• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EfficientShip:A Hybrid Deep Learning Framework for Ship Detection in the River

    2024-02-19 12:01:00HuafengChenJunxingXueHanyunWenYurongHuandYudongZhang

    Huafeng Chen,Junxing Xue,Hanyun Wen,Yurong Hu and Yudong Zhang

    1School of Computer Engineering,Jingchu University of Technology,Jingmen,448000,China

    2School of Computer Science,Yangtze University,Jingzhou,434023,China

    3School of Computing and Mathematic Sciences,University of Leicester,Leicester,LE1 7RH,UK

    ABSTRACT

    Optical image-based ship detection can ensure the safety of ships and promote the orderly management of ships in offshore waters.Current deep learning researches on optical image-based ship detection mainly focus on improving one-stage detectors for real-time ship detection but sacrifices the accuracy of detection.To solve this problem,we present a hybrid ship detection framework which is named EfficientShip in this paper.The core parts of the EfficientShip are DLA-backboned object location (DBOL) and CascadeRCNN-guided object classification (CROC).The DBOL is responsible for finding potential ship objects,and the CROC is used to categorize the potential ship objects.We also design a pixel-spatial-level data augmentation(PSDA)to reduce the risk of detection model overfitting.We compare the proposed EfficientShip with state-of-the-art(SOTA)literature on a ship detection dataset called Seaships.Experiments show our ship detection framework achieves a result of 99.63%(mAP)at 45 fps,which is much better than 8 SOTA approaches on detection accuracy and can also meet the requirements of real-time application scenarios.

    KEYWORDS

    Ship detection;deep learning;data augmentation;object location;object classification

    1 Introduction

    With the continuous advancement of technology and the rapid development of industrial production,international trade is gradually increasing.The market of the shipping industry is also flourishing.In order to ensure the safety of ships and promote the orderly management of ships,satellites(generate SAR images)are used to monitor ships at sea[1]and surveillance cameras(generate optical images)are adopted for tracking ships in offshore waters[2,3].At the technical level,with the maturity of artificial intelligence technology[4],computer-aided methods of ship classification,ship instance segmentation and ship detection from images are studied to reduce the burden on human monitors[5].We focus on ship detection based on optical images generated by surveillance cameras in this paper.

    In recent years,deep learning-based ship detection has become a hot research area [6–8].Sea ship detection is one of the general object detections [9].Researches on deep learning based object detection can be roughly split into two classifications:One-stage detectors and two-stage detectors[10].One-stage detectors combine object location and classification in one deep learning framework,while two-stage detectors find object location in the first place and classify the potential objects secondly.Representative one-stage detection algorithms are RetinaNet[11],FCOS[12],CenterNet[13],ATSS[14],PAA [15],BorderDet [16],and YOLO series [17–21].Mainstream two-stage object detection approaches are R-CNN [22],SPPNet [23],Fast RCNN [24],Faster RCNN [25],FPN [26],Cascade RCNN[27],Grid RCNN[28],and CenterNet2[29].

    Generally,the one-stage detector is considered to have a faster detection speed,while the two-stage detection algorithm has higher detection accuracy.While recent methods of ship detection[3,30–37]focus on improving one-stage detectors for real-time ship detection,they sacrifice the accuracy of detection.In this paper,we present a real-time two-stage ship detection algorithm,which improves detection accuracy while ensuring real-time performance.The algorithm includes two parts:the DLAbackboned object location(DBOL)and the CascadeRCNN-guided object classification(CROC).To further improve the accuracy of ship detection,we design a novel pixel-spatial-level data augmentation(PSDA) for increasing the number of samples at a high multiple and effectively.The PSDA,DBOL and CROC make up the proposed hybrid deep learning framework of EfficientShip.

    The contributions of this study can be summarized as follows:

    (1)The DBOL is presented for finding potential ship objects in real time.We integrate DLA[38],ResNet-50[39]and CenterNet[13]into DBOL for evaluating object likelihoods quickly and accurately.

    (2) The CROC is put forward to real-time categorize the potential ship objects.We calculate the category scores of suspected objects based on conditional probability and extrapolate the final detection.

    (3)The PSDA is proposed to reduce the risk of the model overfitting.We amplify the original data by 960 times based on pixel and spatial image augmentation.

    (4)Our EfficientShip(includes PSDA,DBOL and CROC)gets the best performance compared with 8 existing SOTA methods:99.63%(accuracy)with 45 fps(speed).

    2 Related Work

    2.1 Ship Detection

    Ship detection can be divided into SAR image-based[5,40]and optical image-based ship detection[2,3].Here we focus on reviewing optical image-based ship detection.Traditional optical image-based ship detection use hand-crafted features which sliding window to obtain the candidate area of the ship target based on the saliency map algorithm or the visual attention mechanism.The features of the candidate target are extracted for training to obtain the detection model[41,42].

    Recently,deep learning-based ship detection has attracted researchers’attention.Shao et al.[3]introduced a CNN framework on the basis of saliency-aware for ship detection.Based on YOLOv2,the ship’s location and classification under a complex environment were inferred by CNN firstly and were refined through saliency detection.Sun et al.[32]presented an algorithm named NSD-SSD for realtime ship detection.They combined dilated convolution and multiscale feature to promote knockdown performance in detecting a small object of a ship.For getting the inferring score of every class and the variation of every prior bounding box,they also designed a batch of convolution filters at every trenchant feature layer.They finally reconstructed prior boxes with K-means clustering to advance visual accuracy and the ship-detecting efficiency.

