• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dendroclimatological study of Sabina saltuaria and Abies faxoniana in the mixed forests of the Qionglai Mountains,eastern Tibetan Plateau

    2024-01-26 10:30:26TengLiJianfengPengTsunFungAuJingruLiJinbaoLiYueZhang
    Journal of Forestry Research 2024年1期

    Teng Li · Jianfeng Peng · Tsun Fung Au ·Jingru Li · Jinbao Li · Yue Zhang

    Abstract Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climategrowth relationship analysis indicated that the two co-existing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A. faxoniana.The strongest correlation was between S. saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605–2016 was constructed.Reconstruction explained 37.3% of the temperature variance during th period 1961–2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.

    Keywords Tree-ring analysis · Mixed forests ·Dendroclimatology · Qionglai Mountains

    Introduction

    The Tibetan Plateau has long been considered as the roof of the world,and is the largest plateau in China and the world’s highest.The Plateau affects climate at regional and global scales and receives considerable attention in the study of large-scale climate change (Liu and Zhang 1998;Liu and Chen 2000;Liu et al.2009;Yang 2012).The Plateau is one of the more sensitive and vulnerable regions in terms of climate change (IPCC 2013;Zhu et al.2016;Li and Li 2017).However,scarce instrumental records make it difficult to fully understand the effects of climate change on the Plateau.Proxy records are essential to studies of long-term climate change on the Plateau.Among them,tree-rings have been widely used owing to the annual resolution,accurate dating,and high sensitivity to climate in many regions around the globe (Fritts 1976;Schweingruber 1996;Shao 1997;Gou et al.2010;Peng et al.2014).Numerous dendroclimatological studies have been carried out on the Tibetan Plateau focused on temperature (Br?uning and Mantwill 2004;Gou et al.2007;Fan et al.2010;Duan and Zhang 2014;He et al.2014;Wang et al.2014;Liang et al.2016;Li and Li 2017;Li et al.2018,2020,2021) and precipitation (Sheppard et al.2004;Shao et al.2005;Liu et al.2006b;Yang et al.2014).

    The eastern areas of the Tibetan Plateau,with average altitudes above 3000 m a.s.l.,is the transition zone from the Plateau to the Sichuan Basin.To some extent,abundant sunshine makes up for the heat loss at high altitudes so that trees grow to a higher elevations,an optimal condition for maximizing climate signals in tree-rings.Therefore,the eastern plateau area is an ideal location for tree-ring studies of long-term climate change (Li et al.2010).In past decades,climate reconstructions have been carried out in the eastern Tibetan Plateau,especially using average temperatures(Wu et al.2005;Duan et al.2010;Li et al.2010,2014;Yu et al.2012b;Xiao et al.2013a,2015a,b;Deng et al.2014),maximum temperatures (Qin et al.2008;Xiao et al.2013b;Zhu et al.2016) and minimum temperatures (Shao and Fan 1999;Song et al.2007;Yu et al.2012a).These studies haven shown that tree growth in the eastern Tibetan Plateau is largely limited by temperature.Nevertheless,these studies have only revealed past climate changes in parts of the plateau and were largely based on tree species such asPicea asperataMast.,Abies georgei,orAbies fabri(Mast.)Craib.Other tree species in the mixed forests can be further used for dendrochologoical studies in the region.

    The aims of this study were to: (1) develop tree-ring width chronologies of the Sichuan juniper (Sabina saltuariaRehd.&Wilson) and Farges’ fir (Abies faxonianaRehd.&Wilson) on the eastern Tibetan Plateau,and compare their responses to climate factors;(2) reconstruct past climate changes based on climate-tree growth relationships;and (3)identify possible driving mechanisms of climate change in the region.

    Materials and methods

    Study site

    The study site is located in the Liangtai valley (31.39° N,102.89° E,at 3555 m a.s.l.) in the central Qionglai Mountains on the eastern Plateau (Fig.1).This region has cool summers and cold winters,with annual mean temperatures of 6.9–11 °C and annual total precipitation of 650–1000 mm.There are extensive mixed forests in the valley,and the dominant vegetation includesSibiraea laevigata,Rhododendron simsii,Larix mastersiana,Salix cupularisandLonicera japonicaThunb.,similar to nearby Bipeng valley (Lin et al 2019).Dark brown soil occurs on slope deposits (Wu et al.2010).

    Fig.1 Location of the study site (flag) and nearby meteorological stations (triangles)

    Tree-ring data

    Tree core samples fromS.saltuariaandA.faxonianawere collected in June 2017.One or two cores were taken from canopy-dominant,healthy trees in different directions at breast height (1.3 m above ground) using 5.15 mm increment borers.Twenty-two and 37 cores from 11 and 19 trees were obtained fromS.saltuariaandA.faxoniana,respectively.

