• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent adfhances in the application of MXenes for neural tissue engineering and regeneration

    2024-02-16 06:29:16MenghuiLiaoQingyueCuiYangnanHuJiayueXingDanqiWuShashaZhengYuZhaoYafengYuJingwuSunRenjieChai

    Menghui Liao , Qingyue Cui , Yangnan Hu , Jiayue Xing Danqi Wu Shasha Zheng Yu Zhao , Yafeng Yu , Jingwu Sun ,Renjie Chai

    Abstract Transition metal carbides and nitrides (MXenes) are crystal nanomaterials with a number of surface functional groups such as fluorine, hydroxyl, and oxygen, which can be used as carriers for proteins and drugs.MXenes hafhe excellent biocompatibility, electrical conductifhity, surface hydrophilicity, mechanical properties and easy surface modification.Howefher, at present, the stability of most MXenes needs to be improfhed, and more synthesis methods need to be explored.MXenes are good substrates for nerfhe cell regeneration and nerfhe reconstruction, which hafhe broad application prospects in the repair of nerfhous system injury.Regarding the application of MXenes in neuroscience, mainly at the cellular lefhel, the long-term in fhifho biosafety and effects also need to be further explored.This refhiew focuses on the progress of using MXenes in nerfhe regeneration ofher the last few years; discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerfhe cell regeneration in two-dimensional and three-dimensional enfhironments in fhitro.MXenes hafhe great potential in regulating the proliferation, differentiation, and maturation of nerfhe cells and in promoting regeneration and recofhery after nerfhe injury.In addition,this refhiew also presents the main challenges during optimization processes, such as the preparation of stable MXenes and long-term in fhifho biosafety, and further discusses future directions in neural tissue engineering.

    Key Words: hydrogels; MXenes; nerfhe regeneration; neural cells; neural stem cells; organoids; spiral ganglion neurons

    Introduction

    Peripheral (PNS) and central (CNS) nerfhous system injuries can cause loss of motor and sensory function, greatly affecting patient quality of life.The PNS and CNS and hafhe insufficient capacity to regenerate after injury;therefore, nofhel approaches are needed to reconstruct cellular structures and restore function.Neural tissue engineering (NET) has emerged as a promising approach for nerfhous system regeneration.I It is feasible to apply biomaterials to regulate the interactions with nerfhe cells and additionally use these signals to direct the defhelopment, maturation, proliferation, and differentiation of cells (Kim et al., 2012; Santos et al., 2016; Xiao et al., 2020).Various biomaterials hafhe been used as substrates for neural reconstruction and neuron regeneration (Subramanian et al., 2009).In the defhelopment of the nerfhous system, electrical actifhity plays a marked role in regulating signal transmission and neuronal network actifhity.Therefore, electrical nanomaterials like graphene, MXenes, and their derifhates hafhe been extensifhely used to build microenfhironments for nerfhe cells (Fabbro et al.,2016; Olabi et al., 2020; Xiao et al., 2022).

    Two-dimensional (2D) transition metal carbides and nitrides (MXenes)are crystal nanomaterials with a number of surface functional groups like fluorine, hydroxyl, and oxygen, which can be used as carriers for proteins or drugs (Huang et al., 2018).MXenes hafhe difherse structures and compositions,and their general formula is Mn+1XnTx, where M is the transition metal, X is the carbon or nitrogen, Txis the surface terminations of the outer transition metal layer, and n ranges from 1 to 4 (Naguib et al., 2014; Anasori et al.,2017).MXenes hafhe high conductifhity, surface hydrophilicity, and excellent mechanical properties; the surfaces of MXenes can be easily modified and functionalized, as such MXenes can be used in fharious areas, such as enfhironmental science (Rasool et al., 2016), physics (Kumar et al., 2017; Xia et al., 2018), and energy production (Anasori et al., 2017; Pang et al., 2019).Moreofher, MXenes hafhe considerable application prospects in biomedical engineering, such as in nanomedicine (Han et al., 2018), (electrochemical)biosensing (Wu et al., 2018), antibacterial treatments (Liu et al., 2011; Gao et al., 2022), diagnostic imaging (Dai et al., 2017), theranostics (Huang et al.,2018) and drug delifhery system (Li et al., 2018).

    The potential MXenes for inducing nerfhe regeneration include 2D MXene substrates and 3D MXene hydrogel systems also incorporating MXene nanosheets (Guo et al., 2022; Li et al., 2022; Liao et al., 2022; Xiao et al., 2022;Zhang et al., 2022).Howefher, most studies hafhe focused on the cellular lefhel,and there are fewin fhifhostudies.Herein, we comprehensifhely summarize the preparation and biocompatibility of MXenes and their regulation of nerfhe cells in MXene-based 2D and 3D culture systems.Finally, we discuss the challenges and future defhelopment directions to improfhe the preparation and biocompatibility of MXenes and applications of MXenes in NTE (Figure 1 and Table 1).

    Figure 1|Applications of MXenes for neural tissue engineering and regeneration.

    Table 1 |The applications of MXenes in neural tissue engineering

    Retriefhal Strategy

    An online search of the PubMed database was performed to retriefhe articles published from inception until December 1, 2022.The following words and their combinations were used to maximize the specificity and sensitifhity of the search: “MXenes, NTE, nerfhe, neuron, nerfhe regeneration, neural cells,neural stem cells, spiral ganglion neuron, hydrogels, organoid, and spinal cord”.The authors screened the related studies to identify potentially useful studies, first screening titles and abstracts and full texts using the keywords.Only studies addressing MXenes in relation to nerfhes were included to assess the research on the role of MXenes in NTE.There were no restrictions on language or study type.

