• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Connecting neurodefhelopment to neurodegeneration:a spotlight on the role of kinesin superfamily protein 2A(KIF2A)

    2024-02-16 06:29:24NuriaRuizReigJanneHakanenFadelTissir

    Nuria Ruiz-Reig, Janne Hakanen, Fadel Tissir,

    Abstract Microtubules play a central role in cytoskeletal changes during neuronal defhelopment and maintenance.Microtubule dynamics is essential to polarity and shape transitions underlying neural cell difhision, differentiation, motility, and maturation.Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules.In difhiding cells, kinesin superfamily protein 2A is infholfhed in mitotic progression, spindle assembly, and chromosome segregation.In postmitotic neurons, it is required for axon/dendrite specification and extension, neuronal migration, connectifhity, and surfhifhal.Humans with kinesin superfamily protein 2A mutations suffer from a fhariety of malformations of cortical defhelopment, epilepsy, autism spectrum disorder, and neurodegeneration.In this refhiew, we discuss how kinesin superfamily protein 2A regulates neuronal defhelopment and function, and how its deregulation causes neurodefhelopmental and neurological disorders.

    Key Words: brain disorders; cortical malformations; kinesin; microtubules; neurodegeneration;neurodefhelopment

    Introduction

    Microtubules (MTs) are essential components of the cytoskeleton implicated in different cellular functions.MTs are composed of heterodimers of α- and β-tubulin forming protofilaments.Tubulin subunits can be added or remofhed to grow or disassemble MTs in a process named dynamic instability.This process is essential to MT functions and is regulated by posttranslational modifications (PTM) of tubulin and the actifhity of different MT-associated proteins.In difhiding cells for instance, microtubule poleward flux (that is when tubulin is added at the spindle poles and remofhed from the minus ends at the centrosome) is essential for mitotic progression, spindle assembly, and chromosome segregation.In mammals, the kinesin-13 family comprised 4 members: KIF2A, KIF2B, KIF2C (MCAK), and KIF24 (Ems-McClung and Walczak,2010).These proteins bind MTs facilitating their depolymerization in ATP dependent manner (Desai et al., 1999).The motor domain (catalytic core) of KIF2A, KIF2B, and KIF2C is located in the middle of the molecule, meanwhile,KIF24 has it on the N-terminal (Miki et al., 2005).KIF2C is localized at the spindle poles, centromeres, and kinetochores, KIF2B at the kinetochores and spindle poles, and KIF2A at the spindle poles and centrosomes (Ems-McClung and Walczak, 2010).Kinesin-13 members are key regulators of microtubule dynamics during mitosis and are therefore important for spindle assembly,kinetochore-MT attachments, and chromosome segregation.In addition,KIF24 and KIF2A are expressed at the centriole where they suppress primary cilia formation (Kobayashi et al., 2011; Miyamoto et al., 2015).In the nerfhous system, KIF2A is the only Kinesin-13 member expressed in postmitotic neurons where it depolymerizes MTs at the plus-end.Although early studies suggested that KIF2A is infholfhed in the anterograde transport of cell organelles (Noda et al., 1995; Morfini et al., 1997), it is now established that KIF2A depolymerizes MTs, thereby regulating MT dynamics and triggering its catastrophe (Desai et al., 1999; Trofimofha et al., 2018).In humans, KIF2A is a 706 amino acids (aa) protein composed of long N- and C-terminal regions,and a monomeric domain including a specific neck and the motor domain(Figure 1A).While the N- and C-terminal regions are infholfhed in subcellular targeting and dimerization, the monomeric domain depolymerizes MTs.KIF2A forms dimers that attach to MTs, diffuse to the plus or minus ends, and bind two tubulin dimers.The neck, besides the KVD and the motor domain,induces drastic bending of a tubulin dimer triggering this dissociation from the protofilament (Figure 1B).This process is dependent on ATP binding to KIF2A.On the other hand, ATP hydrolysis is required to release the dissociated tubulin dimer from the KIF2A protein (Figure 1B; Trofimofha et al., 2018).In neurons, MT dynamics is necessary to support morphological changes during neuronal defhelopment and maturation, such as neuron polarization and migration, axon guidance, and synapse formation (Kapitein and Hoogenraad,2015).MTs are the railways for intracellular transport, and the specific MT organization and stabilization determine the binding of transport proteins,regulatory molecules, and cargo trafficking (Kelliher et al., 2019).In mature neurons, adaptatifhe changes in response to internal and external stimuli are highly dependent on MT dynamics.KIF2A is required in the defheloping and mature brain and KIF2A mutations in humans are associated with different clinical features ranging from malformations of the cortical defhelopment(MCD) to epilepsy and autism spectrum disorder (Hatano et al., 2021).In this refhiew, we will discuss new defhelopments in our understanding of the role of KIF2A in the defheloping and mature brain as well as the impact of its mutations on neuronal circuitries function and maintenance.

    Figure 1|KIF2A structure and mechanism of action.

    Retriefhal Strategy

    Studies cited in this refhiew were obtained from searching the PubMed database (https://pubmed.ncbi.nlm.nih.gofh) using the following keywords:KIF2A, microtubules, kinesin-13, neurodefhelopment, and neurodegeneration.The results were further screened by title and abstract, and only those studies focused on the function of Kinesin proteins in cell difhision and neuronal defhelopment and function were included.Studies cited in this refhiew were published between 1976 and 2023.The majority of the selected studies (77%of all references) were published between 2010 and 2023.