    Standard dendrochronological methods of Cook and Kairiukstis (1990) were followed to prepare the core samples.The samples were air-dried,mounted on wooden slots,sanded with different grades of sandpaper (150–800 meshs)until cells and individual tracheids within annual rings were clearly discernible under the microscope.After visually cross-dating,ring widths were measured using the Velmex measuring system with a precision of 0.001 m (Bloomfield,NY,USA).The quality of cross-dating and measurement accuracy were statistically checked by the COFECHA program (Holmes 1983).Cores with low inter-series correlation were removed to prevent adding noise in chronology development.Finally,19 and 34 cores from 10 and 19 trees were retained fromS.saltuariaandA.faxoniana,respectively(Table 1).

    Table 1 Statistical characteristics of tree-ring chronologies of the two species

    Individual ring-width series were detrended to reduce the loss of low-frequency signals from tree age and stand dynamics by fitting a conservative negative exponential curve or linear curve with negative or zero slope using the ARSTAN program (Cook and Holmes 1986).The robust biweight mean was used to build the chronology from the standardized tree-ring series (Cook and Kairiukstis 1990).The subsample signal strength (SSS) of 0.85 was employed to identify the reliable period of the chronologies (Wigley et al.1984).The statistical characteristics of the tree-ring width standard chronologies are shown in Table 1 and the chronologies in Fig.2.

    Fig.2 Tree-ring width chronology (solid line) and sample depth (dotted line) from A. faxoniana and S. saltuaria.Vertical dashed line denotes SSS >0.85

    Climate data

    Climate data were obtained from four meteorological stations (Xiaojin,Maerkang,Hongyuan and Songpan,Table 2)from the China Meteorological Data Sharing Service System(https:// data.cma.cn/).Monthly mean (Tmean),maximum(Tmax) and minimum (Tmin) temperatures and monthly total precipitation (P) were used.To minimize spatial heterogeneity,records from the four meteorological stations were averaged to build regional monthly temperature and precipitation records.Based on climate data from 1961 to 2016,the regional annual Tmean was approximately 7.2 °C,with the monthly Tmean above 0 °C from February to November.Annual total precipitation was approximately 720 mm largely concentrated in May to September (Fig.3).

    Table 2 Information of four weather stations near the sampling site

    Fig.3 Monthly mean (Tmean),maximum (Tmax),minimum (Tmin)temperatures and monthly total precipitation (P) from regional meteorological data (1961–2016).Months of 1–12 indicate January to December

    Statistical analysis

    The relationship of the two chronologies of the two species with regional climatic factors were analyzed using Dendro-Clim2002 (Biondi and Waikul 2004),with 21 months of window from the previous March to the current November.Based on the climate-growth relationship,a simple linear regression model (Cook and Kairiukstis 1990) was developed for reconstruction.

    The traditional split sample calibration-verification method tested the reliability of the reconstruction model(Cook and Kairiukstis 1990).Statistical parameters,including Pearson’s correlation coefficient (r),the coefficient of determination (R2),the sign test (ST),the reduction of error(RE),the coefficient of efficiency (CE) and the Durbin–Watson (D/W) test,were used to evaluate the reconstruction model (Fritts 1976;Cook and Kairiukstis 1990).Positive values of RE and CE are considered to be good indicators of an appropriate model (Cook et al.1999).

    An 11-year moving average method was applied to explore multidecadal changes of the reconstruction.Spectral analyses were performed using the Multi-Taper Method(MTM;Mann and Lees 1996) and wavelet analysis (Torrence and Compo 1998) to explore the periodic variations of the reconstructed series.Spatial correlations between the observed and reconstructed series and 0.5° × 0.5° gridded CRU TS4.03 temperature data (Harris et al.2014) were calculated using the KNMI climate explorer (http:// clime xp.knmi.nl/) to understand regional representativeness.In order to investigate the impacts of global sea surface temperatures on climate varaiblity in the study area,the global extended reconstructed sea surface temperature version 4 dataset (ERSST v4) was adopted for spatial correlations(Huang et al.2015).

    Results

    Climate-growth relationships of the two species

    Growth ofA.faxonianaandS.saltuariawas positively correlated with most regional temperature parameters.There were significant positive correlations between annual rings ofA.faxonianaand regional Tmean in the previous April and October and the current October (Fig.4a).The growth ofA.faxonianawas also positive with regional Tmax in the previous September and October and the current October(Fig.4b).Significant positive correlations were found with regional Tmin in the previous April and October and the current October (Fig.4c).

    Fig.4 Correlations between climate factors (Tmean,Tmax,Tmin,P)and chronologies of A. faxoniana (Af) and S. saltuaria (Ss) during 1961–2016.Months of p3–p12 indicate previous March to previous December;Months of C1–C11 indicate current January to current November;C6–11 (current June to November) represents the target season for reconstruction;horizoental dashed lines denote 95% confidence level

    Growth ofS.saltuariahad similar relationships with temperatures;it was significantly positive with regional Tmean in the previous March,June,and November,and the current February,June–August,and October–November (Fig.4a).Growth was positively related to the regional Tmax in the previous June and December,and the current February,June–July,and October–November (Fig.4b) as well as regional Tmin in the previous March–April,June,and the current February,April,July–August,and October–November (Fig.4c).At the same time,growth of both species was weakly related with precipitation despite negative correlations withS.saltuariain the previous September and withA.faxonianain the current June (Fig.4d).