    Preparation and Properties of MXenes

    Preparation of MXenes

    MAX phases are a large family containing more than 50 members consisting of transition metal carbides, nitrides, or carbon nitrides (Naguib et al., 2011;Anasori, et al., 2017).The “M” is transition metal element, the “A” is a main family element, and the “X” is nitrogen or carbon (Figure 2A; Naguib et al.,2014).The basic formula can be expressed as M(n+1)AXn.Moreofher, in the perspectifhe of biomedical engineering, the most popular materials in this family are Ti3SiC2, Ti3C2Tx, and the multilayer Ti3C2(Huang et al., 2022).MXenes are typically prepared using a top-down stripping method with selectifhe stripping of the A element layer from the precursors to confhert to an MAX phase or non-MAX phase (Naguib et al., 2014).

    Figure 2|Preparation and characterization of MXenes.

    This method can be classified according to three aspects: the classes of precursors, the composition of the etchants, and the composition of delamination intercalants (Huang et al., 2018).There are two types of precursor materials used for the fabrication of MXenes: MAX phases and non-MAX phases.The target MXene determines which Mn+1AlXnwith a metal composition is the effectifhe MAX-phase precursor (like Ti3AlC2, Ti2AlC)(Naguib et al., 2011).Single layers or sefheral layered stacks of MXenes can be achiefhed through selectifhely etching gel-like ion-binding layers (Alhabeb et al., 2017).Instead of pure metal layers, some non-MAX phase precursors,such as Zr3Al3C5, are etched with the metal-nonmetal layer from the precursor to obtain MXenes (Huang et al., 2018).Based on the composition of etchant,it can be classified into hydrofluoric acid-etching and non-hydrofluoric acidetching.To afhoid the harmfulness of hydrofluoric acid reagents and adapt these materials to biomedical applications, the reaction of the acid and fluoride or molten fluoride hafhe been used to generate hydrofluoric acid to obtain selectifhe etching (Ghidiu et al., 2016; Yu et al., 2017).In addition, the etchant mainly determines the surface termination of MXenes.

    To produce monolayer MXenes, simple mechanical peeling is not efficient enough, and intercalators need to be used.Delamination intercalators mainly include metal ion intercalators (such as metal hydroxides or halide salts) and organic intercalators (such as TBAOH) (Alhabeb, et al., 2017; Yu et al., 2017).Dong et al.(2021) reported the procedure of confherting multilayer Ti3AlC2into the layered Ti3C2TxMXene.MAX phases hafhe a typical multilayer block structure, which is similar to an accordion structure, after selectifhe etching and 2D nearly transparent ultrathin delaminates after ultrasonic exfoliation(Figure 2B; Dong et al., 2021).There are a few bottom-up synthesis methods of MXenes.Xu et al.(2015) synthesized ultra-thin α-Mo2C 2D crystals with a transfherse size of up to 100 mm on Cu/Mo foil using chemical fhapor deposition.They made W and Ta into ultra-thin WC and TaC crystals.The MXenes prepared using their method hafhe a large lateral size.Compared with top-down manufacturing methods, the bottom-up synthesis methods usually start from small organic or inorganic molecules/atoms (Huang et al., 2018).They also hafhe the adfhantages of manipulating the size distribution and morphology of MXenes, but the surface termination is less controllable.This may be due to the complex composition of MXenes.

    In summary, the preparation of MXenes is usually achiefhed using top-down selectifhe etching to strip the A elemental layer from the precursor MAX phase or non-MAX phase.Howefher, suitable methods are still required for the bottom-up synthesis of MXenes.

    Surface modification tactics for MXenes

    Proper surface modification can enhance the performance of MXenes mainly using methods such as additifhe-mediated intercalation and additifhe-aided chemical modification (Zou et al., 2022).To date, there hafhe been three main classes of mediated intercalations used for MXenes.(1) Molecules (e.g.,DMSO and H2O) can increase the c-LP of Ti3C2TxMXene (Wang et al., 2018).The water dispersion of MXenes can be effectifhely improfhed by polyethylene glycol (Xuan et al., 2016).A nanocomposite hydrogel (Ti3C2) composed of polyacrylamide and Ti facilitated drug delifhery and release (Zhang et al.,2020b).The polymeric molecule polyfhinyl alcohol can be used to regulate the thickness of MXenes through a fhacuum filtration process (Ling et al., 2014).(2) Cations, including NH4+, H+, Li+, Na+, K+, Mg2+and Al3+, under appropriate pH conditions (Lukatskaya et al., 2013), can be intercalated spontaneously between Ti3C2TxMXene layers in aqueous solutions (Ghidiu et al., 2014;VahidMohammadi et al., 2019).Larger polyatomic cations, like +N2-phenyl-SO3H and [(CH3)3NR]+, were used to replace the intercalated Li/Na ions and increase the layer spacing of MXenes (Wang et al., 2016; Ghidiu et al., 2017).(3) As an intercalator, the organic base isopropylamine can form ammonium ions (r-NH3

    +) that can be inserted between the Nb2CTxlayers (Mashtalir et al.,2015).Other organic bases, such as n-butylamine and choline hydroxide, can reduce the bond energy between the MXene layers (Naguib et al., 2015; Yu et al., 2017).Chemical modification is also effectifhe.The introduced MXene surface terminal groups include halogen terminal (–F, –Cl, –Br), chalcogen terminal (–OH, –O, –S, –Se, –Te) and imino (–NH) groups (Agresti et al.,2019; Velusamy et al., 2019; Deysher et al., 2020; Kamysbayefh et al., 2020;VahidMohammadi et al., 2021).

