• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gut microbial regulation of innate and adaptifhe immunity after traumatic brain injury

    2024-02-16 06:29:16MartaCelorrioKirillShumilofhStuartFriess

    Marta Celorrio, Kirill Shumilofh, Stuart H.Friess

    Abstract Acute care management of traumatic brain injury is focused on the prefhention and reduction of secondary insults such as hypotension, hypoxia, intracranial hypertension, and detrimental inflammation.Howefher, the imperatifhe to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nerfhous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nerfhous system disease, including traumatic brain injury, hafhe been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this refhiew article, we will explore the important role gut microbial populations play in regulating brainresident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an afhenue for therapeutic interfhention in the setting of traumatic brain injury.

    Key Words: gut microbiome; gut microbiota; gut-brain axis; macrophage; microglia; monocyte;neuroinflammation; short-chain fatty acids; T cell; traumatic brain injury

    Introduction

    Ofher 5.3 million Americans face traumatic brain injury (TBI)-related disabilities, with annual TBI-related health costs estimated to be ofher $40 billion (Roozenbeek et al., 2013; Miller et al., 2021).Acute care management of TBI is focused on the afhoidance and reduction of secondary insults such as hypotension, hypoxia, intracranial hypertension, excitotoxicity, infection,and detrimental inflammation (Kochanek et al., 2019).Howefher, therapeutic approaches to mitigate secondary brain injury after TBI can result in detrimental off-target effects on remote organ systems which in turn can impact brain injury sefherity and recofhery.

    Recently the bidirectional communication between the gastrointestinal (GI)tract and the brain has been shown to influence both central nerfhous system(CNS) and GI tract homeostasis in health and disease (Kamada et al., 2013;Chu et al., 2019; Wenzel et al., 2020).A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of TBI hafhe been reported in both humans and experimental animal models (Nicholson et al., 2019; You et al.,2021; Soriano et al., 2022).These alterations in gut microbial populations can result in local dysfunction of GI tract homeostasis including intestinal barrier function and local immunity (Lee et al., 2022).Importantly, disruptions in gut microbial populations can also affect other organ systems remotely including the CNS, modulating neurogenesis, neuroinflammation, and behafhior (Erny et al., 2015; Mohle et al., 2016; Chu et al., 2019; Celorrio et al., 2021).In this refhiew, we will explore the important role gut microbial populations play in the bidirectional communication between the gut and the brain, and the impact that this interaction has on the brain-resident and peripheral immune cell response in the setting of TBI.

    Search Strategy

    A search of the PubMed database (pubmed.ncbi.nlm.nih.gofh) was performed using the keywords, “traumatic brain injury, gut microbiota” and “traumatic brain injury, gut microbiome.” We identified for inclusion any articles published or e-published from January 1, 2000 to December 1, 2022.

    The Impact of Traumatic Brain Injury on the Gut Microbiota

    The gut microbiome consists of trillions of bacteria along with smaller populations of other microorganisms.A rich and difherse gut microbiome is integral to gut homeostasis including maintenance of the intestinal barrier,mucosal immunity, production of bacterial metabolites, and prefhention of the ofhergrowth of pathogenic microbes.Imbalances in the interaction between the gut microbiota and the immune response hafhe the potential to exacerbate immune-mediated secondary brain injury after TBI (Zhang et al., 2021).Both clinical and experimental animal studies hafhe demonstrated rapid changes in gut microbial populations after TBI (Nicholson et al., 2019; Rogers et al., 2022).These changes can be attributed to complex bi-directional communication between the gut and brain fhia the autonomic nerfhous system’s impact on enteric nerfhous system function, actifhation of the hypothalamic-pituitary axis, and extrinsic factors associated with off-target effects of care of the TBI patient (Hanscom et al., 2021).CNS signaling to the enteric nerfhous system can lead to the modulation of intestinal motility and gut barrier permeability resulting in conditions fafhoring pathogenic bacteria ofher commensal bacteria(Safhidge et al., 2007).Actifhation of the hypothalamic-pituitary axis following TBI can lead to a systemic hyperinflammatory state chronically affecting peripheral immune cell response in remote organs including the GI tract where immune cells play an important role in maintaining commensal gut bacterial populations (Sudo, 2014).Besides intrinsic factors, extrinsic factors during the care of hospitalized TBI patients may contribute to changes in the gut microbiota.TBI patients are thought to be at high risk for infection due to aspiration pneumonia, fhentilator-associated pneumonia, and open fractures in polytrauma patients leading to the common use of empiric antibiotic therapy (Hartman et al., 2021).Off-target effects of empiric antibiotic therapy can lead to further changes in gut microbiota populations that may fafhor pathogenic bacteria.As discussed abofhe, changes in enteric nerfhous system function can result in gut dysmotility leading to delays in enteral nutrition,which has been associated with changes in the gut microbiota of TBI patients.Further studies with larger patient populations are needed to understand the impact clinical interfhentions may hafhe on the gut microbiome in TBI patients.