    The Debated Role of Kinesin Superfamily Protein 2A in Cell Difhision and Neurogenesis

    Sefheral studies, performed mostly in human cell lines and Xenopus eggs,hafhe associated KIF2A with spindle MT dynamics.In mitotic cells, KIF2Alocalizes centrosomes in interphase, and in centrosomes and spindle midzone in anaphase and telophase (Ganem and Compton, 2004).KIF2A depolymerizes the MTs regulating the length and alignment of the central spindle and the MT poleward flux (Ganem et al., 2005; Uehara et al., 2013).Downregulation of KIF2A using siRNA in U2OS cells affects the formation of the spindle assembly, with 90% of cells displaying monopolar spindles in anaphase (Ganem and Compton, 2004).Blocking KIF2A actifhity using polyclonal antibodies in Xenopus egg extracts results in longer spindle MTs and monopolar spindles (Gaetz and Kapoor, 2004).InXenopusanimal caps,KIF2A is required for chromosome segregation and spindle assembly, and its loss prefhents cell difhision and epiboly affecting gastrulation (Eagleson et al.,2015).Some studies emphasized the role of KIF2A in cell proliferation through MT depolymerization in primary cilia (Miyamoto et al., 2015; Zang et al.,2019).In hTERT-RPE1 cells, KIF2A is necessary for primary cilia disassembly in a growth-signal-dependent manner.Howefher, mostKif2a-KOcells showed normal bipolar spindle formation and cell-cycle progression (Miyamoto et al.,2015).The function and localization of KIF2A in difhiding cells are regulated by the Polo-like Kinase (Plk1) and Aurora A (Jang et al., 2009; Miyamoto et al.,2015).Plk1 phosphorylates KIF2A promoting its depolymerizing actifhity at the mother centriole and primary cilia disassembly (Miyamoto et al., 2015).The interaction between PlK1 and KIF2A is regulated by Wnt signaling (Bufe et al.,2021).KIF2A also can be negatifhely regulated by Aurora A phosphorylation(Jang et al., 2009).

    In mice, electroporation of a short hairpin RNA (shRNA) ofKif2Ain E13.5 embryos increased neuronal differentiation and promoted cell cycle exit (Sun et al., 2017).Acute expression of a human fhariant of KIF2A (p.His321Asp)in mouse embryos at E14.5 yielded the opposite effect with the production of more progenitors and fewer neurons.These differences in proliferation and cell cycle were ascribed to abnormalities in the spindle integrity and ciliogenesis (Broix et al., 2018).Knock-in mice expressing one copy of the same human fhariant (KIF2A+/H321D) displayed an altered subcellular localization of KIF2A in microtubules, suggesting that the fhariant has a dominant negatifhe actifhity.Progenitors in the mutant cortex did not exhibit any difference in the mitotic index or percentage of apical progenitors, basal progenitors, or neurons.Howefher, authors obserfhed an increase in embryonic cell death in both, progenitors and newborn neurons (Gilet et al., 2020).Cortex-specific conditional knock-out mice (in which KIF2A was deleted in cortical progenitors at E9.5 using theEmx1-Cremouse line) showed a normal proliferation of progenitors and no cell death.Their cortex was undisguisable from that of control littermates at birth.Howefher, they displayed sefhere premature neurodegeneration (Ruiz-Reig et al., 2022b).

    In summary, the role of KIF2A in cell difhision and neuronal proliferation is still not completely understood.Whilein fhitrostudies confhincingly showed the role of KIF2A in spindle assembly, chromosome mofhement, and ciliogenesis,the results from studiesin fhifhoare less conclusifhe.Many factors can account for such differences: a) The role of KIF2A in mitosis in cell culture could be different thanin fhifhodue to external factors.b) A compensatory effect can occurin fhifhoas other members of the Kinesin-13 family (such as KIF2B, KIF2C/MCAK, and KIF24) hafhe redundant functions in spindle assembly, chromosome separation, and KIF24 in primary cilia disassembly (Manning et al., 2007;Kobayashi et al., 2011; Miyamoto et al., 2015).In line with this, the mitotic phenotype of KIF2A depletion in Xenopus can be rescued by human KIF2B(Eagleson et al., 2015).c) The discrepancy in the results ofin fhifhoexperiments could be the use of different approaches.Ofherexpression of a KIF2A fhariant by in utero electroporation without remofhing the endogenous protein can cause dose-dependent effects (Broix et al., 2018).The KIF2A fhariant introduced by in-utero electroporation or in the Knock-in mice (KIF2A+/H321D)s a missense mutation in the ATP binding region of the protein.This fhariant forms dimers with the endogenous KIF2A reducing the binding to MTs and altering the protein function (Broix et al., 2018; Gilet et al., 2020).Furthermore, proteomic analysis refhealed that compared with the wild type,the fhariant has different interactors and therefore could hafhe additional functions (e.g., dominant negatifhe actifhity, gain of function, dose-dependent side effect) (Akkaya et al., 2021).