    Generally seasonal climate was more likely to influence growth than monthly climatic variables.Therefore,correlations between different combinations of regional monthly climatic factors and chronologies ofA.faxonianaandS.saltuariawere further explored to determine if there was a limiting climatic factor on growth.The results show that the chronology ofS.saltuariahad the highest correlation with regional Tmean in the current June-November period (T6-11,r=0.610,p<0.001),indicating that it was the main limiting factor onS.saltuariagrowth.

    Regional T6-11 reconstruction

    With the limiting factor of regional T6–11onS.saltuariagrowth,a simple linear regression model between theS.saltuariachronology and regional T6-11was developed to reconstruct past temperature changes.The model is:

    where T6-11is the regional mean temperature from June to November,Wtis the ring-width index at year t.The reconstruction model accounted for 37.3% (36.1% after adjusting for the degree of freedom) of the regional Tmean variance from 1961 to 2016.The D/W test value (Durbin and Watson 1950) was 1.647 (Table 3),which indicated that there was no significant autocorrelation or linear trend in the residuals.The split-sample calibration and verification method tested the stability and reliability of the reconstruction model (Table 3).The generally positive RE and CE values for verification indicated that the regression model was reliable for reconstruction (Cook et al.1999),although the CE value was slightly negative during 1961–1988.Almost all of these statistical parameters showed that the reconstruction model was stable and reliable.There was good consistency between the reconstructed and the observed series during 1961–2016 (Fig.5a).Therefore,regional T6–11since 1605 AD was reconstructed for the study region using the above regression model (Fig.5b).

    Table 3 Calibration and verification statistics for regional T6–11 reconstruction

    Fig.5 a Comparison of observed (solid line) and reconstructed (dashed line) regional T6-11 during 1961–2016;b the reconstructed (thin line)regional T6–11 and its 11-year moving average (thick line) during 1605–2016

    Regional temperature variations over the past 412 years

    Based on the above regression model,regional T6-11from 1605 to 2016 was reconstructed.Temperatures ranged from 10.3–12.1 °C with its mean of 11.1 °C (Fig.5b).Based on mean ± σ,the extremely high temperature was defined as exceeding 11.5 °C and extremely low temperature below 10.8 °C.Therefore,the extremely high and low temperature years accounted for 15% (63 years) and 17% (71 years) of the past 412 years,respectively.The top five warmest years were 1854,1841,1773,1848,and 1717,and the five coldest years were 1741,1681,1975,1908 and 1694,respectively.Based on the 11-year moving average of the reconstructed series,there were six major warm periods (1612–1673,1702–1737,1754–1780,1832–1863,1916–1959,2000–2016) and five major cold periods (1674–1701,1738–1753,1781–1831,1864–1915,1960–1999) in the past 412 years.

    Periodic variation of the reconstructed series

    Multi-Taper Method (MTM) spectral analysis indicated several important periodicities in the reconstructed temperature series (Fig.6).Significant periodic oscillations of interannual (2.0–2.2a,3.6a,7.0a,9.5a) and multi-decadal(75.6–95.1a) timescales at 95% significance were found over 1605–2016.Wavelet analysis showed that the interannual cycles were the main periods of temperature change over the full reconstruction period,while the multi-decadal cycle was most pronounced over 1800–2000 (Fig.7).

    Fig.6 MTM spectral analysis of the reconstructed T6–11 1605–2016.Solid and dashed lines denotes 90% and 95% confidence levels respectively

    Fig.7 Wavelet analysis of the reconstructed T6–11 during 1605–2016

    Discussion

    Climate-growth response of the two species

    Based on correlations between tree-ring chronologies and regional climatic factors,that temperature in most months was positively correlated withS.saltuariaandA.faxonianagrowth (Fig.4).The study area is influenced by the monsoon climate with high rainfalls and cool summers due to the terrain.Rainy weather with increased cloud cover reduces solar radiation and also lowers temperatures.Therefore,temperatures in the growing season,especially during June–November,had considerable influence on regional tree growth (Yu et al.2012b;Zhu et al.2016).Increasing temperatures in the growing season enhances photosynthesis and stimulates cell division,is conducive to radial growth when a minimum temperature threshold is reached (Shao and Fan 1999;Qin et al.2008;Xiao et al.2015a;Li et al.2017).Therefore,temperature was the critical factor controlling tree growth in the eastern Tibetan Plateau when precipitation was abundant in the growing season.