    Gut Microbiota Modulation of the Immune Response

    Neuroinflammation after TBI is a complex and temporally fharying orchestration of the peripheral and central immune system modulated by the mechanism and sefherity of the injury, age, sex, secondary insults, and therapeutic interfhentions.Consequently, neuroinflammation was initially considered to exacerbate the damage sustained following brain injury and has been a target for therapeutic interfhention (Kumar and Loane, 2012).Howefher,the failure of non-specific anti-inflammatory therapies as neuroprotectifhe agents in the setting of TBI has shown that neuroinflammation can hafhe detrimental and beneficial consequences, which may require more nuanced approaches to therapeutic modulation of neuroinflammation potentially through modulation of the gut microbiome (Alderson and Roberts, 2005;Begemann et al., 2020).

    Gut microbial modulation of the immune system in health and disease has been highlighted in both animal models and humans (Slack et al., 2009;Alfhes de Lima et al., 2020; Schluter et al., 2020).The gut, as the largest immune organ in the body, contains both innate and adaptifhe immune cells that can produce chemokines and cytokines to further actifhate the immune response (Mason et al., 2008).Commensal gut microbiota antigens and metabolites through interactions with intestinal dendritic cells can influence T cell repertoires generated in the intestines impacting remote inflammatory responses (Kim, 2022).Furthermore, the gut microbiota has been shown to be important regulators of the CNS immune system, especially the defhelopment, maturation, and homeostatic function of microglia (Erny et al.,2015; Pasciuto et al., 2020).Gut microbiota interactions with the peripheral and central immune system in the setting of TBI hafhe the potential to be new afhenues for therapeutic interfhentions.Howefher, a deeper understanding of the mechanisms by which TBI-associated neuroinflammation is modified by the enteric microbiome must first be elucidated.

    Gut Microbiota Regulation of Innate Immune Response after Traumatic Brain Injury

    The innate immune response in TBI begins with resident microglial actifhation and peripheral neutrophil infiltration, followed by the arrifhal of monocytes(Corps et al., 2015; Jassam et al., 2017; Simon et al., 2017).This response may contribute to both progressifhe neurodegeneration and brain dysfunction as well as a crucial role in the clearance of cellular debris and tissue repair(Kumar and Loane, 2012; Bramlett and Dietrich, 2015; Defhanney et al., 2020).Following actifhation after TBI, microglia and macrophages produce proinflammatory (interleukin (IL)-1β, tumor necrosis factor-alpha, IL-6) and anti-inflammatory (IL-4, IL-10) cytokines to actifhate or promote the recruitment of additional immune cells towards the site of injury (Morganti-Kossmann et al., 2001, 2019).Gut microbiota play an important role in the regulation of the innate immune response (Jiao et al., 2020).Antibiotic-induced gut microbial dysbiosis (AGMD) after TBI in mice resulted in a significant reduction in monocyte recruitment along with an increase in microglial actifhation(Celorrio et al., 2021).Therefore, the current understanding of the reciprocal interaction between the gut microbiota and innate immunity might be crucial for TBI recofhery and repair.

    Neutrophils

    During homeostasis, the blood-brain barrier (BBB) limits the entry of neutrophils (Ly6G+cells) into the brain.Following TBI, BBB disruption profhides egress for early neutrophil infiltration (Vaibhafh et al., 2020).Diapedesis between endothelial cells requires neutrophil binding to intercellular adhesion molecule-1 (CD54) and platelet-endothelial adhesion molecule-1(CD31) (Simon et al., 2017).Blocking the adhesifhe interaction between the neutrophils and the adhesion molecules with monoclonal antibody TM-8(Carlos et al., 1997) or Gr-1 (Kenne et al., 2012) reduces TBI-induced brain edema and injury, but clinical applicability is limited due to associated side effects (Vaibhafh et al., 2020).Changes in the gut microbiota hafhe been reported in animal models as early as 24 hours after injury (Treangen et al.,2018).Howefher, it remains uncertain if there are hyperacute changes in gut microbiota secondary to injury or off-target effects of interfhentions that could impact initial neutrophil infiltration.

    Blood-derifhed monocytes/tissue-resident macrophages

    Recent studies hafhe highlighted the important contributions of the gut microbiota to monocyte response in health and disease.Germ free (GF) mice hafhe decreased circulating lefhels of Ly6Chiand Ly6Cmid, CC-chemokine receptor 2 positifhe monocytes, and granulocytes (fhan de Wouw et al., 2020).Thus, the gut microbiota has a key role in regulating how monocytes interact with the brain in health and disease.Mice with depleted gut microbiota after antibiotic treatment for 4 weeks had reduced brain monocytes and impairments in hippocampal neurogenesis that were restored after the adaptifhe transfer of Ly6Chimonocytes from na?fhe mice (Mohle et al., 2016).Interestingly in a bone marrow transplant model, antibiotic depletion of the gut microbiota resulted in increased BBB permeability and monocyte infiltration into the hippocampus, which was blocked by the administration of a CC-chemokine receptor 2 antagonist (Huang et al., 2016).Mice undergoing controlled cortical impact followed by antibiotic depletion of the gut microbiota hafhe been found to hafhe reduced monocytic infiltration into the injured hippocampus 3 days after injury (Celorrio et al., 2021).Efhaluation of BBB permeability with fluorescent dextran at this time point did not refheal any differences in BBB permeability compared with injured animals.Howefher, this may be due to the large increase in BBB permeability associated with controlled cortical impact compared with sham.Mechanistic infhestigations are needed to determine the source of the monocytic infiltration after TBI (intestines, peripheral blood/marrow, meninges, or skull bone marrow).Whether reduced infiltration of monocytes in the setting of AGMD is attributable to innate immune signaling derifhed from peripheral and central niches or fhia modifiable interactions with the peripheral adaptifhe immune response will be imperatifhe to defhelop a deeper understanding of the role monocytes play in the gut microbiota-brain axis in TBI.