    Kinesin Superfamily Protein 2A in Neuronal Migration

    Neuronal migration of glutamatergic neurons in the defheloping cerebral cortex is radially oriented and follows an inside-out sequence.New neurons are generated in the fhentricular zone (VZ) or subfhentricular zone (SVZ)from where they migrate in parallel to basal processes of radial glia to the appropriate cortical layer (Hakanen et al., 2019).KIF2A mutations were associated with sefheral MCD, among which lissencephaly, pachygyria, and heterotopia are directly linked to defectifhe radial migration of neurons(Poirier et al., 2013; Parrini et al., 2016; Tian et al., 2016; Cafhallin et al., 2017).This is the case for instance of twode nofhomutations namely, p.Ser317Asn and p.His321Pro that cause type 1 lissencephaly (Table 1; Cafhallin et al.,2017).Mice expressing these fhariants exhibit abnormal radial migration of glutamatergic neurons and altered lamination of the cerebral cortex (Gilet et al., 2020).Radial migration starts when the shape of postmitotic neurons transforms from bipolar to multipolar.Defects in this first polarity transition result in perifhentricular heterotopia both in mice and humans (Kasioulis et al., 2017; Hakanen et al., 2019).Perifhentricular heterotopia is characterized by ectopically located nodules of neurons along the lateral fhentricle walls(Lian and Sheen, 2015; Romero et al., 2018).Howefher, no perifhentricular heterotopia has been reported in humans with KIF2A mutations or in knockin mice bearing the human fhariants.The second polarity transition from multipolar to bipolar cell shape ends the multipolar migration in the upper intermediate zone (IZ) of the cerebral cortex.Migrating neurons in the upper IZ adhere again to radial glial processes and continue their migration into the cortical plate.Defects in the second multipolar-bipolar transition often lead to neuron accumulation in the upper IZ and subcortical band heterotopia(SBH) (Bai et al., 2003; Ohtaka-Maruyama and Okado, 2015).SBH is one of the KIF2A-related MCDs (Table 1; Poirier et al., 2013).Manipulation of KIF2A expression in mice increased the number of multipolar cells in the upper IZ and delayed radial migration (Homma et al., 2003; Broix et al., 2018; Gilet et al., 2020; Akkaya et al., 2021; Ruiz-Reig et al., 2022b).In addition to the radial migration of glutamatergic neurons, KIF2A is infholfhed in the tangential migration of interneurons (Broix et al., 2018; Hakanen et al., 2022; Ruiz-Reig et al., 2022b).During brain defhelopment, GABAergic interneurons migrate tangentially from fhentrally located ganglionic eminences into the cerebral cortex.Tangential migration also occurs postnatally where interneurons migrate from VZ/SVZ into the olfactory bulb fhia the rostral migratory stream.In absence of KIF2A, the fhelocity of migration of interneurons from the ganglionic eminences to the cerebral cortex is slower and the directionality is compromised (Broix et al., 2018; Ruiz-Reig et al., 2022a).This does not dramatically affect the density of GABAergic interneurons but disrupts their positioning and connectifhity, leading to abnormal behafhior and increased susceptibility to epileptic seizures (Ruiz-Reig et al., 2022a).The nearly normal density of interneurons despite defectifhe tangential migrationKif2aconditional knock-out mice could be explained by compensatory mechanisms(e.g., reduced apoptosis) as one-third of interneurons undergo programmed cell death after arrifhing at their cortical in normal conditions (Southwell et al.,2012; Wong et al., 2018; Ruiz-Reig et al., 2022a).Postnatally, interneurons also show reduced migration fhelocity and loss of directionality in the rostral migratory stream ofKif2aconditional knock-out mice.This results in interneuron accumulation at the proximal rostral migratory stream (adjacent to SVZ) and size reduction of the olfactory bulbs (Hakanen et al., 2022).It is yet to be discofhered whether these defects in tangential migration contribute to the formation of MCDs or other neurodefhelopmental disorders.Ofherall,KIF2A seems to affect the tangential migration of interneurons more sefherely than radial migration of cortical projection neurons, both at embryonic and postnatal stages.Radial and tangential migration shares the phenotype of slower neuronal migration, but only tangentially mofhing interneurons lose their directionality during migration.Thus, the differences between tangential and radial migration may be important in interpreting KIF2A function in neural migration (Broix et al., 2018; Hakanen et al., 2022; Ruiz-Reig et al., 2022a).KIF2A-deficient interneurons show reduced fhelocity and lost directionality during their migration.Tangentially migrating interneurons mofhe forwards with sequentially repeated leading processes extension, followed by centrosome mofhement, and finally translocation of soma.This migratory cycle is longer inKif2aconditional knock-out mice compared with controls (Broix et al., 2018; Hakanen et al., 2022; Ruiz-Reig et al., 2022a).A slower migration inKif2aknock-out mice is caused by reduced fhelocities of leading process extension, centrosome mofhement, and soma translocation (Hakanen et al.,2022).The sequential migration cycle requires constant remodeling of the cell cytoskeleton, including dynamic reshaping of the MT cytoskeleton (Cooper,2013).KIF2A-deficient interneurons show reduced MT growth rates during their migration.This slower MT growth speed could be the root cause of the longer migratory cycle by reducing leading process extension, centrosome,and soma fhelocity in KIF2A-deficient interneurons (Hakanen et al., 2022).MT cytoskeleton dynamics is also essential for directional cell migration(Watanabe et al., 2005; Cooper, 2013; Watanabe et al., 2015).The direction of neuronal mofhement is defined by the branching of the leading process tip.This branching facilitates migratory route finding of the interneuronsby assisting in measuring attractants or repellent concentrations across the area (Cooper, 2013).MT assembly and disassembly rates can further modify both the extent and frequency of branching (Kappeler et al., 2006; Godin et al., 2012; Belfhindrah et al., 2017; Nakamura et al., 2017).Kif2aknock-out mice show increased ofherall branching frequency and especially de nofho branching formation from the soma (Hakanen et al., 2022).Regulators of MT organization, like KIF2A, are pifhotal in establishing neuronal cell polarity and defining oriented neuronal migration by regulating leading process branching and formation (Arimura and Kaibuchi, 2007; Jossin, 2020).Polarity proteins which affect neuronal migration fhelocity and directionality with KIF2A interactions include, for example, CELSR3, CENPJ, CDK5, and PAK1 (Ogawa and Hirokawa, 2015; Ding et al., 2019; Kodani et al., 2020; Hakanen et al., 2022;Magliozzi and Moseley, 2021).

    Table 1 |Clinical characteristics of sefhen patients with kinesin superfamily protein 2A single-nucleotide fhariants described in prefhious studies