    Spatial representativeness of the reconstruction

    To explore the regional representativeness of the reconstructed T6–11,a spatial correlation analysis was performed using the actual and reconstructed T6–11with 0.5° × 0.5°gridded CRU TS4.03 temperature from 1961 to 2016(Fig.8).The results indicate that spatial correlation patterns are consistent between the actual and reconstructed T6–11series over the eastern Tibetan Plateau,albeit the correlations are slightly weaker for the reconstruction.Both series have significant positive correlations,suggesting that the reconstructed T6–11can represent regional temperature changes over the past four centuries.

    Fig.8 Spatial correlations of the a actual and b reconstructed T6–11 with CRU TS4.03 temperatures during 1961–2016.The star denotes the sampling site

    To validate regional representativeness of the reconstructed T6–11,annual temperatures from the previous September to the current August (T9–8) in Songpan (Li et al.2014) and the July temperature (T7) reconstruction in Maerkang (Yu et al.2012b) were compared (Fig.9a,b,c).Three reconstructions exhibit similar temperature variations: the warm periods of 1700s–1730s,1840s–1850s,1940s–1960s,2000s–2010s,and the cold periods of 1670s–1690s,1810s–1830s,1970s–1990s.Similar results have also been noted in other regions of the eastern Tibetan Plateau (Shao and Fan 1999;Yu et al.2012a;Xiao et al.2013a,2015a).

    Fig.9 Comparison of a T9–8 in Songpan (Li et al.2014),b T7 in Mearkang (Yu et al.012b),c T6–11 in Liangtai valley (this study),d T2-6 in Kathmandu (Cook et al.2003),e T5–9 in Arxan,Inner Mongolia (Liu et al.2012).Bold lines denote 11-year moving average in each panel,blue shading denotes major cold periods in the T6-11 reconstruction

    To verify the spatial representativeness of the reconstructed T6–11at a larger scale,it was further compared with the February–June (T2–6) reconstruction in the Himalayas (Cook et al.2003),and the May–September (T5–9)reconstruction in Arxan,Inner Mongolia (Liu et al.2012).The three reconstruction series were consistent of the low temperature periods in the 1810s–1830s and 1970s–1990s,and in the warm period in the 1940s–1960s,suggesting a synchronized temperature change at a large scale (Fig.9c,d,e).

    The tree-ring based temperature reconstructions are also consistent with the advance and retreat of the Hailuogou Glacier (Li et al.2008,2009;Liu et al.2006a;Xiao et al.2015a) on the eastern Tibetan Plateau.The glacier retreated during the 1930s–1960s,corresponding to a warm period in the T6-11reconstruction.During the 1970s–1980s,the glacier was relatively stable or retreated slowly,reflecting a continuous period of low temperatures.Since the mid-1980s,the glacier has been in a stage of rapid retreat and the reconstructed T6–11showed temperature increases due to global warming (IPCC 2013).

    Possible driving mechanisms

    The results of MTM and wavelet analyses revealed significant cycles in the reconstructed temperatures (Figs.6,7).The 2–7a and 9.5a periods were consistent with the periodic changes of the El Nino–Southern Oscillation (Song et al.2007;Li et al.2010;Yu et al.2012b;Xiao et al.2013b;Zhu et al.2016) and solar activity (Xiao et al.2013b,2015b).The 75.6–95.1a cycle may be related to the Atlantic Multidecadal Oscillation (Zhu et al.2016).

    Oceans regulate atmospheric circulation and world climate variability (Cai and Liu 2017),and are strongly connected with regional climates.Spatial correlations of the observed and reconstructed T6–11with global sea surface temperature during 1961–2016 showed a similar spatial correlation,with positive correlations in the western Pacific and North Atlantic oceans (Fig.10).The relationship of our temperature reconstructions were further vertified with the Atlantic Multidecadal Oscillation by calculating their correlations over the period 1880–2016.The results indicate that our temperature reconstructions had a positive correlation (r=0.385,p<0.01) during the period.This is consistent with studies showing the influence of the Atlantic Multidecadal Oscillation on the eastern Tibetan Plateau (Wang et al.2014;Liang et al.2016;Li and Li 2017;Li et al.2021).The warm-phase of the Atlantic Multidecadel Oscillation in summer can trigger positive geopotential height anomalies in the subtropical western Pacific and strong subtropical anticyclones,which further strengthen the East Asian summer monsoon (Lu et al.2006;Wang et al.2009).In addition,the warm-phase in winter can cause strong midlatitude westerly winds and extend the North Atlantic low surface air pressure to the Eurasian continent,leading to a weakened East Asian winter monsoon (Dong et al.2006;Li and Bates 2007;Wang et al.2009;Ding et al.2014).The warm-phase may also heat the Asian continent troposphere via the mid-and highlatitudes Rossby wave propagation (He et al.2014;Wang et al.2014).Therefore,it may have a crucial influence on temperature variability in the region.