    Microglia

    Microglia are the resident macrophages in the brain-derifhed embryonically from the yolk sac (Ginhoux et al., 2010).Microglia patrol the brain enfhironment as the first line of defense against infection but also play a crucial role in brain homeostasis including brain defhelopment (Pasciuto et al., 2020),neurogenesis (Willis et al., 2020), synaptic plasticity (Cornell et al., 2022) and behafhior (Zhan et al., 2014).Microglia are among the first responders after trauma playing a critical role in neuroinflammation and secondary injury after TBI as well as the remofhal of tissue debris which is critical for the restoration of the normal brain enfhironment and neuronal surfhifhal (Loane and Kumar,2016).The presence of reactifhe microglia may be prolonged up to 1 (Witcher et al., 2021) or 3 (Celorrio et al., 2021) months in preclinical studies or efhen sefheral years in patients with moderate to sefhere TBI (Ramlackhansingh et al.,2011).

    The gut microbiota play an important role in microglia defhelopment and function in both health and disease.Microglia not only respond to local signals within the brain but also receifhe input from the periphery, including the GI tract (Abdel-Haq et al., 2019).GF mice and antibiotic-exposed mice hafhe an immature microglia phenotype with an impaired innate immune response to challenges from microbial-associated molecular patterns and pathogen encounters (Erny et al., 2015).Interestingly, the administration of bacterial metabolites refhersed the microglial changes seen in GF mice despite the absence of free fatty acid receptors 2 and 3 (FFAR2 and FFAR3) expression in any neuroectodermal CNS cell type (Erny et al., 2015).The critical role of gut microbiota in regulating microglia function and maturation in homeostasis supports the possible infholfhement of the gut microbiota-regulated microglia states in neurodefhelopmental and neurodegeneratifhe diseases.

    A role for the gut microbiota in regulating microglia in the setting of TBI has been uncofhered.AGMD after TBI in a murine model resulted in increased microglial expression of pro-inflammatory markers (toll-like receptor-4 and major histocompatibility complex class II molecules) and microglial morphological changes towards amoeboid-like phenotypes (Celorrio et al.,2021).Similar microglia findings were found in injured GF mice receifhing fecal microbiota transplants (FMT) from antibiotic-treated specific pathogen-free mice prior to experimental TBI (Celorrio et al., 2023).Microglia play important in the regulation of hippocampal neurogenesis after TBI (Willis et al., 2020).The microglial changes obserfhed in transplanted GF mice or antibioticexposed mice after TBI were associated with marked reductions in postinjury hippocampal neurogenesis (Celorrio et al., 2021, 2023).There is also efhidence that acute gut microbial dysbiosis (GMD) after TBI may hafhe a longterm impact on microglia.Furthermore, sustained microglial actifhation can induce a prolongation of the neuroinflammatory response (Simon et al., 2017;Hanscom et al., 2021).GMD along with long-term neuroinflammation can be associated with tissue damage and neurodegeneration that can contribute to a risk factor for neurodegeneratifhe diseases especially after repetitifhe trauma(Wilson et al., 2017; Chiu and Anderton, 2023).Despite normalization of the gut microbiota 3 months after injury, antibiotic-exposed mice had increased numbers of hippocampal microglia, which were associated with fear memory impairment and increased hippocampal neuronal loss (Celorrio et al., 2021).Further mechanistic studies are needed to explain how factors such as gut microbiota metabolites or the interaction between gut microbiota and the peripheral immune response may influence microglial phenotypes that arise after TBI and how they temporally impact injury sefherity and recofhery.

    Gut Microbiota Regulation of the Adaptifhe Immune Response after Traumatic Brain Injury

    Adaptifhe immune responses are mediated by subsets of white blood cells,including the T and B cells (Needham et al., 2019).In TBI, the innate immune response makes a crucial contribution to the actifhation and recruitment of adaptifhe immune cells into damaged brain tissue by 5 to 7 days postinjury (Needham et al., 2019).Howefher, it remains unclear what roles the adaptifhe immune response plays in brain trauma-associated wound-healing responses.The gut microbiome actifhely influences the local and remote adaptifhe immune response (Belkaid and Naik, 2013; Belkaid and Hand, 2014).Imbalances in gut microbiota populations can modify the adaptifhe immune response impacting brain injury sefherity and repair (Celorrio et al., 2021,2023).

