馬琛琛
(中鐵二十四局集團(tuán)有限公司軌道交通分公司,上海 200040)
地鐵車輛段有砟道床曲線地段具有半徑小、長(zhǎng)度短、分布范圍廣的特點(diǎn),在頻繁的電客車沖擊荷載作用下,易出現(xiàn)軌枕空吊、道砟松散等情況,使軌道發(fā)生不均勻變形,其中以軌向不平順最為頻繁。這些病害加劇輪軌間的沖擊作用,加速輪軌磨耗,進(jìn)一步惡化軌道不平順,影響車輛運(yùn)行安全。為保證有砟軌道結(jié)構(gòu)穩(wěn)定,需定期進(jìn)行檢查維修,采取有效措施改善軌道不平順現(xiàn)象。由于現(xiàn)場(chǎng)條件限制,車輛段不適用大機(jī)作業(yè),主要維修措施為使用小型養(yǎng)路機(jī)械進(jìn)行起撥道和搗固。軌道的水平、高低不平順精整質(zhì)量較為容易控制,然而高效精整軌道平面幾何位置和提高道砟搗固效果則較為困難和復(fù)雜。曲線段維修占全部維修作業(yè)的比重較大,由于人為把控因素較多,難以形成統(tǒng)一的操作標(biāo)準(zhǔn),加之現(xiàn)場(chǎng)不同地段線型隨機(jī)性較大,如何有效控制曲線平面形位精整和搗固效果是亟待解決的問題。
國(guó)內(nèi)外學(xué)者不斷對(duì)有砟軌道進(jìn)行研究,提出了許多改善軌道不平順的優(yōu)化方法或措施。在優(yōu)化搗固作業(yè)的問題上,Vale C.[1]、Khajehei H.[2]等人通過建立混合整數(shù)線性規(guī)劃模型,研究有砟軌道計(jì)劃預(yù)修,優(yōu)化搗固作業(yè);Kasraei A.[3]等提出維修成本模型,采用蒙特卡羅法模擬軌道形位隨時(shí)間的劣化趨勢(shì),估算出適當(dāng)?shù)木€路檢查周期。Li S.等[4]建立搗固效果測(cè)量模型,分析不同軌道不平順下的搗固效果,對(duì)傳統(tǒng)搗固方法進(jìn)行優(yōu)化。An Ru 等[5]提出一種基于韋伯分布的軌道劣化模型以準(zhǔn)確估計(jì)合理的搗固周期。還有一些學(xué)者對(duì)采用土工格柵加固道砟[6],優(yōu)化設(shè)計(jì)打磨曲線段鋼軌廓形[7-9]、道砟支撐剛度對(duì)軌道形位的影響[10]等課題進(jìn)行研究。
為了改善有砟道床質(zhì)量和精整軌道平面形位,國(guó)內(nèi)學(xué)者對(duì)有砟軌道整道研究已經(jīng)形成了一系列成果。文獻(xiàn)[11-13]研究了搗固作業(yè)對(duì)改善軌道幾何形位的效果,文獻(xiàn)[14-15]研究有砟道床力學(xué)性能或動(dòng)力特性。而對(duì)于曲線平面形位精整方法我國(guó)學(xué)者很早就進(jìn)行了研究,文獻(xiàn)[16]根據(jù)樁點(diǎn)實(shí)測(cè)坐標(biāo)擬合出線形參數(shù)并將誤差樁點(diǎn)坐標(biāo)撥至擬合曲線位置,文獻(xiàn)[17-18]研究利用繩正法、偏角法、坐標(biāo)法及改進(jìn)坐標(biāo)法等推導(dǎo)曲線計(jì)劃正矢的計(jì)算公式。
本文通過對(duì)撥道量算法進(jìn)行優(yōu)化,提出一種在施工現(xiàn)場(chǎng)計(jì)算曲線撥道量的方法,快速簡(jiǎn)便且準(zhǔn)確,同時(shí)總結(jié)了有砟道床搗固的質(zhì)量控制措施,并以南寧地鐵某車輛段工程為例,對(duì)撥道和道砟搗固的效果進(jìn)行分析說明。
在傳統(tǒng)的曲線撥道計(jì)算方法中,地鐵車輛段由于曲線半徑小、弧長(zhǎng)較短,現(xiàn)場(chǎng)作業(yè)基本采用簡(jiǎn)易撥道法、正矢差法或點(diǎn)號(hào)差法等方法來整正曲線。對(duì)于曲線內(nèi)個(gè)別點(diǎn)位方向超限的情況,一般用簡(jiǎn)易撥道法,該方法計(jì)算簡(jiǎn)便、施工效率高,但長(zhǎng)期采用此方法易造成方向偏差向曲線一端累積,出現(xiàn)曲線頭尾病害。正矢差法、點(diǎn)號(hào)差法多在曲線內(nèi)正矢超限點(diǎn)較多且分布不均勻時(shí)使用,優(yōu)點(diǎn)是在計(jì)算合理的情況下能取得較好的理論結(jié)果,弊端是計(jì)算過程受人為選定的設(shè)計(jì)正矢修正值影響,不同的人計(jì)算可能得到不同的結(jié)果,且現(xiàn)場(chǎng)人工計(jì)算步驟繁瑣,重復(fù)計(jì)算較多。