    Liu et al.[31] have designed an advanced CNN-enabled learning method for promoting ship detection under different weather conditions.On the basis of YOLOv3,they devised new scale of anchor boxes,localization probability of bounding boxes,soft non-maximum suppression,and medley loss function for advancing the CNN capacities of learning and expression.On the other hand,they introduced an agile DA tactics through produce synthetically-degraded pictures to enlarge the capacity and diversity of rudimentary ship detection dataset.Considering the influence of meteorological factors on ship detection accuracy,Nie et al.[30]synthesized foggy images and low visibility pictures via exploiting physical models separately.They trained YOLOv3 on the expanded dataset,including both composite and original ship pictures and illustrated that the trained model achieved excellent ship detection accuracy within a variety of weather conditions.For real-time ship detection,Li et al.[33]concentrated the network of YOLOv3 by training predetermined anchors based on the annotations of Seaship,instead max-pooling layer with convolution layer,expanding channels of prediction network to promote the detection ability of tiny object,and embedding CBAM attention module into the backbone network to facilitate the model focusing on the object.Liu et al.[43] proposed two new anchor-setting methods,the average method and the select-all method,for detecting ship targets on the basis of YOLOv3.Additionally,they adopt the feature fusion structure of cross PANet for combining the different anchor-setting methods.Chen et al.[35]introduced the AE-YOLOv3 for real-time endto-end ship identification.AE-YOLOv3 was merged in the feature attention module,embedded with the feature extraction network,and fused through multiscale feature enhancement model.

    Liu et al.[34] presented a method of RDSC on the basis of YOLOv4 by reducing more than 40% weights compared to the original one.The improved lightweight algorithm achieved a tinier network volume and preferable real-time performance on ship detection.Zhang et al.[36]presented a lightweight CNN named Light-SDNet for detecting ships under various weather conditions.Based on YOLOv5,they modificated CA-Ghost,C3Ghost,and DWConv to decrease the model parameters size.They designed a hybrid training tactic by deriving jointly-degraded pictures to expand the number of the primitive dataset.Zhou et al.[37] improved YOLOv5 for ship target detection,and named it as YOLO-Ship,which adopted MixConv to update classical convolution operation and concordant attention framework.At decision stage,they employed Focal Loss and CIoU Loss for optimizing raw cost functions.

    In order to reach the goal of real-time application while obtaining detection accuracy,most of the above algorithms choose a one-stage detection algorithm as the basis for improvement.Different from these methods,we present a real-time approach of two-stage detection as the main ship detection framework and verify its accuracy and real-time performance through experiments.

    2.2 Data Augmentation(DA)

    Image data collection and labeling are very labor-intensive.Due to funding constraints,ship detection datasets usually have only thousands of annotated images[2].But the deep learning model has many parameters and requires tens of thousands of data for training.While a deep convolutional neural network(CNN)learns a function that has a very high correlation with the small training data,it is poorly generalizable to testing set(overfitting).Data augmentation technology can simulate training image data through lighting variations,occlusion,scale and orientation variations,background clutter,object deformatio,etc.,so that the deep learning model is robust to these disturbances and reducing overfitting on testing data[44,45].

    Image DA algorithms can be split into basic image manipulations and deep learning approaches[44].Basic image manipulations change original image pixels while the image label is conserved.Basic image manipulations include geometric transformations,color space transformations,kernel filters and random erasing.Image geometric transformations shift the geometry of image without altering its actual pixel values.Simple geometric transformations cover flipping,cropping,rotation and translation.Color space transformations will shift pixel values through an invariable number,separate RGB color channel or limit pixel values into a range.The methods of kernel filter sharpen or blur original images via sliding of filter matrix across training image.Inspired by CNN dropout regularization,random erasing does the operation of masking training image patch with the values 0,255,or random number.Taylor et al.proved the effectiveness of geometric and color space transformations[46],while Zhong et al.verified the performance of random erasing through experiments[47].Xu et al.presented a novel shadow enhancement named SBN-3D-SD for higher detection-tracking accuracy[48].

    Deep learning-based augmentation adopts learning methods to produce synthetic examples for training data.It can be divided into adversarial training based DA,GAN-based DA,neural transfer based DA,and meta-learning-based DA [44].Adversarial training based DA generates adversarial samples and inserts them into the training set so that the inferential model can learn from the adversarial samples during training [49].Method of GAN is an unsupervised generative model that can generate synthetic data given a random noise vector.Adding the data generated by GAN-based DA into the training set can optimize deep learning model parameters[50].The idea of neural style transfer is to manipulate sequential features across a CNN so that the image pattern can be shifted into other styles while retaining its primitive substance.Meta-learning-based DA uses a pre-prepared neural network to learn DA parameters from medley images,Neural Style Transfer,and geometric transfigurations.The image generated by deep learning-based augmentation is abstract and cannot pinpoint target bounding boxes.So it is not suitable for ship detection.

    3 Methodology

    In this section,we describe the method of EfficientShip for ship detection.It includes proposed PSDA,DBOL and CROC(as shown in Fig.1).