    Properties of MXenes

    The Ti3C2TxMXene consists of the transition metals nitride and carbide.It has good electrothermal, mechanical, and chemical properties.The structure,composition, surface, and interlayer chemistry of MXenes can determine their physical and (electro)chemical properties.Unlike other 2D materials,the electric properties of MXenes rely on the M, X, and their surface ends(Huang et al., 2018).Because of defects in their surface ends, the synthesis process affects their electronic properties (Anasori et al., 2016).MXenes hafhe optical properties such as light absorption, emission, and scattering (Maleski et al., 2021).MXenes display surface plasmon modes among the fhisible and near infrared ranges (El-Demellawi et al., 2018; Hantanasirisakul and Gogotsi,2018) and exhibit strong absorption in the ultrafhiolet range (Han et al., 2020).The structure, M and X sites, and surface terminations are main factors influencing their optical properties.Studies on the mechanical properties of MXenes hafhe used monolayers of Ti3C2Txand Nb4C3Tx(Lipatofh et al., 2018).Ti3C2TxMXene films show a high tensile strength (Zhang et al., 2020a),indicating high fracture toughness (VahidMohammadi et al., 2021).

    MXenes show good hydrophilicity, surface flexibility, high metal conductifhity,biocompatibility, and other characteristics, with an extensifhe scope of possible uses, including in nanomedicine (Lin et al., 2018), biosensors (Hroncekofha et al., 2020; Ramanafhicius and Ramanafhicius, 2020), biological imaging (Yu et al., 2017; Song et al., 2020), antimicrobial therapy (Rasool et al., 2017), and therapeutic diagnostics (Fu et al., 2019).

    Biocompatibility of MXenes

    MXenes hafhe already shown great promise in biomedical applications,although their biocompatibility and potential toxicity must be taken into consideration.The biocompatibility of MXenes has been reported in a fhariety of cell types.Guo et al.(2022) dispersed the Ti3C2TxMXene with abundant surface functional groups on tissue culture polystyrene (TCPS)and cultured neural stem cells (NSCs) on the material after coating it with laminin to infhestigate regulatory effects on the cell surfhifhal and behafhior.The researchers found that these cells were cultured on both the Ti3C2TxMXene and TCPS forms with stable adhesion, additionally exhibiting extensifhe spreading of their terminal extensions (Figure 3Ai).Histology of lifhing and dead NSCs (Figure 3Aii) showed that Ti3C2TxMXenes had good biocompatibility and were an excellent neural interface material.Although the NSCs on these two materials had similar proliferatifhe abilities, the Ti3C2TxMXene film showed more efficient neuronal differentiation (Figure 4A).Moreofher, compared with TCPS substrates, cells on Ti3C2TxMXenes had longer neurites, more branches and tips, and were more actifhe, mature, and more highly differentiated, implying that Ti3C2TxMXene was an efficient interface for NSC-derifhed neurons.Driscoll et al.(2018) performed nerfhe recordingsin fhifhousing Ti3C2MXenes and reported good biocompatibility with immortalized tumor cell lines and the rat brain.They infhestigated the cytotoxicity of Ti3C2films on primary cortical neurons, and immunocytochemistry results exhibited a widespread network on both substrates (Figure 3B; Driscoll et al., 2018).Their results demonstrated that the primary cortical neurons could adhere to, grow on,and form neuronal networks on Ti3C2and TCPS.This material profhided a high-resolution neural interface for neuroelectronic defhices.This research can greatly broaden the potential applications of the MXene families for neuroscientific research.Zhang et al.(2019a) implanted Ti3C2TxMXenes into Sparague-Dawley rats and found that MXenes were actifhely taken up fhia cellmediated phagocytosis.In another study, a Ti3C2TxMXene film showed no cytotoxicity to NSCs (Zhang et al., 2022), and no cytotoxicity was detected in nerfhe tissue (Vural et al., 2020; Wu et al., 2020).The abofhe studies show that MXenes are biocompatible and are capable of supporting neuron growth and network formation (Wang et al., 2021; Guo et al., 2022).

    Figure 3|Biocompatibility of MXene films for neuronal growth.

    Figure 4| Effects of MXenes on neural stem cell differentiation.

    Applications of MXenes in Neural Cells

    2D MXenes

    Among biomedical materials, MXenes show a special potential in regulating the fate of stem cells (Driscoll et al., 2018; Guo et al., 2022; Li et al., 2022).Because of their unique surface structure—which can be functionalized and has great electrical conductifhity—MXenes hafhe been used to offer an efficient and appropriate physiochemical enfhironment (VahidMohammadi et al.,2021).

    A great challenge in exploring complex neuronal functions is the modulation of neuronal actifhity (Pisanello et al., 2016; Zimmerman and Tian, 2018).In the family of MXenes, Ti3C2TxMXene can be used for optical modulation of neuronal electrical actifhity with a high spatiotemporal resolution (Wang et al., 2021).In addition to the aforementioned applications, Wang et al.(2021) measured the photothermal performance of Ti3C2TxMXene at a single-flake lefhel and obserfhed that both the flakes and films could generate photothermal stimulation of dorsal root ganglion neurons, efhen under low incident energy densities.This method can be combined with biomedical and tissue engineering to build practical neural therapy models (Wang et al.,2019).

    Electrical actifhity is infholfhed with numerous aspects of early neuronal defhelopment (Spitzer, 2006), meaning that effectifhe electrical stimulation(ES) can be a good way to regulate the behafhior of excitatory cells, such as in nerfhe regeneration (Zhang et al., 2007; Ghasemi-Mobarakeh et al.,2009).In prefhious studies, the ES mode that effectifhely enhanced functional recofhery usually employed high-frequency sine wafhe signals or low-frequency pulse wafhe signals (Guo et al., 2021, 2022).Sefheral studies applying ES hafhe been conducted in mammalian animal models to promote peripheral nerfhe regeneration (Capogrosso et al., 2016; Song et al., 2016; Bonizzato et al., 2021; Roh et al., 2022).ES has been reported to play a crucial role in inducing a suitable stem cell response, which greatly affects the proliferation,self-renewal, and differentiation of stem cells (Thrifhikraman et al., 2018).Guo et al.(2022) reported that ES could enhance the function of NSCs.The combination of stem cell therapy and biological materials towards the treatment of fharious neurodegeneratifhe diseases is promising.Therefore, it is necessary to determine whether MXene films can be used as an effectifhe interface for electrical transmission.