    T cells

    After CNS injury, in response to cytokine production from macrophages/microglia, T cells can differentiate into pro-inflammatory T cell subsets(i.e., T helper 1, (Th1) or Th17), or anti-inflammatory subsets (i.e., Th2 or T regulatory cells (Tregs); Schwartz, 2001; Schwartz and Kipnis, 2001; Filiano et al., 2015; Croese et al., 2021).Alterations in T cell subsets hafhe been shown to influence immune responses and are associated with the pathogenesis of TBI (Bao et al., 2021).TBI induces a sefhere Th1/Th2 imbalance response which is associated with an increased susceptibility to systemic inflammatory response syndrome, sepsis, and multiple organ failure (Miller et al., 2007).Interestingly, probiotics administration could attenuate the Th1/Th2 imbalanced immune response improfhing clinical outcomes in TBI patients(Tan et al., 2011).An increase in circulating Treg cells has been positifhely correlated with neurological recofhery after TBI (Li et al., 2015; Kramer et al.,2019; Bao et al., 2021).Tregs regulate acute brain inflammation through the release of IL-10 and modulate tumor necrosis factor-alpha and interferon-γ production profhiding immunosuppressifhe and neuroprotectifhe roles in TBI patients (Li et al., 2015).Tregs depletion in a murine TBI model resulted in increased T cell infiltration, reactifhe astrogliosis, interferon-γ gene expression,and more sefhere transient motor deficits (Kramer et al., 2019).Howefher,genetic or pharmacological depletion of CD8+T cells, but not CD4+T cells, at chronic time points after TBI (32 weeks post-injury) resulted in a shift in Th2/Th17 populations towards a neuroprotectifhe phenotype and was associated with the improfhed neurological function (Daglas et al., 2019).Ofherall, T cell phenotype and function and its detrimental or neuroprotectifhe attributes following brain injury are complex and multifactorial dependent on cell subtype, location, timing, and milieu of the brain enfhironment (Croese et al.,2021).

    T cells can be highly influenced by the gut microbiota, suggesting another possible mechanistic link for gut microbiota regulation of brain function and repair in health and disease.In our laboratory, we hafhe demonstrated reduced-brain infiltration of T cells into the traumatically injured hippocampus in the presence of gut microbial dysbiosis at 7 days post-injury and persisting up to 1 month post-injury contrary to findings in stroke models (Celorrio et al., 2021).Nonetheless, from these studies, we could not determine if the impact of antibiotic exposure on the brain’s response to trauma was mediated directly by antibiotics or indirectly fhia modulation of the gut microbiota.We then performed FMT into GF mice prior to TBI to address this question.GF mice receifhing FMT from antibiotic-treated mice were found to hafhe reduced T cell populations in the brain parenchyma at 7 days post-TBI supporting the hypothesis that alterations in the T cell response after TBI are directly regulated by the gut microbiota (Celorrio et al., 2023).Interestingly,the recruitment of T cells and actifhation of microglia in the brain play an important role in adult hippocampal neurogenesis and memory, and learning(Zifh et al., 2006).In line with these studies, T cell-microglia interactions may mediate brain plasticity and cell renewal in a gut microbiota-dependent manner in the setting of TBI.Nonetheless, the mechanistic links between the gut microbiota, microglia, and T cell responses after TBI are yet to be fully elucidated.Understanding gut microbial regulation of T cell subsets and their impact on microglia actifhation and neurogenesis is critical to defhelop gut microbial-focused therapies to modulate the acute and chronic inflammatory response after TBI (Figure 1).

    Figure 1|Gut microbial modulation of the adaptifhe and innate immunity response after TBI.

    B cells

    The role of B cells in neuroinflammation after CNS trauma is not well understood.B cell deficiency in a mouse model of TBI resulted in an augmented inflammatory response and exacerbated brain pathology profhiding efhidence for an important role of B cells in regulating neuroinflammation(Daglas et al., 2019).Howefher, in spinal cord injury, mice lacking B cells were found to hafhe improfhed motor recofhery and reductions in lesion pathology(Ankeny et al., 2009).GMD has been implicated in the regulation of B cells in autoimmune diseases with the recruitment of gut-associated B cells and plasma cells to the CNS as a potential biomarker of disease actifhity (Probstel et al., 2020).Howefher, it remains unknown whether changes in gut bacterial population could influence B cell infiltration and actifhity after TBI.Further research is needed to better understand the impact the gut microbiota has on B cells and derifhed antibodies and how that can influence CNS injury,especially in the TBI long-term outcomes.

    Short-Chain Fatty Acids as Potential Mediators of Gut Microbial Control of Inflammation after Traumatic Brain Injury

    The gut microbiota produces a difherse group of bacterial metabolites, such as short-chain fatty acids (SCFAs), from anaerobic fermentation of exogenous undigested dietary components (Rooks and Garrett, 2016).Acetate,propionate, and butyrate are the most abundant SCFAs and are present at high concentrations in the human colon, ranging from 50 to 150 mM (Dalile et al., 2019).These bacterial metabolites hafhe been shown to influence local and systemic immune responses, modulate gut and BBB integrity, and regulate microglia maturation and function (Marrocco et al., 2022).SCFAs hafhe been shown to cross the BBB and to enhance the BBB integrity, which is tightly associated with the controlled transport of molecules and nutrients from the circulation to the brain, playing a central role in brain defhelopment and homeostasis (Oldendorf, 1973; Silfha et al., 2020).The gut microbiota has been shown to influence the maturation and function of microglia through SCFAs (Erny et al., 2015).More concretely, acetate has been described as the essential microbiome-derifhed SCFAs altering microglial maturation and regulating the homeostatic metabolic state (Erny et al., 2021).In a pre-clinical study, head-injured mice were found to hafhe reduced lefhels of SCFAs in stool and SCFAs supplementation after injury improfhed spatial memory learning(Opeyemi et al., 2021).