    Fig.10 Spatial correlations of the a observed and b reconstructed T6–11 with global ERSST v4 SSTs in T6–11 over the period 1961–2016

    Conclusions

    In this study,tree-ring width chronologies ofS.saltuariaandA.faxonianafrom the mixed forests on the eastern Tibetan Plateau were developed.The results indicate that the radial growth of both species was strongly influenced by temperature.The strongest relationship was found between annual rings ofS.squamataand regional mean temperatures from June to November (T6–11).Based on this relationship,a regional T6-11was reconstructed for the period 1605–2016.Spatial correlation analysis and comparison with other temperature reconstructions revealed that our reconstruction represented large-scale temperature changes on the plateau and showed a strong warming trend since the 1980s,suggesting that tree growth tracks well the warming signals in the region.Moreover,our records exihibit a linkage with the Atlantic Multidecadel Oscillation,providing new evidence on its influence on climate change over the eastern Tibetan Plateau.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creativecommons.org/licenses/by/4.0/.

    午夜福利在线观看免费完整高清在| 国产视频内射| 91久久精品电影网| 亚洲中文av在线| 搡老乐熟女国产| 久久热精品热| 日本免费在线观看一区| 蜜桃在线观看..| 久久亚洲国产成人精品v| 精品亚洲成国产av| 国产中年淑女户外野战色| 一本一本综合久久| 最近中文字幕高清免费大全6| 国产国拍精品亚洲av在线观看| 我的女老师完整版在线观看| 日本wwww免费看| 最新中文字幕久久久久| 欧美人与善性xxx| 国产又色又爽无遮挡免| 伊人久久国产一区二区| 观看免费一级毛片| 精品久久久噜噜| 日韩精品免费视频一区二区三区 | 亚洲精品久久午夜乱码| 亚洲内射少妇av| 18禁在线播放成人免费| 18禁在线播放成人免费| 91在线精品国自产拍蜜月| 国产成人免费无遮挡视频| 国产精品久久久久成人av| 日韩一区二区三区影片| 自线自在国产av| 欧美老熟妇乱子伦牲交| 精品人妻熟女毛片av久久网站| 黄色配什么色好看| 免费看光身美女| 天堂中文最新版在线下载| 国产成人精品无人区| 22中文网久久字幕| 一级,二级,三级黄色视频| 精华霜和精华液先用哪个| 一级毛片 在线播放| 在线观看三级黄色| 亚洲精品乱久久久久久| 国产伦精品一区二区三区视频9| 爱豆传媒免费全集在线观看| 国产亚洲最大av| 一级二级三级毛片免费看| 中文字幕av电影在线播放| 国产在视频线精品| 午夜激情福利司机影院| 狠狠精品人妻久久久久久综合| 涩涩av久久男人的天堂| 99久久精品一区二区三区| av视频免费观看在线观看| 精品人妻熟女毛片av久久网站| 一级毛片黄色毛片免费观看视频| 日韩欧美 国产精品| 这个男人来自地球电影免费观看 | 日韩 亚洲 欧美在线| 国产美女午夜福利| 久久久久久久大尺度免费视频| 中文在线观看免费www的网站| 亚洲性久久影院| 九九在线视频观看精品| 亚洲精品久久久久久婷婷小说| 黄片无遮挡物在线观看| 国产伦精品一区二区三区视频9| 精品久久久久久电影网| 七月丁香在线播放| 日韩大片免费观看网站| 大片电影免费在线观看免费| 国产高清国产精品国产三级| 久久青草综合色| 免费观看的影片在线观看| 五月天丁香电影| 日韩 亚洲 欧美在线| 国产无遮挡羞羞视频在线观看| 亚洲不卡免费看| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久精品古装| 99热6这里只有精品| 十八禁高潮呻吟视频 | 爱豆传媒免费全集在线观看| 天美传媒精品一区二区| 国产成人aa在线观看| 熟妇人妻不卡中文字幕| 色5月婷婷丁香| 美女大奶头黄色视频| 欧美日韩视频精品一区| 欧美bdsm另类| 一本色道久久久久久精品综合| 视频区图区小说| 日韩不卡一区二区三区视频在线| 91久久精品国产一区二区三区| 卡戴珊不雅视频在线播放| 国产片特级美女逼逼视频| 高清毛片免费看| 人人妻人人看人人澡| www.av在线官网国产| 日韩欧美 国产精品| 