• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved YOLOv4 for real-time detection algorithm of low-slow-small unmanned aerial vehicles

    2024-02-18 06:01:16WUXuanZHANGHaiyangZHAOChangmingLIZhipengWANGYuanze
    應(yīng)用光學(xué) 2024年1期

    WU Xuan,ZHANG Haiyang,ZHAO Changming,LI Zhipeng,WANG Yuanze

    (School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)

    Abstract:In order to solve the low accuracy in low-slow-small unmanned aerial vehicles (UAVs) mission on embedded platform and deployment problem of poor real-time performance,a small UAV target detection algorithm based on improved YOLOv4 was proposed.By increasing the shallow characteristic figure,improving the anchor,enhancing the small target,and the detection performance of network for small target was improved,through sparse training and model pruning,the model running time was greatly reduced.The average accuracy (mAP) reaches 85.8% on the 1080Ti,and the frame rate (FPS) reaches 75 frame/s,which achieving network lightweight.This lightweight model was deployed on the Xavier edge computing platform,which could achieve the UAV target detection speed of 60 frame/s.Experimental results show that,in compared with YOLOv4 and YOLOv4-TINY,this algorithm achieves the balance of running speed and detection accuracy,and can effectively solve the problem of UAV target detection on embedded platform.

    Key words:low-slow-small unmanned aerial vehicles;target detection;YOLOv4;pruning;embedded

    Introduction

    With the rapid development of aviation technology and the upgrade of communication technology,the unmanned aerial vehicles (UAVs) have been widely used in fire fighting[1],agricultural monitoring[2]and other fields.UAV has low flying altitude,uncertain flight trajectory and high flexibility[3],which will pose a threat to public security and privacy when used by criminals.It is necessary to take countermeasures against UAVs,and UAV target detection is the key to interfere and strike them.

    Common UAV target detection methods include classical moving target detection based on optical flow method and frame difference method[4].Since AlexNet network was proposed,deep learning has been gradually applied to object detection[5].Although the detection accuracy of two-stage algorithms such as RCNN(region with convolutional neural network feature)[6],Fast R-CNN[7],Faster R-CNN[8],SPPNet(spatial pyramid pooling network)[9]is significantly improved compared with traditional algorithms,they cannot meet the real-time requirements of engineering.In one-stage algorithm,SSD(singleshot multibox detector) algorithm[10]adopts multi-scale feature map combined with anchor mechanism to improve the detection accuracy as much as possible while ensuring the speed.For small target detection,WANG Ruoxiao et al.reduced the channels of VGG16 to meet the realtime detection of UAV on the embedded platform[11].LIN T Y et al.proposed RetinaNet,which uses focal loss to overcome the class imbalance problem caused by high foreground to background ratio[12].RAZA M A et al.proposed BV-RNet,which can effectively detect small scale targets by extracting dense features and optimizing predefined anchor points[13].SUN Han et al.proposed a lightweight detection network for UAVs:TIB-Net[14].In view of the lack of texture and shape features of infrared UAVs,DING Lianghui et al.enhanced the high-resolution network layer and adopted the adaptive pipeline filter (APF) based on temporal correlation and motion information to correct the results[15].FANG H et al.transformed the infrared small UAV target detection into nonlinear mapping from infrared image space to residual image and got better detection performance in complex background[16].YOLO(you only look once) algorithm uses wholeprocess convolution for target discrimination and candidate box prediction[17],which has high detection accuracy and fast detection speed.HU Y et al.used feature maps of 4 scales to predict bounding boxes in YOLOv3 to obtain more texture and contour information,the mAP was increased by about 4.16%[18].LI Zhipeng et al.used the super-resolution algorithm to reconstruct high-resolution UAV images,and used YOLOv3 to realize the effective detection of low-slowsmall UAVs[19].

    The lack of semantic information in small UAV target imaging will reduce the detection accuracy,and the memory and computing power of the embedded platform are limited,which cannot meet the real-time requirements of UAV detection tasks,there is a lack of high-precision real-time target detection algorithms for small UAV.Aiming at the above problems,this paper improves the mAP(mean average precision) by 6.2% and the FPS(frame per second) by 22 frame/s on the basis of YOLO4 through model improvement and pruning,and achieves 85.6% mAP and nearly 60 frame/s detection performance with half-precision deployment on the embedded platform.Experiments have verified the effectiveness of this method for high-precision realtime detection of low-slow-small UAV targets.