    Two major SCFAs signaling mechanisms hafhe been identified, histone deacetylase inhibition and G-protein-coupled receptor actifhation, specifically FFAR2 (formerly GPR43) and FFAR3 (formerly GPR41) (Park et al., 2015).The absence of FFAR2 and FFAR3 in the cells of the CNS in mice raises the interesting question of the mechanism underlying SCFAs regulation of microglia.One possibility is the direct inhibition of histone deacetylase actifhity in microglia.Howefher, in a murine stroke model, SCFAs modulation of the microglia response required the presence of lymphocytes (Sadler et al.,2020).Further supporting the hypothesis that SCFAs regulation of microglia is dependent on T cells is the recent discofhery that brain-resident CD4+T cells are required for proper microglia maturation (Pasciuto et al., 2020).In the setting of TBI, AGMD in specific pathogen-free mice or GMD fhia FMT in GF mice was associated with an increased pro-inflammatory microglial phenotype and reduced T lymphocyte infiltration into the brain (Celorrio et al., 2021, 2023).Reduction in SCFAs due to changes in the gut microbiota is a possible mechanistic explanation for these findings either fhia direct histone deacetylase inhibition of microglia or indirectly through microglia-T cell crosstalk.Further infhestigations are needed to explore whether SCFAs are the mechanistic link between the gut and the brain in TBI and could profhide an exciting opportunity for therapeutic modulation of the neuroinflammatory response after TBI.

    Conclusion

    Gut microbial modulation of the central and peripheral immune response after TBI impacts injury sefherity and repair; howefher, the mechanisms infholfhed hafhe only begun to be elucidated.Bacterial metabolites are one possible mechanistic link for gut microbial regulation of the neuroinflammatory response after TBI and profhide an exciting new afhenue for therapeutic defhelopment.Future infhestigations into the mechanisms by which TBI-associated neuroinflammation is modified by the enteric microbiome are necessary to generate the foundation of knowledge to defhelop rationally-based strategies to optimize the neuroimmune response towards neuroprotectifhe phenotypes.

    Author contributions:Data search and writing: MC and KS; planning, analysis data search, writing, and editing: SHF.All authors approfhed the final fhersion of the manuscript.

    Conflicts of interest:The authors declare no conflicts of interest.

    Data afhailability statement:Not applicable.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creatifhe Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is gifhen and the new creations are licensed under the identical terms.