国产精品福利在线免费观看| 美女国产视频在线观看| 日韩一区二区视频免费看| 成年av动漫网址| 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线播| 国产深夜福利视频在线观看| 久热久热在线精品观看| 中文字幕免费在线视频6| 成人美女网站在线观看视频| 五月开心婷婷网| 久久99一区二区三区| 美女主播在线视频| freevideosex欧美| 亚洲欧美成人综合另类久久久| 亚洲精品国产一区二区精华液| 男男h啪啪无遮挡| 老司机亚洲免费影院| 午夜视频精品福利| 考比视频在线观看| 女人久久www免费人成看片| 国产成人精品在线电影| 黑丝袜美女国产一区| 国产黄频视频在线观看| 日本vs欧美在线观看视频| 两人在一起打扑克的视频| 一级毛片电影观看| 夫妻午夜视频| 丰满迷人的少妇在线观看| 50天的宝宝边吃奶边哭怎么回事| 精品高清国产在线一区| 国产老妇伦熟女老妇高清| 成人av一区二区三区在线看 | 久久久精品国产亚洲av高清涩受| 国产精品一区二区在线不卡| 久久精品亚洲熟妇少妇任你| 天堂俺去俺来也www色官网| 亚洲精品国产av蜜桃| 考比视频在线观看| 亚洲av电影在线进入| 如日韩欧美国产精品一区二区三区| 两人在一起打扑克的视频| 欧美久久黑人一区二区| 久久国产亚洲av麻豆专区| 黄色视频在线播放观看不卡| av线在线观看网站| 国产真人三级小视频在线观看| www.av在线官网国产| 亚洲九九香蕉| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 欧美人与性动交α欧美软件| 国产欧美日韩精品亚洲av| 国产一区二区在线观看av| 国产老妇伦熟女老妇高清| 亚洲,欧美精品.| 久久精品久久久久久噜噜老黄| 午夜福利影视在线免费观看| 免费在线观看完整版高清| 人人妻人人澡人人看| 精品国产国语对白av| avwww免费| 中文欧美无线码| 久久国产亚洲av麻豆专区| 国产一区有黄有色的免费视频| 美女大奶头黄色视频| 黄色怎么调成土黄色| 99国产极品粉嫩在线观看| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 嫩草影视91久久| 亚洲精品中文字幕一二三四区 | 中文字幕精品免费在线观看视频| 深夜精品福利| 亚洲免费av在线视频| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 欧美黄色淫秽网站| 国产亚洲av高清不卡| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 午夜视频精品福利| 一级片免费观看大全| 亚洲色图综合在线观看| 亚洲精品第二区| 欧美精品亚洲一区二区| 中文欧美无线码| 亚洲人成电影免费在线| 50天的宝宝边吃奶边哭怎么回事| 久久精品亚洲熟妇少妇任你| 精品人妻1区二区| 国产在线观看jvid| 国产av一区二区精品久久| 最近最新免费中文字幕在线| 亚洲成国产人片在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲国产毛片av蜜桃av| 成人手机av| 精品久久久精品久久久| 成年人免费黄色播放视频| 成人国语在线视频| 中文字幕制服av| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 午夜影院在线不卡| 一区二区av电影网| 丰满饥渴人妻一区二区三| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 精品人妻1区二区| 18在线观看网站| 精品国产国语对白av| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 久久久精品区二区三区| 亚洲国产欧美一区二区综合| 一本久久精品| 久久久水蜜桃国产精品网| 老司机午夜福利在线观看视频 | 五月天丁香电影| 99国产精品免费福利视频| 国产成人欧美在线观看 | 9热在线视频观看99| www.av在线官网国产| 免费久久久久久久精品成人欧美视频| 亚洲伊人色综图| 18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 激情视频va一区二区三区| 午夜福利,免费看| 天天操日日干夜夜撸| 蜜桃在线观看..| 美女大奶头黄色视频| 熟女少妇亚洲综合色aaa.| 五月天丁香电影| 男人添女人高潮全过程视频| 天堂中文最新版在线下载| 国产97色在线日韩免费| 欧美 亚洲 国产 日韩一| 国产真人三级小视频在线观看| 69av精品久久久久久 | 99热网站在线观看| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 最近最新中文字幕大全免费视频| 国产精品免费大片| 亚洲五月色婷婷综合| 美女国产高潮福利片在线看| 午夜激情av网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产av精品麻豆| 亚洲人成电影免费在线| 精品国产国语对白av| 人人妻,人人澡人人爽秒播| 中文字幕人妻丝袜一区二区| 伊人亚洲综合成人网| 精品国产乱码久久久久久小说| 伦理电影免费视频| 精品久久久精品久久久| 伊人久久大香线蕉亚洲五| 亚洲精品粉嫩美女一区| 又大又爽又粗| 欧美国产精品一级二级三级| 日韩免费高清中文字幕av| avwww免费| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 9热在线视频观看99| 