    1 Algorithm design for low-slow-small UAV target detection

    YOLOv4 algorithm was proposed in 2020.Compared with YOLOv3,it has been optimized in backbone network,multi-scale fusion,activation function,loss function and other aspects[20],its structure is shown in Figure 1.The backbone network part refers to the idea of jump connection of CSPNet[21],and forms CSPDarkNet53 on the basis of DarkNet53(as shown in the residual part in Fig.1),which enhances the network feature extraction ability and speeds up the network training speed.The neck part uses the SPP structure (see SPP structure diagram in Fig.1) to improve the size of the receptive field,and then PANet is used to achieve the fusion of feature maps of different scales and sizes.Through repeated feature extraction,the feature extraction capability of network for objects of different sizes is effectively enhanced.In the position loss function,CIoU(complete intersection over union) is used to comprehensively evaluate the overlap area,aspect ratio,distance of the center position and other factors between the ground truth box and the predicted box.The Mish activation function is used to avoid gradient saturation.

    Fig.1 Network structure diagram of YOLOv4

    Fig.2 Comparison of YOLOv4 network structure before and after improvement

    Fig.3 Feature maps of improved YOLOv4

    Since YOLOv4 performs well in the field of traditional target detection and has made some optimization for small target detection,this paper improved the YOLOv4 algorithm according to the characteristics of low-slow-small UAV targets.

    1.1 Improvements to YOLOv4

    There are still some problems in YOLOv4 algorithm for the detection of low-slow-small UAV targets: the feature maps extracted by YOLO4 have fewer small target features; deep feature extraction network makes UAV features easy to be lost; the generalization ability of anchor adopted in YOLOv4 algorithm for small targets is weak[22].This paper improves YOLOv4 from the aspects of network structure,small target enhancement and candidate box adjustment.

    1.1.1 Network structure improvement

    As shown in Figure 2,this work improves the feature fusion part of YOLOv4 by up-sampling the shallow feature map and splicing it with the shallow UAV feature image,adding the output branch with a scale of 104×104 pixel.Figure 3 shows the feature maps output from neck and head of the improved YOLOv4.More details of UAV are obtained in the newly added scale,which is conducive to the improvement of UAV detection accuracy.The improved network makes full use of the low-level and high-level information,and achieves the detection of small object scale through the new detection layer.

    1.1.2 Adjustment of anchor boxes

    YOLOv4 adoptsk-means clustering,kis the number of clusters,the higher the value of k,the better the quality of the preset anchor box,which is conducive to the convergence of the model in the training process[23].YOLOv4 allocates 3 anchor boxes to each scale,and gets 9 anchor boxes in total.k-Means randomly selectskinitial cluster centers,which can greatly affect the results when not initialized properly.

    The improved YOLOv4 adoptsk-means ++ to cluster UAV samples,k-means ++ randomly selects a cluster center and calculates the distance with other samples.The sample with larger distance is more likely to become the next cluster center,untilkcluster centers are obtained.Euclidean distance is used to measure the distance between the sample and the cluster center,and the objective function of clustering is expressed as follows:

    wherekis the number of clusters,kiis theithcluster,and dist(ci,x)2is the squared distance from samplexto theithcluster centerci.For the improved YOLOv4,resize the image to 416×416 pixel,3 anchor boxes are assigned to the feature maps of each scale,resulting in a total of 12 anchor boxes.The clustering process for anchor boxes is shown in Fig.4.The clustering results are shown in Table 1.Thek-means ++ makes the anchor frame of clustering pay more attention to small targets,and the clustering result is more consistent with the real label.

    Fig.4 Process of obtaining anchor boxes by k-means++clustering

    Fig.5 UAV data augmentation

    Table 1 Clustering results of different clustering methods in training set

    1.1.3 Data augmentation for small UAV targets

    The mosaic data enhancement used in YOLOv4 will randomly scale the target,possibly resulting in serious loss of drone target information.This paper adopts the method of copying multiple UAVs into one image to increase the number of UAVs (as shown in Figure 5),so that the model pays more attention to small UAVs and improves the contribution of small UAVs to the loss function[24].