上述幾種現(xiàn)行的曲線整正方法都存在一定的人為因素,根據(jù)試算選值的不同,計(jì)算結(jié)果也不唯一。從理論上考慮,幾種方法均將既有的軌道曲線上離散的正矢測(cè)點(diǎn)向其原設(shè)計(jì)平面位置擬合,在曲線頭尾位置確定的情況下,應(yīng)當(dāng)有一個(gè)最佳擬合結(jié)果。本文基于最小方差原理改進(jìn)撥道量計(jì)算方法,并簡(jiǎn)化施工現(xiàn)場(chǎng)計(jì)算量,使現(xiàn)場(chǎng)人員能更快地計(jì)算出最佳撥道量。
計(jì)算簡(jiǎn)圖如圖1 所示,fi為曲線內(nèi)樁號(hào)i的實(shí)測(cè)正矢,ai為樁號(hào)i處待求解的理論撥道量,ai值按外撥為正,內(nèi)撥為負(fù)。由于曲線弧長(zhǎng)較短,一般采用10 m 弦長(zhǎng),此處以10 m 弦為例,其他如20 m 弦或任意定距等分弦同理。
圖1 曲線撥道計(jì)算簡(jiǎn)圖
根據(jù)計(jì)算撥道量模擬整道后的正矢殘差之方差建立函數(shù)E。
式(1)中,δi為樁號(hào)i整道后的正矢殘余偏差;為正矢殘余偏差均值,其值為:
式(2)~式(3)中,di為樁號(hào)i整道前的正矢偏差;αi-1、αi、αi+1分別為樁號(hào)i-1、樁號(hào)i和樁號(hào)i+1 的理論撥道量。
對(duì)函數(shù)E求最小方差:
令:
將曲線理論撥道量記A,實(shí)測(cè)偏差記D,即:
則最小方差滿足XA=YD,先對(duì)X求逆,再求出曲線各樁點(diǎn)的理論撥道量A為:
X-1Y與曲線內(nèi)總樁數(shù)相關(guān),可根據(jù)現(xiàn)場(chǎng)需要整正的曲線實(shí)際樁號(hào)數(shù)量提前計(jì)算不同階數(shù)的X-1Y,在現(xiàn)場(chǎng)施工時(shí)直接按式(8)即可快速計(jì)算出理論撥道量。
一般情況下,初次撥道未必能按照計(jì)算撥道量一次性撥到位,但大部分曲線經(jīng)過初次撥道后基本符合要求,根據(jù)初次撥道結(jié)果按照式(8)重新計(jì)算理論撥道量并二次撥道可得到較為理想的結(jié)果。對(duì)于個(gè)別曲線跨越整體道床的情況,由于整體道床平面調(diào)整量小,可將曲線在整體道床處進(jìn)行分割,針對(duì)2 段曲線分別計(jì)算。
地鐵車輛段碎石道床曲線半徑小,正線整體道床曲線半徑大,兩者施工精度不同,因此曲線整正方法有所區(qū)別。正線精度高,偏差僅幾毫米,行車后變化不大,可根據(jù)現(xiàn)場(chǎng)實(shí)測(cè)正矢差對(duì)個(gè)別超限點(diǎn)進(jìn)行局部調(diào)整。車輛段碎石道床線路鋪設(shè)精度不高,且行車后幾何尺寸易產(chǎn)生較大變化,需對(duì)曲線進(jìn)行整體撥道和搗固,方法如下。
(1)曲線兩端直線在撥道前首先進(jìn)行方向整正,保證曲線轉(zhuǎn)角正確,曲線兩端附樁的軌向如有超限要優(yōu)先進(jìn)行整治。
(2)撥道時(shí),曲線起終點(diǎn)不撥動(dòng),以防止曲線兩端的直線發(fā)生平移。撥道時(shí)可從一端向另一端進(jìn)行,也可從曲中或偏差最大的樁點(diǎn)開始向兩端進(jìn)行。每次撥道量不宜過大,以避免在撥動(dòng)曲線內(nèi)的某一樁點(diǎn)時(shí),其他樁點(diǎn)也隨之移動(dòng)。