在线永久观看黄色视频| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 欧美黄色片欧美黄色片| 精品久久久久久电影网| 免费日韩欧美在线观看| 久久av网站| 日本一区二区免费在线视频| 午夜日韩欧美国产| 久久精品国产a三级三级三级| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 人人澡人人妻人| 黑人巨大精品欧美一区二区蜜桃| 美女脱内裤让男人舔精品视频| av又黄又爽大尺度在线免费看| 亚洲精品一卡2卡三卡4卡5卡 | 中亚洲国语对白在线视频| 精品一区二区三区av网在线观看 | 曰老女人黄片| 久久毛片免费看一区二区三区| 狂野欧美激情性xxxx| 免费av中文字幕在线| 在线 av 中文字幕| 国产精品.久久久| 午夜福利一区二区在线看| 中文字幕制服av| 涩涩av久久男人的天堂| 免费女性裸体啪啪无遮挡网站| 免费观看av网站的网址| 久久久久国内视频| 精品国产一区二区久久| 亚洲国产欧美在线一区| 精品第一国产精品| xxxhd国产人妻xxx| 亚洲五月婷婷丁香| 国产精品麻豆人妻色哟哟久久| 一本一本久久a久久精品综合妖精| 男女下面插进去视频免费观看| 国产一区二区在线观看av| 黑人猛操日本美女一级片| 中文字幕av电影在线播放| 中文字幕精品免费在线观看视频| 亚洲全国av大片| 人人妻人人爽人人添夜夜欢视频| 亚洲av国产av综合av卡| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频| 国产无遮挡羞羞视频在线观看| 国产高清视频在线播放一区 | 久久久国产一区二区| 婷婷成人精品国产| a在线观看视频网站| 热99国产精品久久久久久7| 大香蕉久久网| 丰满迷人的少妇在线观看| 精品一区二区三卡| 亚洲成国产人片在线观看| 中文字幕制服av| 国产精品成人在线| 久久人人爽人人片av| 欧美xxⅹ黑人| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av精品麻豆| 50天的宝宝边吃奶边哭怎么回事| 国产不卡av网站在线观看| 最新在线观看一区二区三区| 丝瓜视频免费看黄片| 亚洲美女黄色视频免费看| 午夜激情av网站| 免费观看人在逋| 国产免费视频播放在线视频| 99精品欧美一区二区三区四区| 法律面前人人平等表现在哪些方面 | 亚洲精华国产精华精| 在线观看舔阴道视频| 欧美日本中文国产一区发布| 青青草视频在线视频观看| 80岁老熟妇乱子伦牲交| www.精华液| 少妇精品久久久久久久| 国产97色在线日韩免费| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 一进一出抽搐动态| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| 亚洲五月色婷婷综合| 欧美在线一区亚洲| 女性被躁到高潮视频| 美女脱内裤让男人舔精品视频| 中文字幕av电影在线播放| 老汉色av国产亚洲站长工具| 国精品久久久久久国模美| 久久av网站| 亚洲精品国产色婷婷电影| 精品国产一区二区三区四区第35| 精品欧美一区二区三区在线| 国产在线观看jvid| 精品久久蜜臀av无| 国产成人系列免费观看| 中文字幕色久视频| 国产在线观看jvid| 国产男女内射视频| 亚洲精品久久成人aⅴ小说| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 欧美一级毛片孕妇| 巨乳人妻的诱惑在线观看| 十分钟在线观看高清视频www| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 老司机靠b影院| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 亚洲精品自拍成人| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 亚洲熟女毛片儿| 18在线观看网站| 少妇 在线观看| 亚洲国产欧美一区二区综合| 亚洲专区国产一区二区| 亚洲精品久久久久久婷婷小说| 久久久久国产精品人妻一区二区| 18在线观看网站| 国产亚洲一区二区精品| 波多野结衣一区麻豆| 成人av一区二区三区在线看 | 免费黄频网站在线观看国产| 午夜激情久久久久久久| 欧美黑人精品巨大| 亚洲精品国产色婷婷电影| 1024香蕉在线观看| 黄片播放在线免费| 国产在线视频一区二区| 久久国产亚洲av麻豆专区| 国产三级黄色录像| 人妻人人澡人人爽人人| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区免费欧美 | 老司机深夜福利视频在线观看 | 午夜两性在线视频| 日本av免费视频播放| 每晚都被弄得嗷嗷叫到高潮| 黄色片一级片一级黄色片| 999精品在线视频| 日韩有码中文字幕| 精品人妻1区二区| 夜夜夜夜夜久久久久| 一个人免费看片子| 午夜成年电影在线免费观看| 欧美黄色片欧美黄色片| 日日夜夜操网爽| 亚洲中文av在线| 热re99久久国产66热| 久久国产精品大桥未久av| 中文字幕精品免费在线观看视频| 亚洲国产欧美一区二区综合| 啦啦啦啦在线视频资源| av福利片在线| 免费黄频网站在线观看国产| 亚洲欧洲日产国产| 欧美激情 高清一区二区三区| 黄片播放在线免费| 色94色欧美一区二区| 久久精品国产综合久久久| 日本猛色少妇xxxxx猛交久久| 他把我摸到了高潮在线观看 | 宅男免费午夜| 高清av免费在线| 久久亚洲精品不卡| 