    1.2 Model pruning of improved YOLOv4 algorithm

    Network pruning reduces network parameters and computational complexity by removing a large number of unimportant channels to improve inference speed,its general process includes sparse training,network pruning,and model fine-tuning[25].

    1.2.1 Sparse training

    The scale factor γ of the batch normalization (BN)layer is used as the index to evaluate the importance of the channel,andL1 regularization is used to train γ,the loss function is expressed as:

    whereL(γ) is the total loss function,l(γ)YOLOv4is the loss function of YOLOv4,‖γ‖1is the penalty term,andprepresents the parameter factor ofL1 norm.

    1.2.2 Network pruning

    Channel pruning is carried out according to the sparsely trained γ value,the channel corresponding to a small γ value has a small contribution to the network inference results.Sort the value ofsand set the pruning rate to remove unimportant channels in the network.The channel pruning of shortcut structure refers to the practice of SlimYOLOv3[26],as shown in Figure 4.Assuming that layer A retains channels 1 and 2,layer C retains channels 2 and 3,and layer F retains channels 2 and 4,layer A,C,D,F and G retains channels 1,2,3 and 4.

    Layer pruning is based on the γ value of the convolution module before the shortcut layer.The two convolution modules before the shortcut layer are pruned together with it.As shown in the red box of Fig.6,when layer D is cut,layer B and layer C are also cut.

    Fig.6 Structure diagram of shortcut layer

    2 Experiments

    2.1 Experimental setting

    A large number of UAV images (with the size of 1 920×1 080 pixel) collected by the camera were combined with the UAV Dataset (Drone Dataset,Dronedata-2021) to form an experimental dataset containing 20 000 UAV images,of which 80% were used as the training set and the rest were used as the testing set.

    The comparison experiments of model improvement and pruning were carried out on windows10 operating system,equipped with i7-7700 processor and NVIDIA GeForce GTX 1080Ti.The network was implemented by Pytorch1.6-GPU.The input image was resized to 416×416 pixel,batch size was set to 8,initial learning rate was set to 0.002324,and Adam optimization strategy was used.The network was trained using a fine-tuning approach to reduce training time,first on the COCO dataset and then on the UAV training set.Finally,the embedded computing performance was verified on a Jetson AGX Xavier (16GB).

    2.2 Evaluation index

    In object detection,mAP and FPS are commonly used for evaluation,where FPS represents the model inference speed,and mAP needs to be calculated by confusion matrix (see Table 2).

    Table 2 Confusion matrix

    The average precision (AP) is the area enclosed by the PR curve plotted with precision (P) and recall (R).See Formula (3) and Formula (4) for the calculation of accuracy and recall,and AP is calculated by Formula(5):

    mAP is the average accuracy of all categories,which can be calculated by Formula (6):

    2.3 Performance comparison before and after algorithm improvement

    The IoU(intersection over union) threshold is set to 0.5 to test the algorithm before and after improvement.Fig.7 shows the loss curve,the improved YOLOv4 has better convergence effect on the UAV data set,and the loss is reduced to below 0.6 after training.The PR curve plotted against recall and precision is shown in Fig.8,where the curve closer to the top right corner indicates better detection performance.The PR curve of the improved YOLOv4 completely enveloped the curve of the original YOLOv4,proving its stronger detection ability.Fig.9 shows the detection results for low-slow-small UAVs.Compared with the original YOLOv4,the improved YOLOv4 adds a small UAV target prediction branch and adjusts the candidate box,which can reduce missed detection and false detection,improve the prediction accuracy of the size and position of the bounding box.

    Fig.7 Comparison of loss curves during training of YOLOv4 and improved YOLOv4

    Fig.8 Comparison of precision-recall curves of YOLOv4 and improved YOLOv4

    Fig.9 Comparison of detection results of YOLOv4 and improved YOLOv4 on UAV dataset

    The comparison results of mAP and FPS of different algorithms are shown in Table 3 and Fig.10.

    Table 3 Detection effects of different algorithms

    Fig.10 Detection effects of different algorithms

    The mAP of the improved YOLOv4 is 7.1% higher than that of the original YOLOv4,the FPS of the improved algorithm is 49 on NVIDIA GeForce GTX 1080Ti,which is slightly lower than the original YOLOv4.The experiment proves that the improved YOLOv4 algorithm performs better in mAP and FPS than YOLOv3,SSD and other algorithms,it achieves a good balance in FPS and mAP,and has a stronger detection ability for small UAV targets.