    Figure 1 : The architecture of the proposed EfficientShip.PSDA is used for expanding the amount of image sample; DBOL is responsible for detecting potential objects; CROC tries to identify the potential objects

    3.1 Proposed PSDA

    The ship detection dataset is small for the current study.Therefore,we present a method named PSDA to counteract the overfitting of the ship detection model.PSDA includes pixel level DA(PDA),spatial level DA(SDA),and their combination.PDA will change the content of the input image at the pixel level,and SDA is to perform geometric transformations on it.

    Suppose the number of DA methods we used ismda,and a train imagextr(i) ∈Xtr,whereXtrindicates the train set.Each DA method will generatenda(as shown in Fig.2),for every image will producemda×ndanew images.At the pixel level,we will perform five subsequent DA methods for the training image setXtr.

    Figure 2 :Schematic of proposed PSDA.(a)PDA is used for expanding the amount of image sample at pixel level;(b)SDA is used for expanding the amount of image sample at spatial level

    (I)Image Blur

    Applying an image blur algorithm to a raw image can generatendaimages.

    whereFIBmeans a certain image blur function[51].The functions include Gaussian blur,glass blur,median blur,motion blur,zoom blur,etc.

    (II)Noise Injection

    Newndaimages were generated by noise injection.

    whereFNImeans a noise injection function [51].Noise injection algorithms include Gaussian noise,ISO noise,multiplicative noise,etc.

    (III)Color Jitter

    Color jitter generates a minor variations of color values in the training image.

    whereFCJdenotes color jitter[51].Color jitter can be operated from three aspects:hfb-brightness,hfccontrast andhfs-saturation.

    (IV)Color Shift

    Color shift is color variation caused by different fade rates of dyes or imbalance of dyes within a picture patch.

    whereFCSmeans color shift[51].Color shift can be operated from three channels:tfr-red,tfb-blue andtfg-green.

    (V)Random Generation

    Random generation method can generate new images by performing multiple operations on original image pixels,such as brightness,contrast,gamma correction,curve,fog,rain,shadow,snow,sun flare,etc.Each training image inXtris operatedndatimes through random generationgop.The variation range ofgopis[-az,+az]and complies with the distributionV.

    whereMSRis the maximum operation range[52].Hence,we have

    whereFRGmeans random generation[45].

    At the spatial level,the image transformation will not change the original image content,but the object bounding box will be transformed along with the transformation.The main transformations are:

    (I)Image Affine

    Image affine is a common geometric transformation that preserves the collinearity between pixels.It includes translation,rotation,scaling,shear and their combination.

    whereFIRmeans the image affine function,harepresents an operation of translation,rotation,scaling,or shear[45].

    (II)Image Cropping

    Image cropping can freely crop the input image to any size.

    whereFICmeans the image cropping function[52].

    (III)Elastic Transform

    Elastic transformation alters the silhouette of the input picture upon the application of a force within its elastic limit.It is controlled by the parameters of the Gaussian filter and affine.

    whereFETmeans the elastic transform function[45].

    Algorithm 1 shows the pseudocode of PSDA on one training imagextr(i).

    Algorithm 1:Pseudocode of PSDA on a training image Input:A raw training image xtr(i)Output:A new dataset Φ emanated with|Φ|=mda×nda 1: #PDA:2: Apply image blur for generating xtr_p1 3: Apply noise injection for generating xtr_p2 4: Apply color jitter for generating xtr_p3 5: Apply color shift for generating xtr_p4 6: Apply random generation for generating xtr_p5 7: #SDA:8: Apply image affine for generating xtr_s1 9: Apply image cropping for generating xtr_s2 10: Apply elastic transform for generating xtr_s3 11: Combine above outputs,|Φ|=xtr_p1 ∪xtr_p2 ∪xtr_p3 ∪xtr_p4 ∪xtr_p5 ∪xtr_s1 ∪xtr_s2 ∪xtr_s3

    3.2 Proposed DLA-Backboned Object Location(DBOL)

    The main task in the first step of two-stage object detection is to produce a number of patch bounding boxes with different proportions and sizes according to the characteristic features such as texture,color and other details of the image.Some of the patches represented by bounding boxes contain target,while others only involve background.

    As Fig.1 illustrated,the first step of two-stage ship detection is to generate a set ofKship detections as bounding boxesb1,···,bK.We useP(Ok) to indicates the likelihood of the objectOkwith an unknown category.We can get

    whereP(Ok)=0 shows the objectOkis the background whileP(Ok)=1 implies the thingsOkin bounding box is a target waiting to be classified[29].

    The network architecture of the proposed DBOL is shown n Fig.3.We select compact DLA[38]as CNN backbone for inferringP(Ok) in the first stage of real-time object detection.The compact DLA runs on the basis of ResNet-50[39].The method of CenterNet[13]is used for finding objects as keypoints and regressing to bounding box parameters.The DLA-based feature pyramid generates feature maps from stride 8 to 128.A 4-level regression branch and classification branch are used for all feature pyramids to generate a detection heatmap and bounding box map.During the phase of training,annotations of the actual center are allocated to given feature pyramid levels based on the object scale.Locations are added into the 3 × 3 neighbor of the center,which will yield superior bounding box as positives.The distance between boundaries is used as the representation of the bounding box,and the gIoU cost is adopted for bounding box regression.