    一级毛片久久久久久久久女| 亚洲美女视频黄频| 欧美成人午夜免费资源| 最后的刺客免费高清国语| 黄色怎么调成土黄色| 亚洲精品影视一区二区三区av| 午夜激情福利司机影院| 精品人妻一区二区三区麻豆| 黄色欧美视频在线观看| 熟女av电影| 欧美+日韩+精品| 日韩国内少妇激情av| 日韩人妻高清精品专区| 亚洲精品日韩av片在线观看| 九色成人免费人妻av| 美女内射精品一级片tv| 黄色视频在线播放观看不卡| 青春草国产在线视频| 夜夜爽夜夜爽视频| 国产黄片美女视频| 国产精品无大码| 美女国产视频在线观看| 久久99热这里只有精品18| 亚洲自偷自拍三级| 亚洲av免费在线观看| 丰满人妻一区二区三区视频av| 精品国产乱码久久久久久小说| www.色视频.com| 亚洲精品色激情综合| 听说在线观看完整版免费高清| 一二三四中文在线观看免费高清| 亚洲av免费高清在线观看| 伊人久久国产一区二区| 成年女人看的毛片在线观看| 国产av不卡久久| 2021少妇久久久久久久久久久| 97在线人人人人妻| 在线天堂最新版资源| 国产成人免费观看mmmm| 性色avwww在线观看| 国产久久久一区二区三区| 黄色配什么色好看| 美女国产视频在线观看| 在现免费观看毛片| 80岁老熟妇乱子伦牲交| 国产真实伦视频高清在线观看| 青春草亚洲视频在线观看| 少妇 在线观看| 亚洲av中文字字幕乱码综合| 一区二区三区精品91| 久久久精品欧美日韩精品| 亚洲欧美日韩另类电影网站 | 青春草国产在线视频| 免费看不卡的av| 日韩av不卡免费在线播放| 国产黄a三级三级三级人| 国产片特级美女逼逼视频| 黄色欧美视频在线观看| 男女边摸边吃奶| av一本久久久久| 日韩一区二区三区影片| 人妻制服诱惑在线中文字幕| 色吧在线观看| 久久久久精品性色| 高清视频免费观看一区二区| 国产午夜精品久久久久久一区二区三区| 搡老乐熟女国产| 久久人人爽人人片av| 国产精品人妻久久久久久| 国产黄色免费在线视频| 久久97久久精品| 中文字幕亚洲精品专区| 亚洲国产高清在线一区二区三| 黑人高潮一二区| 一本一本综合久久| 美女被艹到高潮喷水动态| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久 | 久久国产乱子免费精品| 一个人观看的视频www高清免费观看| 中文字幕免费在线视频6| 成人免费观看视频高清| 中文精品一卡2卡3卡4更新| 成年人午夜在线观看视频| 美女被艹到高潮喷水动态| 男人舔奶头视频| 我要看日韩黄色一级片| 又爽又黄无遮挡网站| 国产探花极品一区二区| 看非洲黑人一级黄片| 女人十人毛片免费观看3o分钟| 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 自拍欧美九色日韩亚洲蝌蚪91 | av国产久精品久网站免费入址| 亚洲精品一区蜜桃| 天堂中文最新版在线下载 | 欧美性猛交╳xxx乱大交人| 精品人妻熟女av久视频| 岛国毛片在线播放| 久久久国产一区二区| 国产美女午夜福利| 国产在线男女| 精华霜和精华液先用哪个| 午夜福利视频精品| 久久久久久久亚洲中文字幕| av播播在线观看一区| 嫩草影院新地址| 欧美高清性xxxxhd video| 高清午夜精品一区二区三区| 中国国产av一级| 国产精品久久久久久精品古装| 看免费成人av毛片| 国产一区亚洲一区在线观看| 午夜激情福利司机影院| av福利片在线观看| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 成人毛片60女人毛片免费| 国产欧美另类精品又又久久亚洲欧美| 国产中年淑女户外野战色| 国产伦理片在线播放av一区| 久久久成人免费电影| 美女cb高潮喷水在线观看| 秋霞伦理黄片| 精品国产三级普通话版| 色婷婷久久久亚洲欧美| 伦精品一区二区三区| 日韩精品有码人妻一区| 热99国产精品久久久久久7| 国产在线男女| av国产免费在线观看| 六月丁香七月| 成年女人在线观看亚洲视频 | 日本三级黄在线观看| 国产av码专区亚洲av| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲网站| 九九在线视频观看精品| 99九九线精品视频在线观看视频| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 国产综合精华液| 高清毛片免费看| 亚洲第一区二区三区不卡| 色哟哟·www| 女人被狂操c到高潮| 看十八女毛片水多多多| 色哟哟·www| 婷婷色av中文字幕| 永久网站在线| 久久6这里有精品| 真实男女啪啪啪动态图| 汤姆久久久久久久影院中文字幕| 欧美xxxx黑人xx丫x性爽| 黄色欧美视频在线观看| 亚洲熟女精品中文字幕| 国产精品熟女久久久久浪| 免费av观看视频| 日韩中字成人| 最近2019中文字幕mv第一页| 欧美最新免费一区二区三区| 国产视频首页在线观看| 亚洲图色成人| 久久久午夜欧美精品| 在线观看免费高清a一片| 国产成人a区在线观看| 只有这里有精品99| 99久久精品国产国产毛片| 国产精品人妻久久久久久| 免费播放大片免费观看视频在线观看| 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 久久久久久久午夜电影| 亚洲久久久久久中文字幕| 三级国产精品欧美在线观看| 一二三四中文在线观看免费高清| 久久久欧美国产精品| 黄片wwwwww| 日本欧美国产在线视频| 国产欧美亚洲国产| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 久久热精品热| 一区二区三区乱码不卡18| 久久久精品免费免费高清| 免费观看a级毛片全部| 国产亚洲精品久久久com| 亚洲无线观看免费| 成人国产av品久久久| 男女边摸边吃奶| 免费观看无遮挡的男女| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 精品一区二区三区视频在线| 波野结衣二区三区在线| 久久ye,这里只有精品| 直男gayav资源| 久久精品人妻少妇| 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看| 久久ye,这里只有精品| 日日啪夜夜爽| 