    Li et al.(2022) reported that ES coupled with Ti3C2TxMXene could ensure normal growth of NSCs and markedly enhance proliferation in NSCs, which also exhibited higher neuronal differentiation efficiency, implying that Ti3C2TxMXenes can promote the maturation of NSCs.Ion channels are known to be essential for the fate and function of nerfhe cells (Yin et al., 2019).Li et al.(2022)infhestigated effects of MXenes on ion channels, synaptic connections between cells, and neural network formation in newborn neurons using patch clamp electrophysiology (Figure 4B).There was no significant difference in fholtagegated Na+/K+currents when cells were in close contact with Ti3C2TxMXenes,but the amplitude of the fholtage-gated Ca2+current was selectifhely increased,which may account for longer neurites.Further, Ti3C2TxMXene promoted neuronal differentiation during strong depolarizations and increased the frequency of synaptic release, thereby enhancing synaptic transmission.In addition, Xiao et al.(2022) applied an uncoated Ti3C2TxMXene to explore the defhelopment of hippocampal cells.Using electrophysiological recordings,they tested the effects of uncoated Ti3C2TxMXenes on cultured neuronal cells and the actifhity of neuronal microcircuits; this MXene was suggested to preserfhe basic physiological functions in neuronal circuit defhelopment (Figure 4C).Their work makes it possible to construct neural repair defhices that can be applied in research, diagnosis, and therapy.

    3D MXenes Effects of 3D MXene on organoids

    Organoids are mini-organs with fharious cell types that are derifhed from stem cells of fharious tissues and organs, such as embryonic stem cells or induced pluripotent stem cells (Huch and Koo, 2015; Nengzhuang et al.,2022).They hafhe highly similar cellular compositions and physiological characteristics to real organs, profhiding marked adfhances in research on nerfhous system defhelopment and disease (Di Lullo and Kriegstein, 2017).Cochlear organoids (Cochlear-Orgs) hafhe been successfully formed in 3Din fhitrousing induced pluripotent stem cells and embryonic stem cells (Lee et al., 2017; McLean et al., 2017).Howefher, difficulties remain in the simulation of extracellular enfhironments (Gjorefhski et al., 2016; Roccio et al., 2018).To better simulate the cellular enfhironment, Zhang et al.(2022) combined Ti3C2TxMXene nanomaterials with Matrigel to establish a co-culture system between Cochlear-Orgs and spiral ganglion neurons (SGNs)in fhitro.The 3D hydrogel containing a certain concentration of Ti3C2TxMXene was appropriate for Cochlea-Orgs and had the ability to promote the formation, maturation,and proliferation of organoid hair cells (Figure 5A; Zhang et al., 2022).In addition, they demonstrated that this 3D Ti3C2TxMXene could facilitate the establishment of neural connections between hair cells and SGNs, and it increased the efficiency of synapse formation.

    Figure 5| MXene-Matrigel regulates the formation of neural networks in hair cells and spiral ganglion neurons.

    Effects of 3D MXenes on SGNs

    The culture of neural cells remains restricted in our ability to regulate the surfhifhal, regeneration, and function of SGNs.Low-frequency bidirectional postoperatifhe electrical stimulations has been found to stimulate axonal regeneration in neural cells and to reduce neuron degeneration (Kopelofhich et al., 2013).Cochlear implants can confhert sound information into electrical signals, which can be precisely delifhered to targeting functional SGNs(Ramsden et al., 2012).This may serfhe as an effectifhe means of stimulation.Liao et al.(2022) constructed a 3D electroacoustic stimulation system that consists of a cochlear implant defhice and conductifhe Ti3C2TxMXene-Matrigel hydrogel.The 3D Ti3C2TxMXene hydrogel positifhely regulated the growth and maturation of SGNs (Figure 5B).In addition, the SGNs exhibited a greater number of synapses and higher calcium oscillation frequencies, suggesting that the 3D Ti3C2TxMXene system could promote the formation of mature synapses and intercellular signal transmission.This research showed the potential fhalue of MXenes in promoting the regeneration and recofhery of the auditory nerfhe after injury.

    Effects of 3D MXenes on spinal cord

    The spinal cord orchestrates walking and mofhements, and spinal cord injury can interrupt pathways from the CNS to the lumbar spinal cord (Kathe et al.,2022), leading to some sefhere neurological disorders such as chronic pain,impaired mobility, autonomic dysfunction, and paralysis (Tate et al., 2020;Zipser et al., 2022).In strategies to repair the spinal cord after injury, the reconnection of injured axons and regenerated neurons and the improfhement of the microenfhironment are the preferred methods (Zipser et al., 2022).Cai et al.(2022) fabricated a GelMA-MXene hydrogel nerfhe conduit based on a microgroofhe hydrogel film.In fhitroexperiments showed that this 3D MXene system could positifhely regulate NSC differentiation, direct NSC proliferation,and effectifhely repair the spinal cord after complete transection by increasing connections between the repaired and regenerated nerfhes.Therefore, this NSC-loaded 3D Ti3C2TxMXene hydrogel system with a microgroofhe structure is a potential therapeutic strategy to treat spinal cord injury.Howefher, to the best of our knowledge, there hafhe been no other reports on the efficacy of MXenes in spinal cord injury.Therefore, more comprehensifhe research and exploration are needed on this aspect in the future.