    2.4 Comparison of model performance before and after pruning

    Sparse training was performed by local sparsity rate decay,setting sparsity rate to 0.001 and epoch to 300.In the last 50% training phase,85% of the network channels are sparsified normally,and the remaining 15% channels are sparsified with a sparsity rate of 1%to prevent the model accuracy from decreasing sharply.

    The weights of BN(batch normlization) layers before and after sparse training are shown in Fig.11.During the training process,the weight distribution gradually approaches 0,and channels with weights close to 0 will be pruned preferentially.The pruning rate is set to 0.8,the number of pruning layers is 16,and a total of 27 137 channels and 48 layers are pruned.The pruning result is shown in Fig.12.The weights of the middle part of the network are closer to 0,so most channels are pruned,and the clipped layers are the layers with fewer remaining channels after channel pruning.Table 4 shows the network performance before and after pruning.After pruning,the number of model parameters is reduced to 7.5% of the original,the model size is reduced from 248 MB to 18.5 MB,and the detection speed is improved from 49 frame/s to nearly 75 frame/s (1080Ti).Finally,we recover the mAP to 85.8% with 100 epochs of model fine-tuning.

    Table 4 Comparison of network pruning results with different parameters

    Fig.11 Weight distribution of BN layers in sparse training

    Fig.12 Comparison of network layers and channels in improved YOLOv4 before and after pruning

    Fig.13 Performance comparison of prune-improve-YOLOv4 and YOLOv4-tiny

    Fig.14 Detection result of prune-improve-YOLOv4 deployed on Xavier platform

    Figure 13 shows the comparison between the pruned model and YOLOv4-tiny.Although the detection speed of the lightweight model based on the improved YOLOv4 is slightly lower than that of YOLOv4-tiny,it has greater advantages than YOLOv4-tiny in terms of precision,recall and mAP.Experiments show that the network is suitable for low-slow-small UAV detection.

    2.5 Deployment experiment on embedded platform

    The data of the model is stored in the form of 32-bit double floating point precision (FP32),which will occupy a large memory space and increase the inference time.Using low precision data (FP16,INT8) for inference can reduce the storage space and bandwidth required for calculation and improve the inference speed.In this experiment,the prune-improve-YOLOv4 is accelerated and quantized by TensorRT on the Xavier platform.The Xavier running power is 30 W,the test image size is 3×416×416 pixel,the mAP and inference time under different precision are shown in Table 5.

    Table 5 Inference performance of prune-improve-YOLOv4 deployed with different precision on Xavier

    The mAP shows almost no drop for half-precision(FP16) inference,but shows a large drop for INT8 inference.In this paper,semi-precision (FP16)deployment is adopted to achieve 85.8% mAP and a detection speed of nearly 60 frame/s on Xavier,the detected image is shown in Figure 14.Experiments show that the prune-improve-YOLOv4 can meet the real-time and high-precision requirements of detecting low-slow-small UAV targets using embedded platform.

    3 Conclusion

    Aiming at the difficulties of small UAV target semantic information is less and the target is not obvious,this paper firstly improves the original YOLOv4 network from three aspects: algorithm network structure,small target enhancement and anchor box allocation.The improved YOLOv4 network can detect most UAVs and the position of the boundary box is more accurate.Recall,accuracy and mAP have been greatly improved.Then,by setting the channel pruning rate of 0.8 and the layer pruning number of 16,the network parameters and inference time are greatly reduced.Finally,85.8% mAP and nearly 60 FPS realtime detection are achieved on Xavier.Experimental results show that the proposed algorithm achieves higher accuracy and speed than YOLOv4 in small target detection,and can be used for embedded equipment to carry out real-time detection of low-slowsmall UAV.