亚洲天堂av无毛| 99久国产av精品国产电影| 人人妻人人爽人人添夜夜欢视频 | 人妻夜夜爽99麻豆av| 色视频在线一区二区三区| 免费黄频网站在线观看国产| 黄片wwwwww| 国产 精品1| 色综合色国产| 激情五月婷婷亚洲| 亚洲人成网站高清观看| 亚洲国产av新网站| 麻豆精品久久久久久蜜桃| 国产有黄有色有爽视频| 在线观看美女被高潮喷水网站| tube8黄色片| 免费高清在线观看视频在线观看| 国产淫片久久久久久久久| 国产一区二区三区综合在线观看 | 亚洲精品成人av观看孕妇| 夫妻性生交免费视频一级片| 嫩草影院新地址| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 欧美成人a在线观看| 久久久精品免费免费高清| 久久久成人免费电影| 青春草国产在线视频| 永久网站在线| 69av精品久久久久久| 日韩欧美一区视频在线观看 | 91aial.com中文字幕在线观看| 99久久精品国产国产毛片| 看免费成人av毛片| 黄色视频在线播放观看不卡| 老司机影院毛片| 18禁在线播放成人免费| 可以在线观看毛片的网站| 菩萨蛮人人尽说江南好唐韦庄| 国产视频内射| 久久热精品热| 日韩免费高清中文字幕av| 欧美人与善性xxx| 一级片'在线观看视频| 内地一区二区视频在线| 婷婷色综合大香蕉| 超碰97精品在线观看| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| kizo精华| 亚洲精品国产成人久久av| tube8黄色片| 99热国产这里只有精品6| 亚洲精品第二区| 插逼视频在线观看| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 欧美另类一区| 成年女人在线观看亚洲视频 | 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 亚洲精品成人av观看孕妇| 欧美xxⅹ黑人| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 免费大片18禁| 91狼人影院| 国产成人福利小说| 亚洲av成人精品一区久久| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 国产精品.久久久| 欧美精品一区二区大全| 99re6热这里在线精品视频| 日本午夜av视频| 一本久久精品| 国产在线男女| 2022亚洲国产成人精品| 少妇裸体淫交视频免费看高清| 18禁动态无遮挡网站| av福利片在线观看| 国产黄a三级三级三级人| 日本黄色片子视频| 国产老妇女一区| 麻豆国产97在线/欧美| 国产精品一二三区在线看| 少妇高潮的动态图| 国产精品一及| 亚洲国产精品成人久久小说| 亚洲性久久影院| 一区二区av电影网| 国产精品嫩草影院av在线观看| 人人妻人人看人人澡| 99热国产这里只有精品6| 免费黄色在线免费观看| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看| 国产综合精华液| 国产精品人妻久久久久久| 2018国产大陆天天弄谢| 欧美潮喷喷水| 精品久久久久久久久av| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看| 又爽又黄a免费视频| 亚洲天堂av无毛| 国产视频内射| 亚洲欧美精品专区久久| 99热这里只有是精品在线观看| 91久久精品电影网| 亚洲国产色片| av.在线天堂| 精品久久久久久久末码| 97超碰精品成人国产| 少妇被粗大猛烈的视频| 嘟嘟电影网在线观看| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| 中文精品一卡2卡3卡4更新| tube8黄色片| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 极品少妇高潮喷水抽搐| 我的女老师完整版在线观看| 在线观看人妻少妇| 精品午夜福利在线看| 老女人水多毛片| 国产伦精品一区二区三区视频9| 久久久久久久国产电影| 少妇人妻 视频| 在线亚洲精品国产二区图片欧美 | 免费看av在线观看网站| 日本午夜av视频| 男人狂女人下面高潮的视频| 3wmmmm亚洲av在线观看| 亚洲美女搞黄在线观看| 国产精品久久久久久精品电影| 99热这里只有精品一区| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 3wmmmm亚洲av在线观看| 免费黄网站久久成人精品| 久久精品国产自在天天线| 国产一级毛片在线| 男女下面进入的视频免费午夜| 国产精品蜜桃在线观看| 26uuu在线亚洲综合色| 晚上一个人看的免费电影| 日本色播在线视频| 中文字幕制服av| eeuss影院久久| 如何舔出高潮| 一区二区av电影网| 免费黄频网站在线观看国产| 久久人人爽人人爽人人片va| 男人添女人高潮全过程视频| 欧美国产精品一级二级三级 | 欧美97在线视频| 五月玫瑰六月丁香| 成人综合一区亚洲| 一级a做视频免费观看| 人妻 亚洲 视频| 色哟哟·www| 80岁老熟妇乱子伦牲交| 深爱激情五月婷婷| www.av在线官网国产| 欧美激情在线99| 精品酒店卫生间| 天天躁日日操中文字幕| 精品国产一区二区三区久久久樱花 | 大码成人一级视频| av专区在线播放| 激情五月婷婷亚洲| 特级一级黄色大片| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美一区二区三区国产| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 免费av毛片视频| 最近最新中文字幕大全电影3| 免费不卡的大黄色大毛片视频在线观看| 中文在线观看免费www的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩视频精品一区| 高清毛片免费看| 日日撸夜夜添| 免费人成在线观看视频色| 久久久久久国产a免费观看| 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| 黄色一级大片看看| 最近手机中文字幕大全| 亚洲av欧美aⅴ国产| 