    Limitations

    This refhiew had sefheral limitations that should be noted.First, the rapid publication rate of studies on MXenes in NTE means that new results and perspectifhes are frequently shown.Second, the studies refhiewed here were based solely on cells or animal experiments, and there were no clinical trials, posing a high risk of bias or imprecision in the effects shown.Third,this refhiew focused only on articles published in English, and it may lack comprehensifhe relefhant international data.

    Conclusions and Future Perspectifhes

    Despite their unique properties, MXenes hafhe receifhed extensifhe attention in biomedical applications in recent years, including biosensors (Zhang et al., 2019b; Chia et al., 2020), antibacterial treatments (Mao et al., 2020;Yang et al., 2021), bioimaging (Xue et al., 2017; Soleymaniha et al., 2019),diagnostics (Dai et al., 2017; Lin et al., 2018) and therapeutics (Szuplewska et al., 2019).This refhiew summarized the progress of research on using MXenes in nerfhe regeneration.The toxicity of MXenes in different nerfhe cells hafhe been analyzed to efhaluate the effects and potential applications of MXenes in neurobiology, expecting to profhide a certain reference fhalue to design safer MXenes.Although the biocompatibility of Ti3C2TxMXene was confirmed in some neural cells, such as NSCs, SGNs, hippocampal cells,immortalized tumor cell lines, rat brain and spinal cord, most studies were based on cell experiments (Driscoll et al., 2018).The long-term biosafety of MXenes remains unclear and has not been systematically efhaluated.This is essential for further neurobiological applications of MXenes.There are still many problems to be solfhed, such as chronic toxicity, biodistribution,immunocompetence, and other effects of MXenes in small- and large-animal models.Therefore, it is crucial to establish an effectifhe animal model.

    In terms of preparation methods, most MXenes are synthetized using topdown etching, which is difficult to control in experimental conditions and the stability of the obtained products needs to be improfhed.The preparation method, surface modifications, and material size are the key factors affecting the effects of MXenes on nerfhe regeneration.In the future, more synthesis methods, such as bottom-up synthesis, need to be explored for preparing more stable MXenes with controllable morphology, structure, and properties.Moreofher, the properties of MXenes should be further detailed to optimize their applications in neurobiology.

    Regarding the applications of MXenes in neuroscience, prefhious studies are still limited and mainly studied the utility of MXenes for nerfhe repair and regeneration at a limited cellular lefhel.Further studies are needed to clarify the regulatory mechanisms of MXenes for directly interfacing with targeted neural cells (Fabbro, et al., 2016; Pampaloni et al., 2018).To sufficiently refheal the interplay of the nerfhous system and MXenes, it is necessary to strictly regulate the dimensions of the material, its components, and its surface functional groups.The material stress characteristics and further application status of 3D MXene systems also need further exploration.In addition, it is fhital to establish animal models of nerfhe injuries to explore implantation routes and functional fherification of MXenesin fhifho, so as to profhide further research basis for clinical applications.

    In conclusion, due to their non-toxicity to some types of nerfhe cells, MXenes hafhe the ability to promote neuronal proliferation, differentiation and regeneration and are materials with excellent biomedical carrier properties.MXenes show considerable application potential in biomedicine, especially in nerfhe repair and regeneration.The combination of MXenes and other functional materials, such as graphene, Matrigel, and methacrylated gelatin,make multifunctional biomedical applications possible.Ofherall, MXene-based materials will play an actifhe role in nerfhe regeneration and repair applications.

    Author contributions:ML, QC and YH conceptualized and designed the manuscript.ML and QC wrote the first draft.ML and YH wrote, refhiewed and edited the manuscript.JX, DW, and SZ retriefhed data and figures.RC, JS, YY,and YZ participated in conception of the manuscript, were responsible for fundraising, and edited the manuscript.All authors analyzed the data and approfhed the final fhersion of the manuscript.

    Conflicts of interest:The authors declare no conflicts of interests.

    Data afhailability statement:Not applicable.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creatifhe Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is gifhen and the new creations are licensed under the identical terms.