    Figure 3 :The architecture of the proposed DBOL.“Conv*” is convolution operation,“C3,C4,C5” denote the feature maps of the backbone network,“P3,P4,P5” are the feature levels used for the final prediction,“H*” is network head,“B*” is bouding box of proposals,“C0” is object classification

    3.3 Proposed CascadeRCNN-Guided Object Classification(CROC)

    For every ship targetk,the class distribution isdk(c)=P(Ck=c)to classc∈C∪{background},whereCis a collection of all ship classes.AndP(Ck|Ok) designates the conditional categorical classification at the second detection stage.If the equationP(Ok)=0 holds,thenCk=background,which meansP(Ck=background|Ok=0)=1.

    The conjoint category distribution of the ship detection is

    whereoindicates an arbitrary object in the image[29].Maximum likelihood estimation is employed for training the detectors.For every labeled object,we maximize

    to decrease to conjoint maximum likelihood objects of the two stages,respectively[29].The maximumlikelihood objective of the background class is

    The architecture of the proposed CROC is shown in Fig.4.In this stage of detection,we select CascadeRCNN[27]for inferringP(Ck|Ok)on the basis ofP(Ok),which is deduced from the first stage.At each cascade staget,CascadeRCNN has a classifierhtoptimal for IoU threshold valueut(ut>ut-1).This is learned through reducing the cost

    wherebt=ft-1(xt-1,bt-1),gis the ground truth object classification forxt,λ=1 is the trade-off coefficient,[·]is the indicator function,ytis the label ofxtunder givenut[27].

    Figure 4 : The architecture of the proposed CROC.The Feature Map is generated from DLA-34 backbone network,“H*” is the network head,“B*” is the bouding box of proposals,“B0” is the bounding box of proposals produced in Fig.3

    Algorithm 2 shows the pseudocode of the CROC training process.

    Algorithm 2:Pseudocode of CROC training process Input:Training images Output:Trained CNN model 1: Maximize log P(Ck)(See Eq.(12))2: Factorize log P(background)(See Eq.(13))3: Reduce the cost L(xt,g)(See Eq.(14))

    4 Experimental Result and Analysis

    In this section,we evaluate the proposed EfficientShip on Seaships[2]dataset.The experiments use Pytorch(1.11.0)library which is installed in Ubuntu 20.04.The model parameters are trained on an NVIDIA GeForce RTX 3090 GPU with 24 GB RAM.And the CPU is Intel(R)Xeon(R)Platinum 8255C with 45 GB RAM.

    4.1 Dataset and Evaluation Metrics

    The dataset we selected in this paper is SeaShips [2].The dataset has 7000 images and includes six categories: bulk cargo carrier,container ship,fishing boat,general cargo ship,ore carrier,and passenger ship.Fig.5 shows the appearance of different ships in SeaShips.The resolution of images is 1920×1080.All pictures in the dataset are selected from 5400 real-world video segments generated by 156 monitoring cameras in the coastline surveillance system.It covers targets of different backgrounds,scales,hull parts,illumination,occlusions and viewpoints.We randomly divide the dataset into a training set and a test set with proportion of 9:1 for the experiments followed by[35].

    Figure 5 :Illustration of different ship samples and their labels in the SeaShips dataset.(a)bulk cargo carrier;(b)container ship;(c)fishing boat;(d)general cargo ship;(e)ore carrier;(f)passenger ship

    Experimental evaluation metrics include ship detection accuracy and runtime.The runtime is reported by fps,and the detection accuracy is evaluated by standard mAP which defined as

    whereK=6 for all ship categories in SeaShips.

    4.2 Parameter Setting

    PSDA.For PDA,we select 33 augmentation methods(with 40 adjustable parameters)for every original training image.There are 15 parameter variations for each adjustable parameter setting shown in Table 1.For one raw image,600 new images can be augmented at this stage.Fig.6 displays the augmentation results of methods RandomFog and ColorJitter(in brightness).We choose 24 augmentation algorithms at the stage of SDA which generates 24*15=360 new images with spatial variation.The spatial parameter settings are listed in Table 2,and images generated by methods Affine(rotate) and Resize are illustrated in Fig.7.We construct a total of 960 new images for each original training image in SeaShips[2]through PSDA.

    Table 1 : Pixel level DA parameter settings

    Table 2 : Space level DA parameter settings

    DBOL&CROC.The method of DLA[38]is selected as the backbone of the first ship detection stage.We extend DLA through a 4-layer BiFPN[53]with 160 feature channels.We reduce the output FPN levels to 3 levels with strides 8-32.The model parameters in the first stage are trained with a long schedule that repetitively fine-tunes.The amount of object proposals is reduced to 128 in the target-detecting stage.For the second stage,the detection part of CascadeRcNN[27]is adopted for recognizing the proposals.We raise the positive IoU threshold value from 0.6 to 0.8 for the method of CascadeRcNN to reimburse the IoU distribution variation.