    在线观看免费午夜福利视频| 久久久久久九九精品二区国产| 婷婷亚洲欧美| 国产乱人伦免费视频| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 18禁美女被吸乳视频| 欧美激情在线99| 一个人观看的视频www高清免费观看| 色精品久久人妻99蜜桃| 久久精品影院6| 国产精品一及| 精品一区二区三区视频在线观看免费| 很黄的视频免费| 久久久久九九精品影院| 日本a在线网址| 国模一区二区三区四区视频| 99在线视频只有这里精品首页| 少妇人妻精品综合一区二区 | 在线观看舔阴道视频| 欧美激情久久久久久爽电影| 日韩中文字幕欧美一区二区| 97碰自拍视频| 午夜a级毛片| 深夜精品福利| 成人av在线播放网站| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 日韩免费av在线播放| 久久这里只有精品中国| www.www免费av| 国内久久婷婷六月综合欲色啪| 欧美不卡视频在线免费观看| 精品国产美女av久久久久小说| 国产精品 国内视频| 特大巨黑吊av在线直播| 日本熟妇午夜| avwww免费| 日日干狠狠操夜夜爽| 在线看三级毛片| 午夜视频国产福利| 午夜影院日韩av| 乱人视频在线观看| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 男女下面进入的视频免费午夜| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 中文资源天堂在线| 一a级毛片在线观看| av视频在线观看入口| 久久草成人影院| 内射极品少妇av片p| 91av网一区二区| 一个人免费在线观看电影| 女人被狂操c到高潮| 日韩国内少妇激情av| 无遮挡黄片免费观看| 免费观看人在逋| 欧美色欧美亚洲另类二区| 在线观看舔阴道视频| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品av一区二区| 99久久九九国产精品国产免费| 欧美日本亚洲视频在线播放| 久久6这里有精品| 一卡2卡三卡四卡精品乱码亚洲| 内射极品少妇av片p| av国产免费在线观看| 亚洲av熟女| 亚洲国产中文字幕在线视频| 全区人妻精品视频| 五月玫瑰六月丁香| 很黄的视频免费| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 欧美黑人巨大hd| 亚洲不卡免费看| 在线a可以看的网站| 日韩欧美一区二区三区在线观看| 俺也久久电影网| 国产高清三级在线| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| av天堂中文字幕网| 变态另类丝袜制服| 国产97色在线日韩免费| 黄色日韩在线| 变态另类丝袜制服| 欧美一级毛片孕妇| 日韩中文字幕欧美一区二区| АⅤ资源中文在线天堂| 成年免费大片在线观看| 婷婷精品国产亚洲av| 宅男免费午夜| 精品无人区乱码1区二区| 好看av亚洲va欧美ⅴa在| 美女免费视频网站| 国产亚洲av嫩草精品影院| 国产成人av激情在线播放| 国产爱豆传媒在线观看| 日本a在线网址| 久久伊人香网站| 亚洲国产高清在线一区二区三| 亚洲精品美女久久久久99蜜臀| 真人一进一出gif抽搐免费| 国产欧美日韩精品一区二区| 丁香欧美五月| 男插女下体视频免费在线播放| 一级毛片女人18水好多| 好男人电影高清在线观看| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 欧美+亚洲+日韩+国产| 国产成年人精品一区二区| 久久6这里有精品| 国产成人欧美在线观看| 免费av观看视频| 成人av一区二区三区在线看| 99精品欧美一区二区三区四区| 日本a在线网址| 国产真人三级小视频在线观看| 757午夜福利合集在线观看| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 69av精品久久久久久| 狂野欧美激情性xxxx| 日本在线视频免费播放| 波野结衣二区三区在线 | 18禁黄网站禁片免费观看直播| 午夜福利18| 亚洲av成人av| 亚洲av一区综合| 免费在线观看亚洲国产| 国产又黄又爽又无遮挡在线| 久久香蕉精品热| 日本与韩国留学比较| 久久精品国产自在天天线| 午夜亚洲福利在线播放| 成年人黄色毛片网站| 中出人妻视频一区二区| 亚洲最大成人中文| 欧美av亚洲av综合av国产av| 99在线人妻在线中文字幕| 夜夜爽天天搞| 亚洲男人的天堂狠狠| 亚洲va日本ⅴa欧美va伊人久久| 老汉色∧v一级毛片| 国产免费av片在线观看野外av| 亚洲国产精品成人综合色| 日本黄色片子视频| 成人精品一区二区免费| 免费av观看视频| 午夜福利高清视频| 国产欧美日韩一区二区三| a级毛片a级免费在线| 免费看十八禁软件| 99精品欧美一区二区三区四区| 午夜精品在线福利| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 国产老妇女一区| 欧美黑人欧美精品刺激| 最后的刺客免费高清国语| 精品日产1卡2卡| 久久精品亚洲精品国产色婷小说| 日本五十路高清| 午夜福利免费观看在线| 国产日本99.