夜夜爽网站| 久久久久久久国产电影| 亚洲精品美女久久av网站| 国产一区二区三区av在线| 亚洲av电影在线观看一区二区三区| 97人妻天天添夜夜摸| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线观看99| 国产欧美日韩综合在线一区二区| 久久久久久久久免费视频了| 国产日韩欧美视频二区| 亚洲,欧美精品.| 国产精品成人在线| 久久热在线av| 国产一级毛片在线| 日韩,欧美,国产一区二区三区| 波多野结衣一区麻豆| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区| 中文字幕制服av| 宅男免费午夜| 中文欧美无线码| 久久国产精品人妻蜜桃| 动漫黄色视频在线观看| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲av国产电影网| 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 久久久精品免费免费高清| 18在线观看网站| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 国产又色又爽无遮挡免| 亚洲熟女精品中文字幕| 久久青草综合色| 在线亚洲精品国产二区图片欧美| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 满18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 99热全是精品| 亚洲精品美女久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 午夜日韩欧美国产| 国产野战对白在线观看| 天堂中文最新版在线下载| 亚洲国产欧美在线一区| 午夜激情av网站| 深夜精品福利| 精品国产乱码久久久久久小说| 精品国产国语对白av| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| 在线精品无人区一区二区三| 国产国语露脸激情在线看| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| cao死你这个sao货| 国产成人欧美在线观看 | 国产亚洲欧美在线一区二区| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 亚洲av成人一区二区三| 亚洲第一av免费看| 日韩人妻精品一区2区三区| 欧美久久黑人一区二区| 欧美 日韩 精品 国产| 久久国产精品大桥未久av| 国产精品亚洲av一区麻豆| 男人爽女人下面视频在线观看| 国产主播在线观看一区二区| 亚洲五月婷婷丁香| 久久 成人 亚洲| 丁香六月天网| 久久免费观看电影| av国产精品久久久久影院| 涩涩av久久男人的天堂| 国产精品久久久久久人妻精品电影 | 国产亚洲欧美在线一区二区| 老司机午夜福利在线观看视频 | 少妇猛男粗大的猛烈进出视频| 一个人免费看片子| 伊人亚洲综合成人网| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 国产精品自产拍在线观看55亚洲 | 国产亚洲欧美在线一区二区| 亚洲成国产人片在线观看| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看| 日韩制服骚丝袜av| 高清欧美精品videossex| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到| 咕卡用的链子| 国产免费av片在线观看野外av| 久久香蕉激情| 一本综合久久免费| 国产一卡二卡三卡精品| 免费在线观看黄色视频的| 亚洲精品国产av成人精品| 欧美午夜高清在线| 国产成人av教育| 精品福利观看| 亚洲,欧美精品.| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| 国产伦理片在线播放av一区| 女警被强在线播放| 亚洲一区中文字幕在线| www.999成人在线观看| 99热网站在线观看| 97精品久久久久久久久久精品| 男女床上黄色一级片免费看| 国产成人免费观看mmmm| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区 | 少妇 在线观看| 国产亚洲欧美在线一区二区| 成人三级做爰电影| 悠悠久久av| 满18在线观看网站| 脱女人内裤的视频| 日韩视频在线欧美| 久久香蕉激情| 男人爽女人下面视频在线观看| 十八禁网站网址无遮挡| 最新在线观看一区二区三区| 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女 | 亚洲精品一卡2卡三卡4卡5卡 | 一本—道久久a久久精品蜜桃钙片| 欧美日韩av久久| 国产精品九九99| 国产精品免费大片| 婷婷成人精品国产| 99国产精品一区二区蜜桃av | 亚洲激情五月婷婷啪啪| 丁香六月欧美| 午夜免费观看性视频| 免费在线观看黄色视频的| 在线 av 中文字幕| 日本黄色日本黄色录像| 一级片'在线观看视频| 最新在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 国产av精品麻豆| 久久热在线av| 国产成人系列免费观看| 91国产中文字幕| 一本综合久久免费| 欧美黑人欧美精品刺激| 老司机午夜福利在线观看视频 | 欧美精品啪啪一区二区三区 | 国产成人免费观看mmmm| 一区二区三区激情视频| 久久中文字幕一级| 色视频在线一区二区三区| 国产真人三级小视频在线观看| 99精品久久久久人妻精品| 曰老女人黄片| 亚洲中文av在线| 男女高潮啪啪啪动态图| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| av电影中文网址| 高清视频免费观看一区二区| 老司机福利观看| 成年av动漫网址| 国产成人影院久久av| 亚洲成人手机| 人妻一区二区av| 777米奇影视久久| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲欧美清纯卡通| 深夜精品福利| 免费久久久久久久精品成人欧美视频| 久久久久久久国产电影| 亚洲精品日韩在线中文字幕| 99九九在线精品视频| 欧美黑人欧美精品刺激| 国产男女内射视频| 欧美+亚洲+日韩+国产| 91国产中文字幕| 美女国产高潮福利片在线看| 91成年电影在线观看| 久久热在线av| 成年动漫av网址| 少妇人妻久久综合中文| 