    Figure 6 :Illustration of pixel level DA.Upper:Augmentation with RandomFog;Under:Augmentation with ColorJitter(brightness)

    4.3 Results and Analysis

    (I)Ablation Study

    We design the different experiments on the modules of the proposed framework to find their effectiveness.We first select the EfficientShip with non-DA as a baseline.Then we add pixel-level and spatial-level DA separately on the basis of the ship detection.Finally,we test the whole hybrid ship detection framework which includes three complete steps.Details of the experimental results are presented in Table 3.We can observe that the basic EfficientShip with non-DA yields the lowest mAP value of 98.85%,and the baseline plus SDA can get a 0.43% boost.The baseline plus PDA yields a 0.62% improvement which shows PDA is much better than SDA.The whole proposed EfficientShip achieves a detection accuracy of 99.63%.

    Table 3 : Comparision of ship detection accuracy of different modules

    Fig.8 shows the mAP comparison chart of different modules.It also indicates the changes in detection accuracy among various categories of the SeaShips dataset.Relatively,the bulk cargo carrier is the most recognizable object,while the passenger ship is the most difficult target to identify.After superimposing DA on the basis of two-stage detection,each category of detection accuracy is gradually approaching 100%.

    Figure 7 :Illustration of space level DA.Upper:Augmentation with Affine(rotate);Under:Augmentation with PixelDropout

    (II)Comparison to State-of-the-Art Approaches

    We compare the proposed approach with 8 SOTA methods [2,3,31–35,43] from accuracy and efficiency of ship detection,as shown in Table 4.The data values of all SOTA algorithms are derived from their original papers.Although the algorithm speed is not comparable because of the difference in the platform on which the algorithm runs.However,it can be seen from Table 4 that the speeds of all methods meet the requirements of real-time application scenarios.Compared with the earliest sea ship detection algorithm[2],the accuracy of our method has improved detection accuracy by 16.63%.The accuracy of proposed algorithm is 99.63%,which has a 0.93% increase over the best SOTA-performing algorithm[35].

    Table 4 : Comparison of EfficientShip with SOTA

    5 Conclusions

    Different from the traditional one-stage real-time ship detection methods,we fully utilized the latest real-time algorithms of object detection to construct a novel two-stage ship detection named EfficientShip.It includes DBOL,CROC,and PSDA.The DBOL is responsible for producing highquality bounding boxes of the potential ship,and the CROC undertakes object recognition.We train the two stages jointly to boost the log-likelihood of actual objects.We also designed the PSDA to make further efforts of promoting the accuracy of target detection.Experiments on the dataset SeaShips show that the proposed EfficientShip has the highest ship detection accuracy among SOTA methods on the premise of achieving real-time performance.In the future,we will further verify the proposed algorithm on some new larger datasets,such as LS-SSDD-v1.0 and Official-SSDD[54].

    Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.

    Funding Statement: This work was supported by the Outstanding Youth Science and Technology Innovation Team Project of Colleges and Universities in Hubei Province (Grant No.T201923),Key Science and Technology Project of Jingmen(Grant Nos.2021ZDYF024,2022ZDYF019),LIAS Pioneering Partnerships Award,UK(Grant No.P202ED10),Data Science Enhancement Fund,UK(Grant No.P202RE237),and Cultivation Project of Jingchu University of Technology (Grant No.PY201904).