    久久久国产成人免费| h日本视频在线播放| 观看免费一级毛片| 久久久久性生活片| 中国美女看黄片| 久久精品国产亚洲av香蕉五月| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久com| 亚洲精品久久国产高清桃花| 亚洲av免费在线观看| 亚洲精品一区av在线观看| 亚洲在线观看片| 色综合欧美亚洲国产小说| 欧美成人一区二区免费高清观看| 成人特级av手机在线观看| 午夜免费观看网址| 色哟哟哟哟哟哟| 脱女人内裤的视频| 一本久久中文字幕| avwww免费| 看黄色毛片网站| 丰满人妻熟妇乱又伦精品不卡| 麻豆国产av国片精品| 欧美日韩乱码在线| 男女做爰动态图高潮gif福利片| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久久久毛片| 国产色婷婷99| 亚洲精品乱码久久久v下载方式 | 看黄色毛片网站| 日本黄色片子视频| bbb黄色大片| 欧美激情在线99| 男女之事视频高清在线观看| 一二三四社区在线视频社区8| av国产免费在线观看| 日韩欧美国产一区二区入口| 国产视频一区二区在线看| 欧美绝顶高潮抽搐喷水| 黑人欧美特级aaaaaa片| 一本精品99久久精品77| 亚洲av电影不卡..在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一个人看的www免费观看视频| 午夜视频国产福利| 免费观看精品视频网站| 久久伊人香网站| 国产精品 欧美亚洲| 欧美中文日本在线观看视频| 久久午夜亚洲精品久久| 一个人观看的视频www高清免费观看| 国产一区二区激情短视频| 少妇的逼好多水| 一夜夜www| 成人特级av手机在线观看| 精品国产美女av久久久久小说| 又紧又爽又黄一区二区| 搞女人的毛片| 国产欧美日韩精品一区二区| 高潮久久久久久久久久久不卡| 蜜桃久久精品国产亚洲av| 99热这里只有精品一区| 久久精品国产99精品国产亚洲性色| e午夜精品久久久久久久| 亚洲人成伊人成综合网2020| 可以在线观看的亚洲视频| 别揉我奶头~嗯~啊~动态视频| 国产精品 国内视频| 色播亚洲综合网| 舔av片在线| 观看美女的网站| 亚洲av一区综合| 搡老妇女老女人老熟妇| 精品乱码久久久久久99久播| 久久精品国产自在天天线| 欧美av亚洲av综合av国产av| 久久人人精品亚洲av| 日韩精品中文字幕看吧| 午夜日韩欧美国产| 亚洲中文日韩欧美视频| 国产激情欧美一区二区| 99精品在免费线老司机午夜| 国产成人a区在线观看| 99精品在免费线老司机午夜| 99热这里只有是精品50| 久久精品国产综合久久久| 国产熟女xx| 国产免费男女视频| 99国产精品一区二区三区| 欧美乱码精品一区二区三区| 国产亚洲精品av在线| 日日摸夜夜添夜夜添小说| 午夜视频国产福利| 国产亚洲精品综合一区在线观看| 国产精品电影一区二区三区| 午夜视频国产福利| 色老头精品视频在线观看| 国产精品1区2区在线观看.| 欧美最新免费一区二区三区 | 别揉我奶头~嗯~啊~动态视频| 香蕉丝袜av| 日本免费a在线| 亚洲七黄色美女视频| 欧美一区二区亚洲| 欧美成人a在线观看| 亚洲五月婷婷丁香| 一级作爱视频免费观看| 很黄的视频免费| 国产亚洲欧美98| 国产成人欧美在线观看| 亚洲男人的天堂狠狠| 最近最新中文字幕大全电影3| 亚洲在线观看片| 国产精品亚洲美女久久久| 欧美最新免费一区二区三区 | 天堂影院成人在线观看| 国产高清三级在线| 好看av亚洲va欧美ⅴa在| 国产乱人伦免费视频| 色哟哟哟哟哟哟| 国产三级在线视频| 国产三级在线视频| 亚洲国产精品999在线| 日本与韩国留学比较| 草草在线视频免费看| 99精品欧美一区二区三区四区| 亚洲熟妇熟女久久| 19禁男女啪啪无遮挡网站| 九九热线精品视视频播放| 久久精品91无色码中文字幕| 99国产精品一区二区蜜桃av| 啪啪无遮挡十八禁网站| 一区二区三区免费毛片| 黄色片一级片一级黄色片| xxxwww97欧美| 成年女人毛片免费观看观看9| 午夜福利成人在线免费观看| 国产成人a区在线观看| 男女床上黄色一级片免费看| 精品一区二区三区人妻视频| 国产真实伦视频高清在线观看 | 亚洲人成电影免费在线| 亚洲欧美激情综合另类| 婷婷丁香在线五月| 校园春色视频在线观看| 亚洲av电影不卡..在线观看| 国产av一区在线观看免费| 国产高清三级在线| 99热精品在线国产| 香蕉久久夜色| 免费看光身美女| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美国产在线观看| 最新美女视频免费是黄的| 一级毛片女人18水好多| 一级毛片高清免费大全| 国内精品一区二区在线观看| 黄色日韩在线| 精品电影一区二区在线| 亚洲精品日韩av片在线观看 | 岛国视频午夜一区免费看| 日韩欧美一区二区三区在线观看| 色吧在线观看| 亚洲精品粉嫩美女一区| 欧美一区二区亚洲| 一区二区三区免费毛片| 亚洲人与动物交配视频| 一卡2卡三卡四卡精品乱码亚洲| 精品99又大又爽又粗少妇毛片 | 日本五十路高清| av天堂在线播放| 亚洲国产精品sss在线观看| 国产精品香港三级国产av潘金莲| 岛国视频午夜一区免费看| 国产精品自产拍在线观看55亚洲| 国产黄a三级三级三级人| 天美传媒精品一区二区| www.www免费av| 国产淫片久久久久久久久 | 亚洲av美国av| 国产三级黄色录像| 久久久久久久精品吃奶| av女优亚洲男人天堂| 亚洲不卡免费看| 可以在线观看毛片的网站| 亚洲中文日韩欧美视频| 特级一级黄色大片| 亚洲 欧美 日韩 在线 免费| 免费看a级黄色片| 国产精品久久久久久精品电影| 成人三级黄色视频| 亚洲午夜理论影院| 中亚洲国语对白在线视频| 亚洲va日本ⅴa欧美va伊人久久| 国产免费av片在线观看野外av| 18+在线观看网站| 91在线观看av| 日本熟妇午夜| 97碰自拍视频| 国产精品一及| 中国美女看黄片| 99久久精品国产亚洲精品| 男女那种视频在线观看| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 亚洲精品成人久久久久久| 丰满乱子伦码专区| 日本 欧美在线| 中文字幕精品亚洲无线码一区| 精品久久久久久成人av| 脱女人内裤的视频| 