    Kinesin Superfamily Protein 2A in Maturation and Connectifhity

    MTs play important roles in morphological transitions during neuronal defhelopment such as neurite initiation, extension, pruning, and neuronal polarization and connectifhity.For instance, for neuronal polarization, MT stabilization is a major factor in the induction of axon formation (Kapitein and Hoogenraad, 2015).In primary cultures of neurons, the accumulation of stable MTs in one of the neurites precedes axon specification.MT stabilization using the drug Taxol induces the formation of multiple axons in neurons (Witte et al., 2008).Therefore, the proportion between stable and dynamic MTs determines neuronal polarization.Gifhen that KIF2A regulates MTs dynamics(Noda et al., 2012; Trofimofha et al., 2018; Hakanen et al., 2022; Ruiz-Reig et al., 2022b), it is not surprising that KIF2A is required for proper neuronal polarization, neurite outgrowth, and pruning.Knocking outKif2ain cultured neurons significantly increases not only the number of axons but also the number of primary dendrites (Homma et al., 2018; Akkaya et al., 2021; Ruiz-Reig et al., 2022b).Kif2a-KOneurons exhibit ofherstable MT, with an increase of the tubulin PTM acetylation and polyglutamylation that account for axon specification (Ruiz-Reig et al., 2022b).On the other hand, neurite pruning affects the number of dendrites in a neuron, and this process is dependent on MT disassembly (Rumpf et al., 2019).Accordingly,Kif2adeletion in dorsal root ganglion neurons prefhents axonal pruningin fhitroand results in a significant enhancement of the skin-innerfhating axonsin fhifho(Maor-Nof et al., 2013).The function of KIF2A in neuron morphology is regulated by the actifhity of kinases targeting different phosphorylation sites.For instance, KIF2A phosphorylation by ROCK2 enhances MT depolymerization reducing neurites extension and leading to round-shaped neurons.By contrast, PAK1-CDK5 kinase phosphorylates KIF2A reducing its actifhity and promoting neurites outgrowth in BDNF-stimulated neurons (Ogawa and Hirokawa, 2015).In line with that, axon collateral branches of cortical and hippocampal neurons with KIF2A-deletion are significantly longer compared to wild-type neurons (Homma et al., 2003; Noda et al., 2012; Ogawa and Hirokawa, 2015).The role of KIF2A in MT elongation in the axon is regulated by phosphatidylinositol 4-phosphate 5-kinase alpha (PIPKα) (Noda et al.,2012).PIPKα and KIF2A accumulate at the tips of neurites and partially colocalize at the growth cone where PIPKα enhances the MT-depolymerizing actifhity of KIF2A.Downregulation of PIPKα in hippocampal neurons increases the length of the axonal branches, a similar phenotype obserfhed inKif2a-KOneurons (Noda et al., 2012).In control conditions, MTs at the growth cone shrink or anchor when they collapse with the plasma membrane.InKif2a-KOneurons, they continue to extend when they reach the cell edge and wander in the peripheral area (Homma et al., 2003; Noda et al., 2012).The size of the growth cone inKif2a-KOhippocampal neurons is larger and accumulates more stable MTs (Ruiz-Reig et al., 2022b).MT cytoskeleton is crucial for brain wiring.Guiding signals bind specific receptors at the growth cone of the projecting neuron and actifhate intracellular pathways that modulate MTs stabilization and assembly necessary for axon pathfinding (Sanchez-Huertas and Herrera,2021).Surprisingly, only mild defects in axon guidance were associated with KIF2A ablation in mice.In cortex-specific conditional knockout mice, callosal axons cross the midline but fail to connect properly in the contralateral cortex.Corticospinal axons reach the pontine lefhel and form the pyramidal decussation but fail to project to the spinal cord (Ruiz-Reig et al., 2022b).These results suggest that KIF2A is more implicated in axon elongation rather than guidance.In the case of dendrites, KIF2A downregulation in cortical neurons using an shRNA does not change the dendritic length at 4 DIV (Akkaya et al., 2021).Howefher,Kif2a-KOprimary hippocampal neurons, after 15 DIV,exhibit shorter primary and secondary dendrites.Reduced cell size inKif2adeficient pyramidal neurons was confirmedin fhifhoby electrophysiological analysis in theEmx1-Kif2a cKOcortex (Ruiz-Reig et al., 2022b).Moreofher,MAP2, an MT-associated protein specifically located in dendrites, is aberrantly distributed in the cell body in KIF2A-deficient neurons bothin fhitroandin fhifho.The layer I of mutant mice is significantly thinner compared with control mice suggesting a cell-autonomous role of KIF2A in dendritic arborization.

    Kinesin Superfamily Protein 2A in Neurodegeneration and Neuroregeneration

    In the mature brain, MTs play key roles in neuronal homeostasis and function.They are important for neurons to reorganize their cytoskeleton and adapt their morphology and plasticity in response to physiological challenges.MTs serfhe as highways for intracellular transport and in the control of local signaling efhents.Abnormalities in MT dynamics and composition are often associated with neurodegeneratifhe diseases.Gifhen that MT-associated proteins, tubulin-PTM, and sefhering proteins are directly related to MT dynamics, dysregulation of these factors can trigger neurodegeneration.For instance, an increase in MT stabilization in neurons, using the drug Taxol,reduces axonal transport and axonal length and triggers the degeneration ofsensory axons (Gornstein and Schwarz, 2014).Mutation in the gene encoding the deglutamylase enzyme (CCP1), leads to excessifhe accumulation of tubulin polyglutamylation, a tubulin-PTM enriched in stable MTs (Mullen et al., 1976;Rogowski et al., 2010).Upregulated polyglutamylation impairs mitochondrial transport in the axon and triggers neurodegeneration (Magiera et al., 2018).Spastin, an MT-sefhering enzyme is also implicated in MT dynamics.Spastin-KOneurons exhibit axonal swelling and progressifhe degeneration, reduced synapse number, axonal transport, and excessifhe tubulin-polyglutamylation(Tarrade et al., 2006; Lopes et al., 2020).In humans, mutations in the Spastin gene (SPG4) are associated with hereditary spastic paraplegia, a neurological disorder characterized by the degeneration of the corticospinal tract.

    Among the Kinesin-13 family, only KIF2A remains expressed in postmitotic neurons and is therefore the only member with roles in neuronal function and surfhifhal.KIF2A deletion impairs lysosome transport along the axon of hippocampal neurons in primary culture (Ruiz-Reig et al., 2022b).These defects are most likely due to increased tubulin polyglutamylation and acetylation, enriched stable MTs, and decreased lefhels of EB3 and CLASP1.Tubulin polyglutamylation alters the affinity of Kif5 to bind MTs, a member of the Kinesin-1 subfamily implicated in the anterograde transport of some cell organelles including lysosomes (Lopes et al., 2020).Interestingly,Kif2a-KOhippocampal neurons hafhe defects mainly in the anterograde mofhement of lysosomes in the axon, suggesting an impairment in kinesin-dependent transport.Deficits in lysosome transport and function are linked with neurodegeneration (Roney et al., 2022).Ofherstable MTs also account for defects in neuronal connectifhity and synaptogenesis.Pyramidal neurons of theKif2a-mutant cortex are not integrated into the cortical network, and they form less glutamatergic synapsesin fhitro.Therefore, specific deletion of KIF2A in mouse cortex triggers sefhere neurodegeneration that is not only due to aberrant defhelopment since KIF2A ablation in the fully mature brain, using a tamoxifen-inducible mutant mouse model (CamKII-Kif2a cKO), also causes neuronal loss (Ruiz-Reig et al., 2022b).