免费观看| 久久精品国产综合久久久| 男女午夜视频在线观看| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩综合久久久久久 | 欧美成狂野欧美在线观看| 亚洲在线观看片| 一级黄色大片毛片| 久久中文看片网| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 国产一级毛片七仙女欲春2| 国产一区二区在线av高清观看| 1024手机看黄色片| 小蜜桃在线观看免费完整版高清| 亚洲av二区三区四区| 久久人人精品亚洲av| 国产精品久久久久久人妻精品电影| 色av中文字幕| 欧美区成人在线视频| 国产欧美日韩一区二区三| 欧美成狂野欧美在线观看| 看免费av毛片| 我的老师免费观看完整版| 91av网一区二区| www日本黄色视频网| 日韩av在线大香蕉| 欧美激情在线99| 久9热在线精品视频| 国内久久婷婷六月综合欲色啪| 最新在线观看一区二区三区| 亚洲av成人精品一区久久| 日本免费一区二区三区高清不卡| 国产高清视频在线播放一区| 中文字幕熟女人妻在线| 国产中年淑女户外野战色| 亚洲人成网站在线播| 国产伦一二天堂av在线观看| 国产爱豆传媒在线观看| АⅤ资源中文在线天堂| 亚洲成av人片免费观看| 亚洲在线自拍视频| 成年女人看的毛片在线观看| 97超视频在线观看视频| 久久久久久国产a免费观看| 午夜福利在线观看吧| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添小说| 欧美日韩精品网址| 18禁黄网站禁片免费观看直播| 精品久久久久久久毛片微露脸| 可以在线观看的亚洲视频| 免费看日本二区| 国产午夜精品论理片| 国产一区二区三区视频了| 动漫黄色视频在线观看| 亚洲av美国av| 床上黄色一级片| 欧美日韩一级在线毛片| 色综合欧美亚洲国产小说| 国语自产精品视频在线第100页| 亚洲成人久久性| 日韩欧美精品v在线| 国产三级黄色录像| 91在线精品国自产拍蜜月 | 波野结衣二区三区在线 | 听说在线观看完整版免费高清| 欧美成人性av电影在线观看| 一本久久中文字幕| 亚洲男人的天堂狠狠| 亚洲无线观看免费| 国产精品女同一区二区软件 | 国产免费男女视频| 日本与韩国留学比较| 一进一出好大好爽视频| 一本久久中文字幕| 国产精品永久免费网站| 国产乱人伦免费视频| 久久精品国产综合久久久| 国产乱人伦免费视频| 黄色女人牲交| 亚洲自拍偷在线| 五月玫瑰六月丁香| 午夜精品久久久久久毛片777| 日本在线视频免费播放| 99视频精品全部免费 在线| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 2021天堂中文幕一二区在线观| 97超视频在线观看视频| 女警被强在线播放| 天堂av国产一区二区熟女人妻| a级一级毛片免费在线观看| 伊人久久大香线蕉亚洲五| 日韩精品青青久久久久久| 国产av在哪里看| 淫秽高清视频在线观看| 色视频www国产| 日韩欧美在线乱码| 久久人人精品亚洲av| 俄罗斯特黄特色一大片| 热99re8久久精品国产| 欧美不卡视频在线免费观看| 亚洲激情在线av| 欧美成人a在线观看| a级一级毛片免费在线观看| 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| 法律面前人人平等表现在哪些方面| 国产一区二区三区视频了| 久久久精品欧美日韩精品| 性欧美人与动物交配| 日韩国内少妇激情av| 一进一出好大好爽视频| 欧美日韩福利视频一区二区| 国产伦一二天堂av在线观看| 99久久精品热视频| 午夜精品久久久久久毛片777| 中文资源天堂在线| 男女做爰动态图高潮gif福利片| 国产精品嫩草影院av在线观看 | 嫩草影视91久久| 亚洲av第一区精品v没综合| 中文字幕人妻熟人妻熟丝袜美 | aaaaa片日本免费| 色综合婷婷激情| av欧美777| tocl精华| 中文资源天堂在线| 免费电影在线观看免费观看| 一进一出抽搐动态| 日韩国内少妇激情av| 精品乱码久久久久久99久播| 很黄的视频免费| 免费av不卡在线播放| 有码 亚洲区| 亚洲av电影不卡..