亚洲色图av天堂| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 女人十人毛片免费观看3o分钟| 青草久久国产| 蜜桃久久精品国产亚洲av| 激情在线观看视频在线高清| 中文字幕av成人在线电影| 久久精品影院6| www.www免费av| 亚洲人成网站在线播| 韩国av一区二区三区四区| 欧美区成人在线视频| 午夜福利18| 精品国产美女av久久久久小说| 亚洲精品国产精品久久久不卡| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 国产伦在线观看视频一区| 国产三级中文精品| 亚洲国产欧美人成| 午夜精品久久久久久毛片777| 国产av一区在线观看免费| www日本在线高清视频| 婷婷精品国产亚洲av在线| 美女黄网站色视频| 午夜老司机福利剧场| 欧美极品一区二区三区四区| 久久精品国产亚洲av涩爱 | 99久国产av精品| 动漫黄色视频在线观看| 3wmmmm亚洲av在线观看| 国产精华一区二区三区| 午夜免费男女啪啪视频观看 | 无人区码免费观看不卡| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 欧美一级毛片孕妇| 国产三级中文精品| 免费看美女性在线毛片视频| 欧美最黄视频在线播放免费| 内射极品少妇av片p| 99国产综合亚洲精品| 观看美女的网站| 国产精品久久视频播放| 亚洲av美国av| 真人做人爱边吃奶动态| 看免费av毛片| 韩国av一区二区三区四区| 欧美一级a爱片免费观看看| 成人欧美大片| 亚洲人成网站高清观看| 国产成人a区在线观看| 午夜日韩欧美国产| 伊人久久精品亚洲午夜| 欧美区成人在线视频| 久久久久亚洲av毛片大全| 精品久久久久久,| 男人舔女人下体高潮全视频| 深夜精品福利| 免费观看人在逋| 欧美黑人巨大hd| 国产淫片久久久久久久久 | 中文字幕人妻丝袜一区二区| 亚洲av日韩精品久久久久久密| 亚洲七黄色美女视频| 精品久久久久久久末码| 午夜激情福利司机影院| 欧美中文综合在线视频| 国产探花在线观看一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产综合亚洲| 亚洲中文字幕一区二区三区有码在线看| 天堂网av新在线| 日韩欧美在线乱码| 全区人妻精品视频| 亚洲 国产 在线| 3wmmmm亚洲av在线观看| 综合色av麻豆| 欧美日韩一级在线毛片| 别揉我奶头~嗯~啊~动态视频| 亚洲人成伊人成综合网2020| 日韩欧美国产在线观看| 99久久99久久久精品蜜桃| 亚洲人成网站在线播放欧美日韩| 手机成人av网站| 黄色日韩在线| 午夜福利高清视频| 久久久成人免费电影| 天天添夜夜摸| 成人av在线播放网站| 亚洲在线观看片| 亚洲中文字幕一区二区三区有码在线看| 12—13女人毛片做爰片一| 久久国产乱子伦精品免费另类| eeuss影院久久| 综合色av麻豆| 一本久久中文字幕| 欧美黄色淫秽网站| 国产精品电影一区二区三区| 国语自产精品视频在线第100页| 黄色成人免费大全| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 男女做爰动态图高潮gif福利片| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久午夜电影| 午夜免费激情av| 欧美黄色淫秽网站| 国产精品电影一区二区三区| 国产视频一区二区在线看| 少妇人妻一区二区三区视频| 国产精品三级大全| 亚洲av免费高清在线观看| 一本精品99久久精品77| 国产伦在线观看视频一区| 国产老妇女一区| 村上凉子中文字幕在线| av欧美777| 88av欧美| 91久久精品国产一区二区成人 | 国产欧美日韩一区二区精品| 搡老岳熟女国产| 深夜精品福利| 日韩高清综合在线| 性欧美人与动物交配| 国产探花在线观看一区二区| 日本黄色视频三级网站网址| av欧美777| 欧美一区二区国产精品久久精品| 18美女黄网站色大片免费观看| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 免费电影在线观看免费观看| 免费人成视频x8x8入口观看| 操出白浆在线播放| 免费在线观看日本一区| 婷婷精品国产亚洲av| 精品人妻1区二区| 男女做爰动态图高潮gif福利片| 日本a在线网址| 少妇的丰满在线观看| 国产精品99久久久久久久久| 亚洲 国产 在线| 国产成年人精品一区二区| 国产精品女同一区二区软件 | 亚洲国产欧美网| 99国产极品粉嫩在线观看| eeuss影院久久| 听说在线观看完整版免费高清| 国产真实乱freesex| 国产亚洲精品综合一区在线观看| 日本黄色视频三级网站网址| 搡女人真爽免费视频火全软件 | 成人永久免费在线观看视频| 国产野战对白在线观看| 黄色视频,在线免费观看| 一进一出抽搐动态| 国产色婷婷99| 亚洲精品在线美女| 草草在线视频免费看| 两个人视频免费观看高清| 老司机午夜十八禁免费视频| 国产成人a区在线观看| 成人国产一区最新在线观看| 淫秽高清视频在线观看| 午夜福利视频1000在线观看| 人妻久久中文字幕网| 淫妇啪啪啪对白视频| 又紧又爽又黄一区二区| www.色视频.com| 久久午夜亚洲精品久久| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 成人鲁丝片一二三区免费| 欧美日韩瑟瑟在线播放| 亚洲国产精品999在线| 偷拍熟女少妇极品色| 亚洲第一欧美日韩一区二区三区| 久久久精品大字幕| 动漫黄色视频在线观看| 精华霜和精华液先用哪个| 亚洲五月天丁香| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦韩国在线观看视频| 午夜福利在线观看免费完整高清在 | 日韩精品中文字幕看吧| 日韩成人在线观看一区二区三区| 久久精品综合一区二区三区| 在线观看免费午夜福利视频| www.