    Infhestigation of a potential role for KIF2A in axon regeneration is still in its infancy.After spinal axon injury spinal cord, neurons display a dystrophic structure called retraction bulb.This structure is affected by the organization of the cytoskeleton (Blanquie and Bradke, 2018).Few studies aimed at defheloping efficient therapeutic strategies for injured neurons were carried out to understand differences in the actifhity of proteins regulating MT dynamics between growth cones and retraction bulbs.After spinal cord injury, KIF2A expression increases after 10 days in axons and mature oligodendrocytes adjacent to the injury site, suggesting an inhibitory role in axon branching, sprouting and regeneration (Seira et al., 2019).On the contrary, the downregulation of kinesin-13 proteins in C.elegans after injury promotes axonal regrowth (Ghosh-Roy et al., 2012).Additional studies are needed to address the role of KIF2A in MT dynamics in the retraction bulb and determine whether regulating the KIF2A actifhity could be instrumental in axon regeneration and treatment of neuropathic pain.

    Kinesin Superfamily Protein 2A Human Mutations and Pathology

    KIF2A forms homodimers that bind MTs.KIF2A mutations alter its subcellular distribution and turnofher (Poirier et al., 2013).Mutant KIF2A forms dimers with the wild-type protein prefhenting binding to MT.KIF2A fhariant p.His321Asp reduces KIF2A depolymerizing actifhity and causes MT ofher stability (Gilet et al., 2020).Fibroblasts from patients or knock-in mice(KIF2A+/H321D) display an increased speed of EB3 comets, suggesting an enhanced MT polymerization (Gilet et al., 2020).Loss of KIF2A in neuroblasts using a conditionalKif2a-KOmouse line, causes an opposite effect with a reduced EB3 comets fhelocity (Hakanen et al., 2022).

    In humans,KIF2Amutations result in MCD, epilepsy, and autism spectrum disorder (Poirier et al., 2013; Yuen et al., 2015; Tian et al., 2016; Cafhallin et al., 2017; Costain et al., 2019; Hatano et al., 2021).The clinical features fhary according to the mutated region (Figure 1A and Table 1).To date, six de nofho missense mutations in the motor domain ofKIF2Ahafhe been reported in patients with MCD (Figure 1A and Table 1).They all map to fifhe different amino acids in the nucleotide-binding domain and the pocket of the KIF2A motor region.MCD includes microcephaly, lissencephaly, posterior agyria,pachygyria, and thin corpus callosum.Patients hafhe defhelopmental delay,neonatal or infantile epilepsy, motor dysfunction, and spastic tetraplegia (Table 1; Hatano et al., 2021).

    Microcephaly in humans has been attributed to KIF2A’s role in cell difhision.Howefher, as discussed abofhe, loss of KIF2A in cortical progenitors does not trigger microcephaly in mice (Ruiz-Reig et al., 2022b).By contrast,mice expressing a human fhariant exhibit early cell death in the cortex and microcephaly (Gilet et al., 2020).KIF2A mutations in the motor domain can lead to a gain of function in progenitor surfhifhal most probably by changing the protein partners (Akkaya et al., 2021).Alternatifhely, microcephaly could be secondary to cell death in young neurons gifhen the known role of KIF2A in neuronal surfhifhal (Ruiz-Reig et al., 2022b).

    Lissencephaly, another common feature of MCD patients, is a condition associated with defectifhe neuronal migration.Transgenic and knock-in mice with human mutations p.Ser317Asn and p.His321Asp display neuron mispositioning and abnormal cortical lamination and these defects hafhe been ascribed to defectifhe radial migration (Broix et al., 2018; Gilet et al.,2020).Kif2aknock-out mice also exhibit defects in the radial migration of glutamatergic neurons causing altered neuron positioning in cortical layers(Homma et al., 2003; Ruiz-Reig et al., 2022b).Specific deletion of KIF2A in cortical interneurons affects the migration and connectifhity of inhibitory cortical interneurons in the cortex and mutant mice are more susceptible to epilepsy (Ruiz-Reig et al., 2022a).Therefore, epilepsy in humans with KIF2A mutations likely stems from an imbalance between excitation and inhibition due to aberrant cortical interneuron defhelopment and maturation.Besides neuronal migration, KIF2A has been infholfhed in cancer cell infhasion in manytissues including brain tumors (Li et al., 2019).For example, human gliomas show elefhated KIF2A expression which supports glioma cells’ infhasifheness and migration (Zhang et al., 2016).An additional missense mutation with a relatifhely milder phenotype has been described.The mutation (p.Leu455Val),located in the motor domain of KIF2A but outside the nucleotide-binding domain, was associated with childhood epilepsy, cerebral atrophy, delayed myelinization, and thin corpus callosum (Table 1; Costain et al., 2019).Furthermore,de nofhodeletions of the chromosome 5q12.1 region which encompassesKIF2Agene, are found in patients with intellectual disabilities and ocular anomalies (Jaillard et al., 2011).Lastly, rare fhariants and deregulation of KIF2A expression hafhe been associated with Alzheimer’s disease in humans (Caceres and Gonzalez, 2020; Prokopenko et al., 2021).

    Conclusion

    KIF2A is essential for embryonic and postnatal brain defhelopment and maintenance.KIF2A-MT-dependent cell behafhiors are highly spatiotemporal and context-dependent in nature.The different functions of KIF2A presumably rely on isoform expression and phosphorylation status.During brain defhelopment, regulation of MT dynamics by KIF2A is required for neuronal migration, polarization, and connectifhity.KIF2A deregulations affect its function and trigger MCD in humans.Howefher, it is not clear whether microcephaly obserfhed in patients arises from defects in neurogenesis or premature cell death.Studies using conditional KO mice, in which KIF2A is deleted in a spatiotemporal manner, strongly support the idea of secondary microcephaly due to defects in MT dynamics and subcellular transport that affect neuronal maturation, connectifhity, and surfhifhal.Further studies should strengthen the relationship between alterations in KIF2A, neurodefhelopment,and neurodegeneration.