(3)每改動(dòng)3 個(gè)樁點(diǎn),應(yīng)測(cè)量前2 個(gè)樁點(diǎn)的撥后正矢以便校核撥道效果。正矢測(cè)點(diǎn)標(biāo)于曲線外股,測(cè)量時(shí)弦線繃緊,于踏面下16 mm 處測(cè)量2 次取平均值。
(4)撥道和搗固同步進(jìn)行,撥道過程中重點(diǎn)搗固撥道機(jī)放置處曲下股兩側(cè)各5 根軌枕的頭部。在撥道機(jī)卸力前,應(yīng)盡量避免擾動(dòng)軌枕底部,防止影響線路水平。
(5)初次撥道后對(duì)曲線整體測(cè)量,如需二次撥道,則再次計(jì)算并撥道。如無需二次撥道,則直接采取措施對(duì)道砟加強(qiáng)搗固使線路穩(wěn)定。
道砟搗固質(zhì)量能否有效保證,直接影響了作業(yè)效果,如果道砟密實(shí)度、飽滿度、斷面尺寸等方面控制欠佳,則容易破壞線路穩(wěn)定,在輪對(duì)沖擊下軌道線形難以長(zhǎng)久保持,不僅不能達(dá)到作業(yè)預(yù)期目標(biāo),還會(huì)造成反復(fù)作業(yè)情況,甚至使軌道狀態(tài)變差。
一般情況下的普通搗固作業(yè),在曲線整道時(shí)僅對(duì)撥道后的軌枕端部進(jìn)行搗固,可能出現(xiàn)道床橫向阻力不足問題,造成反復(fù)撥道,或者撥道搗固作業(yè)完成后短期內(nèi)又發(fā)生病害。因此需要研究對(duì)搗固作業(yè)優(yōu)化改進(jìn),以延長(zhǎng)作業(yè)周期。普通搗固作業(yè)在現(xiàn)場(chǎng)調(diào)查、道砟飽滿度、砟肩寬度和高度、邊坡、搗固頻次等控制措施方面存在不足,為了提高道砟搗固質(zhì)量,結(jié)合南寧地鐵某車輛段作業(yè)實(shí)例,對(duì)有砟道床曲線段道砟搗固質(zhì)量控制措施進(jìn)行優(yōu)化和總結(jié)。
(1)一般起撥道作業(yè)前僅對(duì)線路幾何尺寸超限情況進(jìn)行檢查記錄,結(jié)果單一。為了給后續(xù)施工提供更準(zhǔn)確的依據(jù),需要對(duì)檢查內(nèi)容進(jìn)行補(bǔ)充,組織技術(shù)人員對(duì)現(xiàn)場(chǎng)情況和工作量進(jìn)行更詳細(xì)的調(diào)查,主要測(cè)量確定待搗固范圍內(nèi)的線路軌距、軌距遞減率、水平、軌向、高低、三角坑。逐一檢查每個(gè)軌枕的扣配件是否存在缺失、松動(dòng)以及螺栓是否失效,同時(shí)關(guān)注鋼軌磨耗等情況。此外,還要檢查軌枕空檔內(nèi)道砟飽滿度、砟肩寬度、道砟坡度等情況,為下一步整修扣配件和補(bǔ)砟做準(zhǔn)備。
(2)作業(yè)前,技術(shù)人員應(yīng)向施工人員針對(duì)作業(yè)程序和施工質(zhì)量控制措施進(jìn)行技術(shù)交底。起撥道機(jī)和搗固機(jī)應(yīng)做好保養(yǎng),確保狀態(tài)良好,能正常連續(xù)作業(yè)。萬能道尺應(yīng)經(jīng)檢定校正誤差合格方可使用。
(3)搗固作業(yè)前有時(shí)候會(huì)忽視補(bǔ)砟和整修扣配件2 項(xiàng)前置工作。因此可以將該工作作為搗固作業(yè)前的一道標(biāo)準(zhǔn)程序。對(duì)缺砟地段使用粒徑和清潔度符合要求的道砟填滿至軌枕頂面,更換失效螺栓,補(bǔ)充缺失的扣配件,調(diào)整松動(dòng)扣件。起撥道搗固后往往需要補(bǔ)砟,因此線路兩側(cè)要提前備足量的道砟,防止搗固后軌枕空檔內(nèi)缺砟,影響搗固效果。
(4)普通搗固在撥道樁、改道量、搗固頻次等方面大多依靠施工經(jīng)驗(yàn),存在作業(yè)流程不統(tǒng)一的問題,需要優(yōu)化形成穩(wěn)定的作業(yè)流程。首先計(jì)算起撥道量,按起道3 m、撥道5 m 的間距在鋼軌上標(biāo)記起撥道樁位和改動(dòng)數(shù)據(jù),起道時(shí)上下股對(duì)稱布置(兩點(diǎn)同步起道),撥道時(shí)上下股需錯(cuò)開設(shè)置撥道樁(三點(diǎn)同步撥道)。單次起道量不宜超過25 mm,撥道量不宜超過50 mm。搗固隨著起撥道同步跟進(jìn),在起道情況下,每枕在承軌槽左右各搗固3 鎬,道心各搗固4 鎬;在撥道時(shí),撥道機(jī)持力只搗固曲下股5根軌枕端部,卸力后立即跟進(jìn)搗固撥道機(jī)兩側(cè)各5 根軌枕的道心和承軌槽底部。撥道完成后,再對(duì)整個(gè)曲線尤其是軌枕跨中部分加強(qiáng)細(xì)搗一遍。