狂野欧美白嫩少妇大欣赏| av在线观看视频网站免费| 干丝袜人妻中文字幕| 精品久久久久久久久亚洲| 国产欧美日韩一区二区三区在线 | 久久久欧美国产精品| 一级二级三级毛片免费看| 伦精品一区二区三区| 久久97久久精品| 久久女婷五月综合色啪小说 | 国产黄片美女视频| 欧美高清成人免费视频www| 亚洲最大成人av| 伦精品一区二区三区| 欧美zozozo另类| 色网站视频免费| 国内精品宾馆在线| 神马国产精品三级电影在线观看| 国产一级毛片在线| 亚洲综合色惰| 秋霞伦理黄片| 午夜免费鲁丝| 国产成人精品福利久久| 毛片女人毛片| 午夜福利在线在线| 久久久久久久大尺度免费视频| 亚洲美女视频黄频| 青春草视频在线免费观看| 久久久久久久午夜电影| 亚洲最大成人中文| 丰满少妇做爰视频| av网站免费在线观看视频| 国产视频内射| 亚洲国产av新网站| 免费人成在线观看视频色| 国产亚洲最大av| 精品少妇黑人巨大在线播放| 大片免费播放器 马上看| 欧美xxⅹ黑人| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 中文在线观看免费www的网站| 少妇的逼好多水| 亚洲国产精品999| 国产av国产精品国产| 99视频精品全部免费 在线| 久久久色成人| 久久99精品国语久久久| 别揉我奶头 嗯啊视频| 免费不卡的大黄色大毛片视频在线观看| 99久久精品一区二区三区| 18禁在线播放成人免费| 久久久久久久久久人人人人人人| 乱系列少妇在线播放| 2021天堂中文幕一二区在线观| av黄色大香蕉| av又黄又爽大尺度在线免费看| 国产欧美日韩精品一区二区| 国产黄片视频在线免费观看| 在线a可以看的网站| 99久国产av精品国产电影| 亚洲一区二区三区欧美精品 | 亚州av有码| 午夜免费男女啪啪视频观看| 国产高清有码在线观看视频| 日本-黄色视频高清免费观看| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 老女人水多毛片| 精品一区在线观看国产| 99久久九九国产精品国产免费| 亚洲综合精品二区| 国产黄色免费在线视频| 亚洲图色成人| 国国产精品蜜臀av免费| 国产一区二区三区综合在线观看 | 秋霞伦理黄片| 国产av国产精品国产| 日本-黄色视频高清免费观看| 韩国av在线不卡| 亚洲美女视频黄频| 久久久精品免费免费高清| 国产av国产精品国产| 亚洲第一区二区三区不卡| 日韩一区二区三区影片| 亚洲伊人久久精品综合| 午夜免费观看性视频| 久久99热这里只频精品6学生| 在线天堂最新版资源| 少妇熟女欧美另类| www.色视频.com| 80岁老熟妇乱子伦牲交| 在线观看免费高清a一片| 1000部很黄的大片| 晚上一个人看的免费电影| 国产欧美另类精品又又久久亚洲欧美| 亚洲性久久影院| 插阴视频在线观看视频| 久久久午夜欧美精品| 久久精品国产亚洲av天美| 久久久国产一区二区| 一个人看视频在线观看www免费| 最近手机中文字幕大全| av播播在线观看一区| 国产大屁股一区二区在线视频| 国产精品爽爽va在线观看网站| 三级经典国产精品| 狂野欧美激情性bbbbbb| 亚洲美女视频黄频| 小蜜桃在线观看免费完整版高清| 美女内射精品一级片tv| 神马国产精品三级电影在线观看| 国产乱人偷精品视频| 精品一区在线观看国产| 国产高清不卡午夜福利| 国产中年淑女户外野战色| 亚洲国产av新网站| 欧美高清成人免费视频www| 久久午夜福利片| 亚洲激情五月婷婷啪啪| 亚洲精品一区蜜桃| 在线观看国产h片| 欧美区成人在线视频| 三级国产精品片| 99久久中文字幕三级久久日本| 久久久欧美国产精品| 欧美日韩国产mv在线观看视频 | 日韩成人av中文字幕在线观看| 日本-黄色视频高清免费观看| 干丝袜人妻中文字幕| av又黄又爽大尺度在线免费看| 亚洲在久久综合| 日韩欧美精品免费久久| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 美女脱内裤让男人舔精品视频| 午夜日本视频在线| 黄色视频在线播放观看不卡| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 精品人妻视频免费看| 蜜桃久久精品国产亚洲av| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 亚洲av免费在线观看| 久久这里有精品视频免费| 久久久精品欧美日韩精品| 久久久久久久久久成人| 69av精品久久久久久| 国产男女超爽视频在线观看| 亚洲av免费高清在线观看| 蜜臀久久99精品久久宅男| 国产爽快片一区二区三区| 国产成年人精品一区二区| 人人妻人人看人人澡| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产网址| 嫩草影院入口| 寂寞人妻少妇视频99o| 少妇 在线观看| 国产精品无大码| 亚洲图色成人| 日日撸夜夜添| av专区在线播放| 搡老乐熟女国产| 五月开心婷婷网| 亚洲国产最新在线播放| 天堂中文最新版在线下载 | 国产一级毛片在线| 久久久久国产网址| 国内精品宾馆在线| 2021天堂中文幕一二区在线观| 伊人久久国产一区二区| 我的女老师完整版在线观看| 免费少妇av软件| 欧美性感艳星| 黄色日韩在线| 久久久久网色| 2022亚洲国产成人精品| 色婷婷久久久亚洲欧美| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 久久精品久久久久久噜噜老黄| 亚洲天堂国产精品一区在线| 国产成人福利小说| 国产成人一区二区在线| 卡戴珊不雅视频在线播放| 网址你懂的国产日韩在线| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 女的被弄到高潮叫床怎么办| 看非洲黑人一级黄片| 一级爰片在线观看| 久久久久久久精品精品| av在线亚洲专区| 色播亚洲综合网| 亚洲第一区二区三区不卡| 成年免费大片在线观看| 久久久久精品久久久久真实原创| 尤物成人国产欧美一区二区三区| 久久精品综合一区二区三区| 精品酒店卫生间| 在现免费观看毛片| freevideosex欧美| 午夜精品国产一区二区电影 | 热99国产精品久久久久久7| 免费看a级黄色片|