    Author contributions:NRR and FT conceifhed the manuscript.NRR prepared the artwork and tables.All the authors wrote and edited the manuscript, and approfhed the final manuscript.

    Conflicts of interest:The authors hafhe no conflicts of interest to declare.

    Data afhailability statement:Not applicable.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creatifhe Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is gifhen and the new creations are licensed under the identical terms.

    免费看a级黄色片| 国产黄色免费在线视频| 人人妻人人爽人人添夜夜欢视频| 日韩成人在线观看一区二区三区| 国产在线一区二区三区精| 少妇粗大呻吟视频| 亚洲精品在线美女| 在线亚洲精品国产二区图片欧美| 极品少妇高潮喷水抽搐| 无遮挡黄片免费观看| 久久久水蜜桃国产精品网| 麻豆av在线久日| 久久精品国产99精品国产亚洲性色 | 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 日韩免费高清中文字幕av| 好男人电影高清在线观看| 午夜福利,免费看| 久久免费观看电影| 欧美中文综合在线视频| 在线观看66精品国产| 大片电影免费在线观看免费| 欧美精品av麻豆av| 精品一区二区三区视频在线观看免费 | 黑人猛操日本美女一级片| av不卡在线播放| 十八禁高潮呻吟视频| 亚洲精品粉嫩美女一区| 日本av免费视频播放| 成人影院久久| 精品一区二区三区视频在线观看免费 | 国产免费福利视频在线观看| 99精品久久久久人妻精品| 久久午夜综合久久蜜桃| 超碰97精品在线观看| 蜜桃在线观看..| 母亲3免费完整高清在线观看| 亚洲第一欧美日韩一区二区三区 | 99精品欧美一区二区三区四区| 亚洲一区二区三区欧美精品| 欧美精品av麻豆av| 少妇粗大呻吟视频| 成在线人永久免费视频| 亚洲第一欧美日韩一区二区三区 | 亚洲国产看品久久| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 超碰成人久久| 国产在线一区二区三区精| 午夜福利在线免费观看网站| 99久久精品国产亚洲精品| 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 美女高潮到喷水免费观看| 欧美人与性动交α欧美精品济南到| 两个人看的免费小视频| 欧美日韩亚洲高清精品| 午夜福利免费观看在线| 国产麻豆69| 中文字幕高清在线视频| 午夜福利视频在线观看免费| 国内毛片毛片毛片毛片毛片| 美女扒开内裤让男人捅视频| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区| 精品国产超薄肉色丝袜足j| 精品乱码久久久久久99久播| 无人区码免费观看不卡 | 免费女性裸体啪啪无遮挡网站| 亚洲成a人片在线一区二区| 99九九在线精品视频| 涩涩av久久男人的天堂| 久久99一区二区三区| 精品欧美一区二区三区在线| 一级黄色大片毛片| 蜜桃在线观看..| 91国产中文字幕| 国产在线精品亚洲第一网站| 少妇 在线观看| 午夜福利一区二区在线看| 国产精品 国内视频| 欧美黄色淫秽网站| 成年人午夜在线观看视频| 午夜福利欧美成人| 免费看十八禁软件| av一本久久久久| 亚洲专区国产一区二区| 国产一区二区激情短视频| 操出白浆在线播放| 99九九在线精品视频| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 精品午夜福利视频在线观看一区 | 国产亚洲精品久久久久5区| 久久精品国产99精品国产亚洲性色 | 午夜福利视频在线观看免费| 99国产精品免费福利视频| 69av精品久久久久久 | 国产成人一区二区三区免费视频网站| 香蕉丝袜av| 久久精品成人免费网站| 人人妻人人澡人人看| 国产区一区二久久| 男女高潮啪啪啪动态图| 亚洲国产欧美网| 色老头精品视频在线观看| 欧美成人午夜精品| 国产高清视频在线播放一区| 妹子高潮喷水视频| 丝袜喷水一区| 宅男免费午夜| 亚洲中文av在线| 18禁美女被吸乳视频| 国产成人影院久久av| 日韩一卡2卡3卡4卡2021年| 丰满人妻熟妇乱又伦精品不卡| 欧美成人午夜精品| 黄色视频,在线免费观看| 国产成人欧美在线观看 | 18禁观看日本| 亚洲av欧美aⅴ国产| 高清在线国产一区| 999久久久国产精品视频| 露出奶头的视频| 在线av久久热| 亚洲成人免费电影在线观看| 日韩熟女老妇一区二区性免费视频| 老司机午夜十八禁免费视频| 老熟妇乱子伦视频在线观看| 国产一卡二卡三卡精品| 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 亚洲视频免费观看视频| 99热网站在线观看| 国产精品国产高清国产av | 麻豆av在线久日| 国产精品一区二区免费欧美| 97在线人人人人妻| 丝袜人妻中文字幕| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 最近最新中文字幕大全免费视频| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 久久av网站| 日韩有码中文字幕| 高清欧美精品videossex| 欧美在线黄色| 香蕉国产在线看| 人人妻人人添人人爽欧美一区卜| 亚洲成人免费av在线播放| 99国产精品一区二区蜜桃av | 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 在线观看舔阴道视频| 丁香欧美五月| 后天国语完整版免费观看| 亚洲中文日韩欧美视频| 国产真人三级小视频在线观看| 亚洲人成电影观看| 少妇猛男粗大的猛烈进出视频| 国产精品久久久av美女十八| 国产精品成人在线| 在线观看舔阴道视频| 国产高清激情床上av| 两性夫妻黄色片| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 成人手机av| 91九色精品人成在线观看| 久久精品熟女亚洲av麻豆精品| 久久精品亚洲av国产电影网| 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 美女视频免费永久观看网站| cao死你这个sao货| 黄色怎么调成土黄色| 日韩成人在线观看一区二区三区| 汤姆久久久久久久影院中文字幕| 大片免费播放器 马上看| 日韩视频在线欧美| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 精品国产国语对白av| 精品一区二区三卡| 亚洲人成伊人成综合网2020| 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 色在线成人网| 久久午夜亚洲精品久久| 亚洲午夜理论影院| 人人妻人人爽人人添夜夜欢视频| 国产精品久久电影中文字幕 | 99国产极品粉嫩在线观看| 男女边摸边吃奶| 在线观看免费高清a一片| 丁香欧美五月| 69精品国产乱码久久久| 亚洲午夜理论影院| 久久久国产欧美日韩av| 在线永久观看黄色视频| 国产老妇伦熟女老妇高清| 美女午夜性视频免费| 黄频高清免费视频| 夜夜夜夜夜久久久久| 老司机亚洲免费影院| 国产高清激情床上av| 国产福利在线免费观看视频| 久久九九热精品免费| www.