在线观看www视频免费| 久久精品国产亚洲av高清一级| 少妇猛男粗大的猛烈进出视频| 1024香蕉在线观看| 老司机福利观看| 精品亚洲乱码少妇综合久久| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 伊人亚洲综合成人网| 国精品久久久久久国模美| 国产精品久久久人人做人人爽| 99热网站在线观看| 12—13女人毛片做爰片一| 电影成人av| 一本大道久久a久久精品| 十八禁网站网址无遮挡| 国产高清videossex| 久久国产精品男人的天堂亚洲| 美女主播在线视频| 久久久久国产精品人妻一区二区| 91av网站免费观看| 中文字幕高清在线视频| 宅男免费午夜| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 日韩 亚洲 欧美在线| 狠狠婷婷综合久久久久久88av| 久久狼人影院| 最新的欧美精品一区二区| a级毛片黄视频| 少妇裸体淫交视频免费看高清 | 国产av又大| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 欧美乱码精品一区二区三区| 啦啦啦 在线观看视频| 青春草亚洲视频在线观看| 国产淫语在线视频| 免费不卡黄色视频| 久久久久久久国产电影| 欧美精品一区二区免费开放| 亚洲一区中文字幕在线| 美女脱内裤让男人舔精品视频| 中文字幕av电影在线播放| 美女高潮喷水抽搐中文字幕| 精品一区在线观看国产| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区 | 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三 | 久久人人爽人人片av| 亚洲国产精品一区二区三区在线| 人妻人人澡人人爽人人| 色94色欧美一区二区| 久久久久久久久免费视频了| 国产免费av片在线观看野外av| 亚洲综合色网址| tube8黄色片| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网 | 欧美日韩亚洲高清精品| 国产色视频综合| 一二三四在线观看免费中文在| 在线看a的网站| 美国免费a级毛片| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看| 久久精品aⅴ一区二区三区四区| 美女扒开内裤让男人捅视频| 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人看| 每晚都被弄得嗷嗷叫到高潮| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| 一级片免费观看大全| 色婷婷久久久亚洲欧美| 国产有黄有色有爽视频| 精品久久久精品久久久| 99国产综合亚洲精品| 中文字幕高清在线视频| 国产精品.久久久| 一级毛片精品| 19禁男女啪啪无遮挡网站| 脱女人内裤的视频| 欧美日本中文国产一区发布| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 制服人妻中文乱码| 国产91精品成人一区二区三区 | 免费在线观看日本一区| 久久亚洲国产成人精品v| 欧美大码av| 亚洲国产精品999| 国产人伦9x9x在线观看| 1024香蕉在线观看| 搡老乐熟女国产| 亚洲成人国产一区在线观看| 男女高潮啪啪啪动态图| 国产欧美日韩一区二区三 | 免费在线观看影片大全网站| 麻豆国产av国片精品| 不卡一级毛片| 久久久国产成人免费| 欧美日韩亚洲高清精品| 国产国语露脸激情在线看| 久久人人97超碰香蕉20202| 日本wwww免费看| 十八禁高潮呻吟视频| 久久久久久亚洲精品国产蜜桃av| 久久久国产欧美日韩av| 久久久久视频综合| 精品国产一区二区三区四区第35| av又黄又爽大尺度在线免费看| 国产又爽黄色视频| 国产亚洲欧美精品永久| h视频一区二区三区| 精品一区在线观看国产| 91麻豆精品激情在线观看国产 | 99热全是精品| 欧美精品一区二区免费开放| 国产高清视频在线播放一区 | 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 欧美日韩亚洲高清精品| 国产国语露脸激情在线看| 日韩欧美国产一区二区入口| 日本撒尿小便嘘嘘汇集6| 十八禁高潮呻吟视频| 各种免费的搞黄视频| 日本欧美视频一区| 一级片'在线观看视频| 考比视频在线观看| 中国国产av一级| 欧美黑人欧美精品刺激| 国产99久久九九免费精品| 女性生殖器流出的白浆| 国产亚洲精品一区二区www | 黄色 视频免费看| 操出白浆在线播放| 免费少妇av软件| 久久午夜综合久久蜜桃| 肉色欧美久久久久久久蜜桃| 啦啦啦啦在线视频资源| 国产成人欧美在线观看 | 午夜福利乱码中文字幕| 国产成人精品久久二区二区免费| av超薄肉色丝袜交足视频| 日韩欧美国产一区二区入口| 欧美精品av麻豆av| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 久久久国产一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人av教育| 97在线人人人人妻| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区| 男女高潮啪啪啪动态图| 日本精品一区二区三区蜜桃| 窝窝影院91人妻| 黑丝袜美女国产一区| www日本在线高清视频| 每晚都被弄得嗷嗷叫到高潮| 日本撒尿小便嘘嘘汇集6| 亚洲av美国av| av不卡在线播放| 亚洲人成电影免费在线| 日韩欧美一区二区三区在线观看 | 午夜老司机福利片| 宅男免费午夜| 在线十欧美十亚洲十日本专区| 免费在线观看黄色视频的| 国产精品久久久人人做人人爽| 一区二区三区乱码不卡18| 后天国语完整版免费观看| 欧美黑人精品巨大| 一区二区三区乱码不卡18| 成人黄色视频免费在线看| 午夜免费观看性视频| 欧美乱码精品一区二区三区| 成人黄色视频免费在线看| 久久久精品免费免费高清| 国产亚洲精品一区二区www | 又大又爽又粗| 国产日韩欧美在线精品| 青青草视频在线视频观看| 国产精品久久久久久人妻精品电影 | 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| av超薄肉色丝袜交足视频| 免费黄频网站在线观看国产| 日日爽夜夜爽网站| 免费高清在线观看视频在线观看| 国产xxxxx性猛交| 亚洲国产欧美网| 青草久久国产| 久久精品aⅴ一区二区三区四区| 一区二区三区乱码不卡18|