(5)一般普通搗固完成后對(duì)補(bǔ)砟重視不夠,故應(yīng)當(dāng)對(duì)缺砟的軌枕空檔、軌下和砟肩及時(shí)補(bǔ)充道砟,并在其后3 天左右再次復(fù)查并維修和加強(qiáng)搗固,確保道床狀態(tài)基本達(dá)到穩(wěn)定。
為了驗(yàn)證曲線撥道算法和搗固控制措施的效果,將其應(yīng)用于南寧地鐵某車輛段,該車輛段有砟道床曲線半徑150~300 m,曲線長(zhǎng)30~113 m。以某幾次撥道搗固作業(yè)的數(shù)據(jù)為例,選取其中1 條曲線,共17 個(gè)樁號(hào),分析采用不同方法時(shí)曲線撥道準(zhǔn)確性,研究不同搗固質(zhì)量情況下軌道的穩(wěn)定狀態(tài)和平面線形的長(zhǎng)期劣化情況。2 種計(jì)算方法下的曲線撥道準(zhǔn)確性對(duì)比結(jié)果如圖2 所示。
圖2 不同方法下計(jì)算結(jié)果對(duì)比
由圖2 可知,撥道量?jī)?yōu)化算法比簡(jiǎn)易撥道算法的理論計(jì)算結(jié)果更精確,傳統(tǒng)算法的理論撥后偏差較為離散,優(yōu)化算法的理論撥后偏差基本呈線性,這也與優(yōu)化算法的原理相符,本質(zhì)是求誤差函數(shù)最小值的唯一最優(yōu)解,屬于線性回歸模型擬合。從現(xiàn)場(chǎng)實(shí)際操作來看,撥道量?jī)?yōu)化算法更為穩(wěn)定,僅需1 次計(jì)算即可得到最優(yōu)結(jié)果。簡(jiǎn)易撥道算法的計(jì)算結(jié)果受人為試算方式影響波動(dòng)較大,但隨著試算的進(jìn)行,正矢偏差峰值逐步降低,整體計(jì)算結(jié)果趨于收斂,也能在幾次試算后得到滿足偏差要求的結(jié)果。
圖3 列出了分別按照2 種算法撥道后的實(shí)際效果對(duì)比,對(duì)于單次曲線整正作業(yè)來說,采用優(yōu)化算法得到的結(jié)果較為理想。
圖3 采用不同方法撥道的實(shí)際效果對(duì)比
圖4、圖5 列出了該曲線整道作業(yè)分別采用普通搗固和細(xì)化搗固時(shí)第3 天及3 個(gè)月后曲線實(shí)測(cè)軌向的數(shù)據(jù)對(duì)比。從圖4、圖5 可以看出,采取合理的搗固控制措施能有效提高曲線短期整正效果以及長(zhǎng)期穩(wěn)定狀態(tài)。
圖4 普通搗固后曲線短期和長(zhǎng)期狀態(tài)對(duì)比
圖5 細(xì)化搗固后曲線短期和長(zhǎng)期狀態(tài)對(duì)比
為提高地鐵車輛段有砟道床曲線整正質(zhì)量控制,依托南寧地鐵某車輛段工程實(shí)例,提出了基于最小方差原理的撥道量?jī)?yōu)化算法,研究了道砟精細(xì)搗固作業(yè)在保證線路幾何尺寸穩(wěn)定方面的作用,并總結(jié)出了道砟搗固質(zhì)量控制措施。
從傳統(tǒng)簡(jiǎn)易撥道算法和撥道量?jī)?yōu)化算法在工程實(shí)例中的實(shí)際效果來看,傳統(tǒng)算法計(jì)算撥道量準(zhǔn)確性不高,受人為計(jì)算因素影響大,往往需要2 到3 次計(jì)算、測(cè)量和撥道才能滿足要求;而撥道量?jī)?yōu)化算法基本僅需要1 次就能達(dá)到較好的結(jié)果。
采取規(guī)范的搗固質(zhì)量控制措施可以讓曲線段軌道方向在短期內(nèi)保持穩(wěn)定,軌道平面狀態(tài)長(zhǎng)期劣化趨勢(shì)則比普通撥道搗固作業(yè)更為緩慢。