在线观看| 国产亚洲精品久久久久久毛片| 国产成人福利小说| 精品午夜福利视频在线观看一区| 熟女电影av网| 欧美性感艳星| 国内久久婷婷六月综合欲色啪| ponron亚洲| 欧美激情在线99| 啦啦啦观看免费观看视频高清| 亚洲美女黄片视频| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 男女下面进入的视频免费午夜| 亚洲成av人片免费观看| 亚洲欧美日韩高清专用| www国产在线视频色| 亚洲无线观看免费| 五月伊人婷婷丁香| 久久性视频一级片| 亚洲天堂国产精品一区在线| 高清在线国产一区| 国产免费一级a男人的天堂| 偷拍熟女少妇极品色| 亚洲国产中文字幕在线视频| av在线蜜桃| 一个人免费在线观看电影| 国产高清videossex| 久久精品人妻少妇| 欧美激情在线99| 日日摸夜夜添夜夜添小说| 精华霜和精华液先用哪个| 欧美性感艳星| 香蕉av资源在线| 给我免费播放毛片高清在线观看| 色av中文字幕| 国产一区二区三区视频了| 噜噜噜噜噜久久久久久91| 日本免费a在线| 国产久久久一区二区三区| av福利片在线观看| 国产欧美日韩一区二区三| 日韩亚洲欧美综合| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 看免费av毛片| 丁香欧美五月| 禁无遮挡网站| 日本熟妇午夜| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 亚洲精品456在线播放app | 成熟少妇高潮喷水视频| 亚洲无线观看免费| 亚洲激情在线av| 午夜精品久久久久久毛片777| 内射极品少妇av片p| 有码 亚洲区| 午夜福利成人在线免费观看| 老汉色∧v一级毛片| 亚洲欧美日韩卡通动漫| 9191精品国产免费久久| 精品国产美女av久久久久小说| 十八禁人妻一区二区| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区三| 狂野欧美白嫩少妇大欣赏| 波野结衣二区三区在线 | 在线免费观看不下载黄p国产 | 免费在线观看成人毛片| 国产精品98久久久久久宅男小说| 亚洲国产欧美人成| 亚洲人成网站在线播| 人人妻,人人澡人人爽秒播| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费观看的www视频| www国产在线视频色| 亚洲成人免费电影在线观看| 观看美女的网站| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播| 亚洲av成人不卡在线观看播放网| 99riav亚洲国产免费| 伊人久久精品亚洲午夜| 久久精品影院6| 99久久成人亚洲精品观看| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 亚洲国产高清在线一区二区三| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 听说在线观看完整版免费高清| 男女视频在线观看网站免费| 国产单亲对白刺激| 麻豆一二三区av精品| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 啪啪无遮挡十八禁网站| 免费人成在线观看视频色| 一级a爱片免费观看的视频| 国产欧美日韩一区二区精品| 欧美区成人在线视频| 亚洲精品影视一区二区三区av| 中文字幕av在线有码专区| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 动漫黄色视频在线观看| 日韩av在线大香蕉| 亚洲av中文字字幕乱码综合| 午夜免费观看网址| 成人鲁丝片一二三区免费| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看的高清视频| 高清在线国产一区| 中文字幕人成人乱码亚洲影| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 免费av观看视频| 亚洲精品色激情综合| 国产精品久久电影中文字幕| 国产野战对白在线观看| 在线观看日韩欧美| 在线观看免费视频日本深夜| 偷拍熟女少妇极品色| 国产激情偷乱视频一区二区| 宅男免费午夜| 亚洲av电影不卡..