    Author Contributions:The authors confirm contribution to the paper as follows:study conception and design:Huafeng Chen;data collection:Junxing Xue;analysis and interpretation of results:Huafeng Chen,Junxing Xue,Yudong Zhang; draft manuscript preparation: Huafeng Chen,Hanyun Wen,Yurong Hu,Yudong Zhang.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials: The data can be download from http://www.lmars.whu.edu.cn/prof_web/shaozhenfeng/datasets/SeaShips(7000).zip.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    中文字幕人妻丝袜一区二区| 婷婷六月久久综合丁香| 成人国产一区最新在线观看| 成人av一区二区三区在线看| 麻豆久久精品国产亚洲av| 一区二区三区激情视频| 国产精品国产高清国产av| 特级一级黄色大片| 老司机深夜福利视频在线观看| 欧美高清成人免费视频www| 精品国产超薄肉色丝袜足j| 国产一区在线观看成人免费| 久久久精品欧美日韩精品| 最近在线观看免费完整版| 国产片内射在线| 国产精品亚洲美女久久久| 天天躁夜夜躁狠狠躁躁| 美女高潮喷水抽搐中文字幕| 色精品久久人妻99蜜桃| 成熟少妇高潮喷水视频| 亚洲国产日韩欧美精品在线观看 | 草草在线视频免费看| 久久婷婷人人爽人人干人人爱| 精华霜和精华液先用哪个| 一区二区三区高清视频在线| 大型黄色视频在线免费观看| 亚洲国产欧洲综合997久久,| 亚洲五月婷婷丁香| 高清在线国产一区| 757午夜福利合集在线观看| 2021天堂中文幕一二区在线观| 91成年电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美久久黑人一区二区| 午夜激情av网站| 国产一区二区在线观看日韩 | 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 美女免费视频网站| 制服丝袜大香蕉在线| 在线看三级毛片| 久久久久久久久中文| 久久久久久九九精品二区国产 | 国产午夜精品论理片| 国产三级中文精品| videosex国产| 国产成人av教育| 丁香六月欧美| 亚洲全国av大片| 99在线人妻在线中文字幕| 国产av又大| 亚洲在线自拍视频| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 高清毛片免费观看视频网站| 九色国产91popny在线| 国产亚洲av高清不卡| 两个人免费观看高清视频| 人成视频在线观看免费观看| 久久伊人香网站| 婷婷精品国产亚洲av| 亚洲片人在线观看| a级毛片在线看网站| 国产精品久久电影中文字幕| av福利片在线观看| 亚洲激情在线av| 免费看十八禁软件| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 午夜免费观看网址| 十八禁人妻一区二区| 久久久久精品国产欧美久久久| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三| 免费看十八禁软件| 国产在线精品亚洲第一网站| 不卡一级毛片| 九色成人免费人妻av| 久久香蕉激情| 丁香六月欧美| 亚洲真实伦在线观看| av在线天堂中文字幕| 少妇的丰满在线观看| 国内精品一区二区在线观看| 午夜a级毛片| 国产精品 国内视频| 成人18禁在线播放| 777久久人妻少妇嫩草av网站| 亚洲乱码一区二区免费版| 香蕉丝袜av| 夜夜夜夜夜久久久久| 国产伦在线观看视频一区| 在线视频色国产色| 亚洲av熟女| 日韩欧美在线二视频| 国产精品99久久99久久久不卡| 两个人免费观看高清视频| 日韩高清综合在线| 怎么达到女性高潮| 日韩精品青青久久久久久| 亚洲狠狠婷婷综合久久图片| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看| 国产不卡一卡二| av超薄肉色丝袜交足视频| 国产av一区在线观看免费| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| tocl精华| 9191精品国产免费久久| 在线视频色国产色| 午夜福利在线观看吧| 制服人妻中文乱码| 日韩免费av在线播放| 亚洲av美国av| 老鸭窝网址在线观看| 久久香蕉激情| 精品久久久久久成人av| 少妇熟女aⅴ在线视频| 亚洲精品久久成人aⅴ小说| 国产精品久久视频播放| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 淫秽高清视频在线观看| 欧美黄色淫秽网站| 老司机在亚洲福利影院| 88av欧美| 99久久精品国产亚洲精品| 老司机深夜福利视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲最大成人中文| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 久久午夜综合久久蜜桃| ponron亚洲| 成在线人永久免费视频| 人妻久久中文字幕网| 久热爱精品视频在线9| 99热只有精品国产| x7x7x7水蜜桃| 又黄又爽又免费观看的视频| 亚洲精品色激情综合| 欧美日韩福利视频一区二区| 欧美乱色亚洲激情| videosex国产| 美女 人体艺术 gogo| 欧美性长视频在线观看| 99re在线观看精品视频| 午夜福利视频1000在线观看| 99久久99久久久精品蜜桃| 美女免费视频网站| 午夜免费激情av| 波多野结衣巨乳人妻| 无遮挡黄片免费观看| 男女视频在线观看网站免费 | 听说在线观看完整版免费高清| 老司机午夜福利在线观看视频| 日本成人三级电影网站| 麻豆国产97在线/欧美 | 天天躁夜夜躁狠狠躁躁| 成人午夜高清在线视频| 久久久精品大字幕| 女人高潮潮喷娇喘18禁视频| 亚洲五月天丁香| 国内精品久久久久精免费| 午夜福利在线在线| a级毛片在线看网站| 99精品在免费线老司机午夜| 亚洲乱码一区二区免费版| 午夜福利在线观看吧| 亚洲精品av麻豆狂野| 搡老岳熟女国产| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 男女下面进入的视频免费午夜| 一本一本综合久久| 国产伦在线观看视频一区| 国产精品久久久人人做人人爽| 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 