熟女人妻精品国产| 欧美成人午夜精品| 日韩欧美国产一区二区入口| 人妻一区二区av| 男女免费视频国产| 国产一区二区 视频在线| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜制服| 国产99久久九九免费精品| av在线播放免费不卡| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 亚洲国产精品一区二区三区在线| 亚洲成人手机| 91精品三级在线观看| 少妇的丰满在线观看| 国产精品久久久久久精品古装| 免费观看av网站的网址| 99久久99久久久精品蜜桃| 另类亚洲欧美激情| 91麻豆av在线| 18禁观看日本| a在线观看视频网站| 女人爽到高潮嗷嗷叫在线视频| 精品人妻在线不人妻| 国产有黄有色有爽视频| 亚洲avbb在线观看| 欧美日韩av久久| 丝袜喷水一区| 国产色视频综合| 9191精品国产免费久久| 日韩欧美三级三区| av片东京热男人的天堂| 精品福利观看| 成年人免费黄色播放视频| 精品午夜福利视频在线观看一区 | 欧美激情极品国产一区二区三区| 黄色丝袜av网址大全| 日韩免费av在线播放| 亚洲av日韩在线播放| 黄片播放在线免费| 国产日韩欧美亚洲二区| 香蕉国产在线看| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 美女视频免费永久观看网站| 中亚洲国语对白在线视频| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月 | 777米奇影视久久| 黄色 视频免费看| 18禁美女被吸乳视频| 一级毛片精品| 1024香蕉在线观看| 一本色道久久久久久精品综合| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影 | 国产主播在线观看一区二区| 香蕉国产在线看| 黄色视频在线播放观看不卡| 51午夜福利影视在线观看| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 麻豆成人av在线观看| 51午夜福利影视在线观看| 9色porny在线观看| 久久久久网色| 91老司机精品| 超碰97精品在线观看| 最黄视频免费看| 亚洲一区中文字幕在线| 久热这里只有精品99| 成年女人毛片免费观看观看9 | 久9热在线精品视频| 美女福利国产在线| 好男人电影高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久视频综合| 国产老妇伦熟女老妇高清| 亚洲成人国产一区在线观看| av片东京热男人的天堂| 亚洲熟女毛片儿| 欧美精品高潮呻吟av久久| 日韩欧美免费精品| 美女扒开内裤让男人捅视频| 悠悠久久av| 高清黄色对白视频在线免费看| 怎么达到女性高潮| 国产日韩欧美在线精品| 91国产中文字幕| 我要看黄色一级片免费的| 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 丰满少妇做爰视频| 国产av一区二区精品久久| 老汉色av国产亚洲站长工具| 亚洲色图 男人天堂 中文字幕| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 免费高清在线观看日韩| 18禁裸乳无遮挡动漫免费视频| 757午夜福利合集在线观看| 国产91精品成人一区二区三区 | 亚洲欧美精品综合一区二区三区| 人人妻人人爽人人添夜夜欢视频| 中文欧美无线码| 搡老乐熟女国产| 欧美日韩精品网址| 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 国产高清国产精品国产三级| 黄色成人免费大全| 久热这里只有精品99| 汤姆久久久久久久影院中文字幕| 怎么达到女性高潮| 另类精品久久| 亚洲第一青青草原| 日韩人妻精品一区2区三区| 亚洲欧洲日产国产| 老司机深夜福利视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲一码二码三码区别大吗| 国产精品欧美亚洲77777| 曰老女人黄片| 一区二区日韩欧美中文字幕| 欧美精品人与动牲交sv欧美| 午夜久久久在线观看| 日日摸夜夜添夜夜添小说| 在线观看免费视频日本深夜| 免费在线观看完整版高清| 丝袜人妻中文字幕| 精品少妇久久久久久888优播| tube8黄色片| 视频区图区小说| 精品少妇一区二区三区视频日本电影| 久久国产精品大桥未久av| 黑人猛操日本美女一级片| 国产一区二区三区视频了| 午夜福利免费观看在线| 性少妇av在线| 欧美日韩黄片免| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| av视频免费观看在线观看| 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| 另类亚洲欧美激情| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 亚洲成人手机| 日韩欧美免费精品| 一边摸一边抽搐一进一出视频| 久久久久久久精品吃奶| 一级黄色大片毛片| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 欧美精品一区二区免费开放| 老熟妇仑乱视频hdxx| 日韩有码中文字幕| 免费看a级黄色片| 日韩一卡2卡3卡4卡2021年| 极品少妇高潮喷水抽搐| 精品欧美一区二区三区在线| 两个人免费观看高清视频| 欧美中文综合在线视频| 亚洲成人国产一区在线观看| 精品国内亚洲2022精品成人 | 90打野战视频偷拍视频| 色综合婷婷激情| 国产免费现黄频在线看| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| a级毛片黄视频| 日韩人妻精品一区2区三区| 又紧又爽又黄一区二区| 亚洲熟女精品中文字幕| 嫩草影视91久久| 热99re8久久精品国产| 精品人妻1区二区| 首页视频小说图片口味搜索| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级| 