在线观看| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 精品不卡国产一区二区三区| 18美女黄网站色大片免费观看| 免费无遮挡裸体视频| 黄片大片在线免费观看| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 91麻豆精品激情在线观看国产| 中文字幕久久专区| 我要搜黄色片| 国产亚洲精品久久久久久毛片| 青草久久国产| 女人高潮潮喷娇喘18禁视频| 亚洲不卡免费看| 十八禁网站免费在线| 小蜜桃在线观看免费完整版高清| 女人十人毛片免费观看3o分钟| 日韩中文字幕欧美一区二区| 国内精品久久久久久久电影| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| av在线天堂中文字幕| 网址你懂的国产日韩在线| 午夜精品在线福利| 色在线成人网| 亚洲精品乱码久久久v下载方式 | 亚洲午夜理论影院| 日韩av在线大香蕉| 亚洲成人久久性| 首页视频小说图片口味搜索| 亚洲激情在线av| 麻豆一二三区av精品| 最近最新中文字幕大全免费视频| 激情在线观看视频在线高清| 亚洲欧美日韩卡通动漫| 99国产精品一区二区三区| 18禁美女被吸乳视频| 脱女人内裤的视频| 一级毛片女人18水好多| 少妇高潮的动态图| 国内毛片毛片毛片毛片毛片| 国产又黄又爽又无遮挡在线| 欧美午夜高清在线| 亚洲avbb在线观看| 欧美av亚洲av综合av国产av| 久久6这里有精品| 老司机深夜福利视频在线观看| 欧美一区二区亚洲| 丁香六月欧美| 国产高清视频在线观看网站| 中文字幕人妻熟人妻熟丝袜美 | 精品电影一区二区在线| 男插女下体视频免费在线播放| 午夜两性在线视频| 禁无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 久久久久久人人人人人| 国产真实乱freesex| 日本黄色视频三级网站网址| 俺也久久电影网| 成年女人看的毛片在线观看| 美女cb高潮喷水在线观看| 久久国产精品影院| 毛片女人毛片| 悠悠久久av| 成人性生交大片免费视频hd| 日韩人妻高清精品专区| 51国产日韩欧美| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利18| 亚洲avbb在线观看| 久久99热这里只有精品18| 中文在线观看免费www的网站| 久久久久久久久久黄片| 高潮久久久久久久久久久不卡| 亚洲av成人av| 成人一区二区视频在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品野战在线观看| 嫩草影院精品99| 免费看光身美女| 91久久精品国产一区二区成人 | 国产精品影院久久| 国产97色在线日韩免费| 美女免费视频网站| 日本三级黄在线观看| 久久久久久久久久黄片| 窝窝影院91人妻| 露出奶头的视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美免费精品| 国产免费男女视频| 我要搜黄色片| 国产乱人伦免费视频| 欧美成人一区二区免费高清观看| 一区二区三区激情视频| 亚洲最大成人手机在线| 日韩人妻高清精品专区| 久久久久性生活片| 亚洲欧美日韩无卡精品| 日本黄色片子视频| 亚洲美女视频黄频| 一本精品99久久精品77| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 精品久久久久久久末码| 一区二区三区激情视频| 亚洲av免费高清在线观看| 悠悠久久av| 两人在一起打扑克的视频| 中文字幕人成人乱码亚洲影| 精品人妻一区二区三区麻豆 | 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 欧美xxxx黑人xx丫x性爽| 日本免费一区二区三区高清不卡| 亚洲成av人片免费观看| 亚洲av成人不卡在线观看播放网| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 国产精品一区二区免费欧美| 香蕉av资源在线| 国产精品一区二区免费欧美| 琪琪午夜伦伦电影理论片6080| 日本熟妇午夜| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区 | av欧美777| 国产aⅴ精品一区二区三区波| 波多野结衣高清作品| 成人精品一区二区免费| 国产精品精品国产色婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| 熟女电影av网| 欧美色视频一区免费| 国产三级中文精品| 成年女人毛片免费观看观看9| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址| 亚洲av一区综合| 在线观看免费视频日本深夜| 国产美女午夜福利| 国产一区在线观看成人免费| 最新美女视频免费是黄的| 久久香蕉国产精品| 成人国产综合亚洲| 1024手机看黄色片| www日本黄色视频网| 国内精品久久久久精免费| 俄罗斯特黄特色一大片| 欧美日韩综合久久久久久 | 日韩人妻高清精品专区| 99久久综合精品五月天人人| 亚洲av美国av| 搡老熟女国产l中国老女人| 中亚洲国语对白在线视频| 国产高潮美女av| 51国产日韩欧美| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 欧美bdsm另类|