精品国产美女av久久久久小说| 18禁黄网站禁片午夜丰满| 日本熟妇午夜| 99精品欧美一区二区三区四区| aaaaa片日本免费| 白带黄色成豆腐渣| 国产午夜精品久久久久久| 欧美3d第一页| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 欧美乱色亚洲激情| 五月玫瑰六月丁香| 亚洲第一欧美日韩一区二区三区| 又紧又爽又黄一区二区| 淫秽高清视频在线观看| 伦理电影免费视频| 亚洲真实伦在线观看| 丝袜人妻中文字幕| 中文资源天堂在线| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 亚洲成人免费电影在线观看| 在线观看美女被高潮喷水网站 | 日韩成人在线观看一区二区三区| 男插女下体视频免费在线播放| 国产熟女xx| 国产私拍福利视频在线观看| 97超级碰碰碰精品色视频在线观看| 小说图片视频综合网站| 国内毛片毛片毛片毛片毛片| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 国产午夜精品论理片| 免费在线观看完整版高清| 成年免费大片在线观看| 亚洲电影在线观看av| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| 精品久久久久久,| 两性夫妻黄色片| 又黄又粗又硬又大视频| 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| 日本一二三区视频观看| 欧美性长视频在线观看| 久久精品综合一区二区三区| 高清在线国产一区| 精品久久久久久,| 欧美成狂野欧美在线观看| 在线十欧美十亚洲十日本专区| 九色成人免费人妻av| 亚洲国产精品久久男人天堂| 2021天堂中文幕一二区在线观| 国产精华一区二区三区| 国内精品一区二区在线观看| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 亚洲熟妇中文字幕五十中出| 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网| a在线观看视频网站| 老司机深夜福利视频在线观看| 久久久水蜜桃国产精品网| 欧美极品一区二区三区四区| 大型黄色视频在线免费观看| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线二视频| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 国产精品99久久99久久久不卡| 欧美性猛交╳xxx乱大交人| 久久国产精品人妻蜜桃| 午夜视频精品福利| 九色成人免费人妻av| 久久九九热精品免费| 可以在线观看毛片的网站| 嫩草影视91久久| 欧美性猛交╳xxx乱大交人| 亚洲成av人片免费观看| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看 | www.熟女人妻精品国产| 又紧又爽又黄一区二区| 精品国产美女av久久久久小说| 99国产精品一区二区蜜桃av| 美女扒开内裤让男人捅视频| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 高清毛片免费观看视频网站| 国产精品国产高清国产av| 天天添夜夜摸| 久久 成人 亚洲| 18禁国产床啪视频网站| 日韩欧美在线二视频| 精品久久久久久,| 国产麻豆成人av免费视频| 久久精品91蜜桃| 欧美zozozo另类| 久久精品国产综合久久久| 深夜精品福利| 亚洲第一电影网av| 一a级毛片在线观看| 国产日本99.免费观看| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 99国产精品一区二区三区| a级毛片a级免费在线| 怎么达到女性高潮| 免费在线观看完整版高清| 日本三级黄在线观看| 亚洲美女黄片视频| 精品一区二区三区四区五区乱码| 午夜福利高清视频| 最近在线观看免费完整版| 国产亚洲精品久久久久久毛片| 51午夜福利影视在线观看| 中文字幕高清在线视频| 老汉色av国产亚洲站长工具| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 人妻久久中文字幕网| 午夜影院日韩av| 99久久国产精品久久久| 黄色 视频免费看| 日本一二三区视频观看| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| 成人国产综合亚洲| 两个人视频免费观看高清| netflix在线观看网站| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 精品国产美女av久久久久小说| 欧美日韩亚洲国产一区二区在线观看| 色在线成人网| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 黄色 视频免费看| 成人手机av| 亚洲熟女毛片儿| 夜夜爽天天搞| 欧美不卡视频在线免费观看 | 国产精品1区2区在线观看.| 一夜夜www| 无限看片的www在线观看| 嫩草影院精品99| 一级毛片高清免费大全| 国产精品九九99| 亚洲欧美日韩高清在线视频| 亚洲av美国av| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜一区二区| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看| 亚洲国产精品久久男人天堂| 国产av一区二区精品久久| 99热这里只有精品一区 | 欧美午夜高清在线| 日本在线视频免费播放| 在线永久观看黄色视频| 亚洲avbb在线观看| 国产不卡一卡二| 老司机福利观看| 在线视频色国产色| 久久久国产成人精品二区| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 神马国产精品三级电影在线观看 | 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 男女做爰动态图高潮gif福利片| 色av中文字幕| av在线播放免费不卡| 色综合欧美亚洲国产小说| 18禁黄网站禁片免费观看直播| 老司机午夜福利在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 91麻豆av在线| 男女下面进入的视频免费午夜| 校园春色视频在线观看| 男人舔女人下体高潮全视频| 美女扒开内裤让男人捅视频| 午夜a级毛片| 欧美中文综合在线视频| 男女做爰动态图高潮gif福利片| √禁漫天堂资源中文www| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 国产精品一及| 黑人欧美特级aaaaaa片| 亚洲18禁久久av| 