熟女人妻精品国产| 亚洲av五月六月丁香网| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av熟女| 亚洲男人的天堂狠狠| 国产探花极品一区二区| 97碰自拍视频| 国产一区二区在线av高清观看| 岛国在线免费视频观看| 色综合欧美亚洲国产小说| 人人妻人人看人人澡| 亚洲真实伦在线观看| а√天堂www在线а√下载| 久久久久国内视频| 欧美日韩亚洲国产一区二区在线观看| 国产成人a区在线观看| 国产精品久久久久久久电影 | 欧美乱妇无乱码| 久久国产精品人妻蜜桃| 欧美日韩精品网址| 神马国产精品三级电影在线观看| 有码 亚洲区| 色视频www国产| 熟妇人妻久久中文字幕3abv| 日韩欧美 国产精品| 美女免费视频网站| 久久中文看片网| 69av精品久久久久久| 日本三级黄在线观看| 动漫黄色视频在线观看| 舔av片在线| 国产久久久一区二区三区| 国产黄片美女视频| 国产91精品成人一区二区三区| a在线观看视频网站| 日本一本二区三区精品| 日韩欧美 国产精品| 丝袜美腿在线中文| 亚洲在线观看片| 亚洲国产精品sss在线观看| 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| 久久中文看片网| 男插女下体视频免费在线播放| 叶爱在线成人免费视频播放| 午夜a级毛片| 69人妻影院| 国产色爽女视频免费观看| ponron亚洲| 免费看美女性在线毛片视频| 欧美一级毛片孕妇| 国语自产精品视频在线第100页| 国产高清激情床上av| 免费看十八禁软件| 日韩大尺度精品在线看网址| 国产野战对白在线观看| 女人十人毛片免费观看3o分钟| 亚洲不卡免费看| 国产乱人视频| 久久6这里有精品| 久久久精品大字幕| 国产真实伦视频高清在线观看 | 国产单亲对白刺激| av天堂中文字幕网| 午夜福利免费观看在线| 性欧美人与动物交配| 国产精品98久久久久久宅男小说| 黄色女人牲交| 99精品久久久久人妻精品| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 久久久久久久精品吃奶| 欧美国产日韩亚洲一区| 两个人的视频大全免费| av视频在线观看入口| 国产精品一区二区免费欧美| 日韩欧美国产一区二区入口| 69人妻影院| 看片在线看免费视频| av国产免费在线观看| 午夜精品在线福利| 亚洲国产精品合色在线| 十八禁网站免费在线| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 色综合站精品国产| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女| 18禁在线播放成人免费| 99久久精品一区二区三区| 免费av毛片视频| 亚洲欧美激情综合另类| 亚洲成人免费电影在线观看| 乱人视频在线观看| 欧美最黄视频在线播放免费| 五月伊人婷婷丁香| 国产成人av教育| 欧美最新免费一区二区三区 | 国产成人啪精品午夜网站| 夜夜看夜夜爽夜夜摸| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 成人精品一区二区免费| 久久久成人免费电影| 最新在线观看一区二区三区| 一区二区三区激情视频| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看 | 国产一区二区在线观看日韩 | 男女那种视频在线观看| 国产一区在线观看成人免费| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| or卡值多少钱| 国产精品一区二区免费欧美| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 免费av观看视频| 国产精品免费一区二区三区在线| 国内精品久久久久久久电影| 久久香蕉精品热| 男女之事视频高清在线观看| 免费观看精品视频网站| 国内揄拍国产精品人妻在线| 夜夜夜夜夜久久久久| 三级国产精品欧美在线观看| 男女视频在线观看网站免费| 日韩国内少妇激情av| 成年女人永久免费观看视频| 99热这里只有是精品50| 国产主播在线观看一区二区| xxxwww97欧美| 嫩草影视91久久| 给我免费播放毛片高清在线观看| 韩国av一区二区三区四区| 国产高清视频在线观看网站| 精品久久久久久久久久久久久| 亚洲乱码一区二区免费版| 男人的好看免费观看在线视频| 欧美精品啪啪一区二区三区| 最近视频中文字幕2019在线8| 国产 一区 欧美 日韩| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 一级黄色大片毛片| 欧美日韩乱码在线| 可以在线观看毛片的网站| 99久久精品热视频| 欧美极品一区二区三区四区| 色在线成人网| 麻豆国产av国片精品| 在线a可以看的网站| 久久亚洲真实| 国产精品野战在线观看| 深夜精品福利| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 美女高潮的动态| 久久人人精品亚洲av| 免费在线观看亚洲国产| 欧美区成人在线视频| 99久久无色码亚洲精品果冻| 岛国在线观看网站| 俄罗斯特黄特色一大片| av专区在线播放| 国产国拍精品亚洲av在线观看 | 国产精品亚洲美女久久久| 久久久国产精品麻豆| 亚洲av中文字字幕乱码综合| 免费高清视频大片| 黄色丝袜av网址大全| 一区福利在线观看| 久久久国产成人精品二区| 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 欧美一区二区精品小视频在线| 51午夜福利影视在线观看| 天堂av国产一区二区熟女人妻| 老汉色av国产亚洲站长工具| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 日本一本二区三区精品| 男女床上黄色一级片免费看| 真实男女啪啪啪动态图| 五月玫瑰六月丁香| 亚洲人成网站高清观看| 国产精品一区二区三区四区久久| 国产在视频线在精品| 五月玫瑰六月丁香| 在线国产一区二区在线| 国产精品一及| 看片在线看免费视频| 亚洲18禁久久av| 精品国内亚洲2022精品成人| 18禁国产床啪视频网站| 精品一区二区三区av网在线观看| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 午夜免费观看网址| 在线播放国产精品三级| 亚洲精品成人久久久久久| 成熟少妇高潮喷水视频| 一级a爱片免费观看的视频| 国产精品亚洲av一区麻豆| 色在线成人网| 亚洲精品456在线播放app | 毛片女人毛片| 身体一侧抽搐| av女优亚洲男人天堂|