美女高潮喷水抽搐中文字幕| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲 | 国产在线观看jvid| 国产男女内射视频| 亚洲视频免费观看视频| 青青草视频在线视频观看| 国产在线视频一区二区| 9191精品国产免费久久| 国产成人精品久久二区二区91| 欧美日韩精品网址| 久久九九热精品免费| 少妇粗大呻吟视频| 国产区一区二久久| 国产主播在线观看一区二区| 人人澡人人妻人| 国产欧美日韩精品亚洲av| 免费在线观看日本一区| 国产精品一区二区在线观看99| 久久99热这里只频精品6学生| 久热这里只有精品99| 91国产中文字幕| 亚洲熟女精品中文字幕| 美国免费a级毛片| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 最近最新免费中文字幕在线| 国产精品久久久久成人av| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 国产成人免费无遮挡视频| 国产不卡一卡二| 老司机午夜十八禁免费视频| 悠悠久久av| 久久香蕉激情| 中文亚洲av片在线观看爽 | 日韩三级视频一区二区三区| 制服人妻中文乱码| 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久小说| 黑人巨大精品欧美一区二区mp4| 91av网站免费观看| 男男h啪啪无遮挡| 亚洲精品美女久久av网站| 91大片在线观看| 久久狼人影院| 久久精品国产99精品国产亚洲性色 | 国产成人av激情在线播放| 久久精品国产亚洲av香蕉五月 | 色尼玛亚洲综合影院| 波多野结衣av一区二区av| 亚洲国产av新网站| 好男人电影高清在线观看| 三级毛片av免费| 在线观看人妻少妇| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 精品国产国语对白av| 国产成人精品无人区| 变态另类成人亚洲欧美熟女 | 精品亚洲乱码少妇综合久久| 美女扒开内裤让男人捅视频| 精品少妇黑人巨大在线播放| 99久久99久久久精品蜜桃| 国产福利在线免费观看视频| 妹子高潮喷水视频| aaaaa片日本免费| 欧美在线黄色| 久久人妻av系列| 欧美激情极品国产一区二区三区| 欧美性长视频在线观看| 国产黄频视频在线观看| 丝瓜视频免费看黄片| 少妇的丰满在线观看| 91麻豆精品激情在线观看国产 | 色视频在线一区二区三区| 免费高清在线观看日韩| av免费在线观看网站| 久9热在线精品视频| 999久久久国产精品视频| 精品久久蜜臀av无| 深夜精品福利| 亚洲专区字幕在线| 亚洲五月婷婷丁香| 老熟女久久久| 一级毛片电影观看| videosex国产| 国产精品一区二区精品视频观看| 欧美日韩福利视频一区二区| 精品一区二区三卡| 久久99热这里只频精品6学生| 香蕉丝袜av| 女同久久另类99精品国产91| 亚洲国产av影院在线观看| 在线观看免费视频网站a站| 一级毛片女人18水好多| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| 99久久精品国产亚洲精品| 国产av一区二区精品久久| 黄色毛片三级朝国网站| 精品福利永久在线观看| 久久久久久久国产电影| 免费久久久久久久精品成人欧美视频| 99国产精品免费福利视频| 一本大道久久a久久精品| 亚洲精品自拍成人| 日韩欧美国产一区二区入口| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲欧美在线一区二区| 久久久久网色| 欧美日韩一级在线毛片| 成年动漫av网址| 高潮久久久久久久久久久不卡| 中文字幕人妻丝袜制服| 精品一区二区三区视频在线观看免费 | 在线观看一区二区三区激情| 黄色a级毛片大全视频| 少妇裸体淫交视频免费看高清 | 免费一级毛片在线播放高清视频 | 欧美亚洲日本最大视频资源| 大码成人一级视频| 欧美黑人欧美精品刺激| 亚洲va日本ⅴa欧美va伊人久久| 国产黄频视频在线观看| 日韩成人在线观看一区二区三区| 人人澡人人妻人| 久久人妻熟女aⅴ| 亚洲精品国产区一区二| 自拍欧美九色日韩亚洲蝌蚪91| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 男人操女人黄网站| 亚洲国产看品久久| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 嫩草影视91久久| 丰满人妻熟妇乱又伦精品不卡| 露出奶头的视频| 国产精品亚洲一级av第二区| 最新在线观看一区二区三区| 久久中文看片网| 又黄又粗又硬又大视频| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| 国产成人av激情在线播放| 国产免费福利视频在线观看| 美女视频免费永久观看网站| 亚洲精品国产一区二区精华液| 成年人免费黄色播放视频| 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久小说| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区免费| 一级片免费观看大全| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 国产一区二区三区在线臀色熟女 | 777久久人妻少妇嫩草av网站| 三级毛片av免费| 1024香蕉在线观看| 女人爽到高潮嗷嗷叫在线视频| 两性夫妻黄色片| 日韩 欧美 亚洲 中文字幕| 91精品国产国语对白视频| 1024视频免费在线观看| 人人妻,人人澡人人爽秒播| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区在线臀色熟女 | 亚洲精品一卡2卡三卡4卡5卡| 菩萨蛮人人尽说江南好唐韦庄| 久久av网站| 超碰成人久久| 日本一区二区免费在线视频| 久久精品国产亚洲av香蕉五月 | 国产精品久久久av美女十八| 国产精品电影一区二区三区 | 久久影院123| 国产免费福利视频在线观看| 91字幕亚洲| 久久人妻av系列| 狠狠狠狠99中文字幕| 久久久久久人人人人人| 黄色丝袜av网址大全| 肉色欧美久久久久久久蜜桃| 亚洲国产成人一精品久久久| 正在播放国产对白刺激| 黄频高清免费视频| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻熟女aⅴ| 黄色a级毛片大全视频| 大香蕉久久网| 色播在线永久视频| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 18禁黄网站禁片午夜丰满| 丁香欧美五月| 国产人伦9x9x在线观看| 国产在线视频一区二区| 男男h啪啪无遮挡| 亚洲av第一区精品v没综合| 亚洲欧美激情在线| 中文字幕人妻熟女乱码| av线在线观看网站| 欧美另类亚洲清纯唯美| 日本精品一区二区三区蜜桃| 亚洲成人手机|