亚洲欧美日韩高清在线视频| 亚洲国产欧美人成| 在线观看舔阴道视频| 成在线人永久免费视频| 超碰成人久久| 99国产精品一区二区蜜桃av| av福利片在线观看| 国产精华一区二区三区| 一区二区三区高清视频在线| 精品无人区乱码1区二区| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区| 亚洲美女黄片视频| 亚洲avbb在线观看| 1024香蕉在线观看| 久久久精品大字幕| 欧美性猛交黑人性爽| 亚洲成av人片在线播放无| 免费看美女性在线毛片视频| 不卡av一区二区三区| 久久精品国产亚洲av高清一级| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 999久久久精品免费观看国产| 欧美色视频一区免费| 老司机靠b影院| 可以在线观看的亚洲视频| 伊人久久大香线蕉亚洲五| 午夜激情福利司机影院| 亚洲美女黄片视频| 欧美中文综合在线视频| 久久久久久久久久黄片| 国产精品电影一区二区三区| or卡值多少钱| 日本熟妇午夜| 这个男人来自地球电影免费观看| 亚洲精品中文字幕在线视频| 一进一出抽搐动态| 欧美av亚洲av综合av国产av| 欧美国产日韩亚洲一区| 亚洲男人天堂网一区| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 性色av乱码一区二区三区2| www日本在线高清视频| a级毛片在线看网站| 亚洲 欧美 日韩 在线 免费| 在线观看免费午夜福利视频| 男女午夜视频在线观看| 法律面前人人平等表现在哪些方面| 香蕉av资源在线| 人妻丰满熟妇av一区二区三区| 欧美一区二区国产精品久久精品 | 亚洲av成人av| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 国产精品免费视频内射| 一级作爱视频免费观看| 最好的美女福利视频网| 午夜免费观看网址| 亚洲av熟女| 国产精品亚洲美女久久久| 亚洲熟妇熟女久久| 久久午夜综合久久蜜桃| 日本 av在线| 亚洲欧美精品综合久久99| 丁香欧美五月| 国产高清videossex| 长腿黑丝高跟| 欧美乱色亚洲激情| 欧美成人一区二区免费高清观看 | 色综合亚洲欧美另类图片| 精品国产乱子伦一区二区三区| av有码第一页| 又黄又粗又硬又大视频| 久久久久国内视频| 天天躁夜夜躁狠狠躁躁| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 丁香六月欧美| а√天堂www在线а√下载| 久久精品国产综合久久久| 久久久久久国产a免费观看| 搡老熟女国产l中国老女人| 国产高清有码在线观看视频 | 午夜福利欧美成人| xxx96com| 黄色视频,在线免费观看| 男女下面进入的视频免费午夜| 制服人妻中文乱码| 90打野战视频偷拍视频| 免费无遮挡裸体视频| 成人手机av| 99国产极品粉嫩在线观看| 成人三级做爰电影| 欧美黄色片欧美黄色片| 国产亚洲精品综合一区在线观看 | 欧美日韩黄片免| x7x7x7水蜜桃| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清在线视频| 精品国产乱码久久久久久男人| 一二三四在线观看免费中文在| 1024手机看黄色片| 久久人人精品亚洲av| 国产av一区在线观看免费| 19禁男女啪啪无遮挡网站| 欧美乱码精品一区二区三区| 色精品久久人妻99蜜桃| 91字幕亚洲| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美一区二区综合| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美激情性xxxx| 国产精品,欧美在线| 真人做人爱边吃奶动态| 欧美zozozo另类| 亚洲一区二区三区色噜噜| xxxwww97欧美| 日韩欧美一区二区三区在线观看| 男男h啪啪无遮挡| 色播亚洲综合网| 99久久久亚洲精品蜜臀av| 久久久久国产一级毛片高清牌| 岛国视频午夜一区免费看| 亚洲国产日韩欧美精品在线观看 | 日本免费a在线| 久久国产精品影院| 久久久精品国产亚洲av高清涩受| 草草在线视频免费看| 国产激情偷乱视频一区二区| 夜夜爽天天搞| 久久精品人妻少妇| 日本在线视频免费播放| 露出奶头的视频| 国产精品一区二区精品视频观看| 国产真实乱freesex| 午夜福利欧美成人| 日日爽夜夜爽网站| 99久久无色码亚洲精品果冻| 亚洲全国av大片| www.精华液| 床上黄色一级片| 亚洲一区中文字幕在线| 99在线视频只有这里精品首页| 巨乳人妻的诱惑在线观看| 精品国产乱子伦一区二区三区| 亚洲av第一区精品v没综合| 身体一侧抽搐| 午夜福利成人在线免费观看| 久久精品影院6| 亚洲一区中文字幕在线| 日本一区二区免费在线视频| 婷婷六月久久综合丁香| 欧美高清成人免费视频www| 免费看十八禁软件| 欧美日本亚洲视频在线播放| 亚洲人成网站高清观看| 亚洲欧美一区二区三区黑人| 免费在线观看影片大全网站| 亚洲av电影不卡..在线观看| 国产av不卡久久| 婷婷亚洲欧美| 免费在线观看黄色视频的| 亚洲美女视频黄频| 9191精品国产免费久久| 亚洲五月婷婷丁香| 97人妻精品一区二区三区麻豆| 中文字幕久久专区| 99久久无色码亚洲精品果冻| 97碰自拍视频| 最新美女视频免费是黄的| 听说在线观看完整版免费高清| 亚洲成人免费电影在线观看| 久久精品国产99精品国产亚洲性色| 亚洲熟妇中文字幕五十中出| 婷婷亚洲欧美| 非洲黑人性xxxx精品又粗又长| 亚洲激情在线av| 欧美乱色亚洲激情| 麻豆成人午夜福利视频| 一a级毛片在线观看| 成人精品一区二区免费| 久久精品91无色码中文字幕| 国产野战对白在线观看| 亚洲在线自拍视频| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 亚洲天堂国产精品一区在线| 国产伦人伦偷精品视频| 老熟妇仑乱视频hdxx| 欧美中文综合在线视频| 嫩草影院精品99| 妹子高潮喷水视频| 午夜福利成人在线免费观看| 91成年电影在线观看| 一区二区三区激情视频| 国产成人欧美在线观看| 亚洲18禁久久av| 免费无遮挡裸体视频| 欧美色欧美亚洲另类二区| 国产高清视频在线观看网站| 成人国产综合亚洲| 亚洲人成伊人成综合网2020| 深夜精品福利| 欧美日韩精品网址| 两人在一起打扑克的视频| 长腿黑丝高跟| 变态另类成人亚洲欧美熟女| 最新在线观看一区二区三区| 日本精品一区二区三区蜜桃| 免费无遮挡裸体视频| av片东京热男人的天堂| 天堂√8在线中文| 久热爱精品视频在线9| 欧美中文日本在线观看视频| 亚洲精品粉嫩美女一区| 一边摸一边做爽爽视频免费| 久久久久国产一级毛片高清牌| 欧美日韩中文字幕国产精品一区二区三区| 一边摸一边做爽爽视频免费| 精品日产1卡2卡| 国产精品自产拍在线观看55亚洲| 人妻夜夜爽99麻豆av|