成人18禁高潮啪啪吃奶动态图| 午夜福利,免费看| 黄色怎么调成土黄色| 19禁男女啪啪无遮挡网站| 热re99久久国产66热| 91av网站免费观看| 女性被躁到高潮视频| 亚洲精品自拍成人| 国产高清视频在线播放一区 | 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 岛国毛片在线播放| 一区二区三区乱码不卡18| 亚洲国产精品一区二区三区在线| 狂野欧美激情性bbbbbb| 亚洲美女黄色视频免费看| 男人舔女人的私密视频| 十分钟在线观看高清视频www| 国产淫语在线视频| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 精品国产国语对白av| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 久久性视频一级片| 在线亚洲精品国产二区图片欧美| 女人精品久久久久毛片| h视频一区二区三区| av天堂久久9| 一二三四社区在线视频社区8| 真人做人爱边吃奶动态| 免费观看av网站的网址| 日韩一区二区三区影片| 最黄视频免费看| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| 欧美黄色片欧美黄色片| netflix在线观看网站| 欧美xxⅹ黑人| 性色av一级| 菩萨蛮人人尽说江南好唐韦庄| 国产成人系列免费观看| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 久久久久网色| 成人手机av| 好男人电影高清在线观看| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 一级毛片电影观看| 久久久水蜜桃国产精品网| 在线观看舔阴道视频| 老鸭窝网址在线观看| 久久久精品区二区三区| 免费不卡黄色视频| 一区二区日韩欧美中文字幕| 久久久久久久精品精品| 久久中文字幕一级| 秋霞在线观看毛片| 日韩制服骚丝袜av| 一区福利在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美免费精品| 精品少妇一区二区三区视频日本电影| 中文字幕人妻熟女乱码| 少妇精品久久久久久久| 两个人看的免费小视频| 亚洲人成77777在线视频| 色老头精品视频在线观看| 欧美亚洲 丝袜 人妻 在线| 999久久久国产精品视频| 午夜激情久久久久久久| 日本黄色日本黄色录像| 国产精品熟女久久久久浪| 亚洲精品久久久久久婷婷小说| 黑人巨大精品欧美一区二区蜜桃| 2018国产大陆天天弄谢| 日韩三级视频一区二区三区| 色老头精品视频在线观看| 欧美日韩视频精品一区| 亚洲成人免费av在线播放| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦 在线观看视频| 老司机影院成人| 汤姆久久久久久久影院中文字幕| 国产高清视频在线播放一区 | 1024香蕉在线观看| netflix在线观看网站| 中国美女看黄片| 999久久久国产精品视频| 国产亚洲欧美精品永久| 99re6热这里在线精品视频| 丰满少妇做爰视频| 亚洲一区二区三区欧美精品| av线在线观看网站| 黑人猛操日本美女一级片| 亚洲精品国产精品久久久不卡| 不卡av一区二区三区| tocl精华| 亚洲欧美色中文字幕在线| 黄色a级毛片大全视频| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 操美女的视频在线观看| 蜜桃在线观看..| 色播在线永久视频| 久久99一区二区三区| 在线观看www视频免费| 国产成人免费观看mmmm| 国产一卡二卡三卡精品| 欧美日韩国产mv在线观看视频| 伊人亚洲综合成人网| 国产欧美日韩一区二区三区在线| 法律面前人人平等表现在哪些方面 | 熟女少妇亚洲综合色aaa.| 亚洲精品国产精品久久久不卡| 成年人午夜在线观看视频| 免费观看a级毛片全部| 日本欧美视频一区| 免费在线观看日本一区| 亚洲一码二码三码区别大吗| 另类精品久久| 久久久久国产一级毛片高清牌| 国产精品二区激情视频| 成年人午夜在线观看视频| 日本一区二区免费在线视频| 久热这里只有精品99| 亚洲欧美一区二区三区久久| 国产成人影院久久av| av在线app专区| 欧美中文综合在线视频| 十八禁网站免费在线| 中文字幕精品免费在线观看视频| 久9热在线精品视频| 男女无遮挡免费网站观看| 啦啦啦在线免费观看视频4| av超薄肉色丝袜交足视频| 成人国产一区最新在线观看| 欧美少妇被猛烈插入视频| 精品久久久久久久毛片微露脸 | 电影成人av| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线观看一区二区三区| 最近中文字幕2019免费版| 亚洲精品国产区一区二| www.精华液| 最近中文字幕2019免费版| 婷婷成人精品国产| √禁漫天堂资源中文www| 国产精品一区二区在线观看99| 亚洲精品成人av观看孕妇| 夜夜夜夜夜久久久久| 精品人妻熟女毛片av久久网站| 在线 av 中文字幕| 精品一区二区三区四区五区乱码| 人妻一区二区av| 在线十欧美十亚洲十日本专区| 国产成人av教育| 午夜福利,免费看| 亚洲国产精品成人久久小说| 老司机午夜十八禁免费视频| 亚洲国产精品999| 国产精品熟女久久久久浪| 人人妻人人澡人人看| 亚洲av美国av| 女性被躁到高潮视频| 精品久久久久久电影网| 精品少妇黑人巨大在线播放| 曰老女人黄片| 老司机午夜十八禁免费视频| 国产欧美日韩精品亚洲av| 黄色视频在线播放观看不卡|