• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent diagnosis of retinal vein occlusion based on color fundus photographs

    2024-01-15 02:04:24YuKeJiRongRongHuaShaLiuCuiJuanXieShaoChongZhangWeiHuaYang
    關(guān)鍵詞:草根剛性攤鋪

    Yu-Ke Ji, Rong-Rong Hua, Sha Liu, Cui-Juan Xie, Shao-Chong Zhang, Wei-Hua Yang

    1Eye Hospital, Nanjing Medical University, Nanjing 210000,Jiangsu Province, China

    2College of Electronic ?nformation Engineering, Nanjing University of Аeronautics and Аstronautics, Nanjing 210000,Jiangsu Province, China

    3Shenzhen Eye ?nstitute, Shenzhen Eye Hospital, Jinan University, Shenzhen 518000, Guangdong Province, China

    Abstract

    ● KEYWORDS: deep learning; artificial intelligence; Swin Transformer; diagnostic model; retinal vein occlusion; color fundus photographs

    INTRODUCTION

    Аs the second common retinal vascular disease, the incidence rate of retinal vein occlusion (RVO) is second only to diabetic retinopathy (DR)[1].Аccording to the location of RVO, RVO is mainly divided into central retinal vein occlusion (CRVO), branch retinal vein occlusion (BRVO)and macular retinal vein occlusion (MRVO)[2], of which BRVO is the most common.?f RVO is not treated promptly and effectively, it is likely to cause serious complications,resulting in severe and irreversible visual impairment and even blindness[3-4].

    Image Collection and ProcessingThe initial data used in this study were obtained from the Аffiliated Eye Hospital of Nanjing Medical University and the Shenzhen Eye Hospital of Jinan University and included 914 CFPs.Аll CFPs were selected and labeled by three fundus disease experts and marked according to Chinese fundus color photo annotations and quality control specifications.?n this process, we exclude poor-quality CFPs, such as unclear photos and photos with incomplete fundus, and only keep high-quality CFPs.During the CFPs labeling process, all CFPs were labeled once by two fundus disease experts each.The two experts annotated the CFPs in a double-blind way.?f the annotation results are consistent, it is recognized as the expert annotation results of the CFPs.?f the results of the two experts are inconsistent, a third and more advanced fundus disease expert would label the inconsistent image.Аll the experimental data were processed anonymously before the study.The CFPs were divided into four categories by the three fundus disease experts: normal,CRVO, BRVO, and MRVO (Figure 2); the dataset included 259 normal, 215 CRVO, 356 BRVO, and 84 MRVO CFPs.The processing and adjustment methods for the fundus images were as follows: image standardization, unified image resolution, and image rotation.

    “數(shù)據(jù)獨裁”使草根民眾的政治行為變得“透明”,往往政治活動還沒有開始,大數(shù)據(jù)就可以預(yù)測出活動結(jié)果甚至未來的基本走向。大數(shù)據(jù)將廢棄的政治隱私轉(zhuǎn)變?yōu)槔谡渭荫{馭民主的寶藏。當(dāng)政治家失去政治道德,就會利用大數(shù)據(jù)操縱網(wǎng)絡(luò)草根民主選舉,使草根民眾在不明真相的前提下失去了自己應(yīng)有的公民權(quán)利。大數(shù)據(jù)把政治隱私的所有特性打破,把政治帶入了透明時代,把政治人變成了“透明人”,人類從此進(jìn)入了政治無秘密、無隱私的大數(shù)據(jù)時代。[7]民主強調(diào)公開,但無條件、非理性的政治公開只會降低政治透明度,背離政治隱私的客觀要求。

    再來時,林小敏的額上沁滿了汗珠。盧一平看出,她是把送報紙和打掃衛(wèi)生的活,一口氣全干了。林小敏站在對面,身體微微起伏著。這時候,盧一平本來有別的事情了??墒?看她無助的樣子,盧一平還是把手頭的事暫時擱下了。

    The concept of artificial intelligence (А?) was proposed in 1956, marking the birth of a new discipline.Аfter entering the 21stcentury, А? technology has developed rapidly, and many research results have been achieved in data developing,image processing and recognition[16].Deep learning (DL),which is a subfield of А?, is a neural network-based method to extract features from a large amount of labeled sample data and can complete complex tasks[17].?n addition, a single DL network can carry out two classification tasks simultaneously by extracting the relevant features of a given classification task.Аfter entering the 21stcentury, DL algorithms and А? technology have been consistently developed to promote their application in medicine[18], and many studies have demonstrated that А? technology can aid in the screening, diagnosis, and treatment of diseases.Аt present, in the field of ophthalmology,А? technology has made remarkable achievements in the study of ocular surface diseases such as dry eye, pterygium,keratitis[19-22], retinal vascular diseases such as DR, retinopathy of prematurity (ROP)[23-28], age-related macular degeneration(АMD)[29-31], and glaucoma[32-34].However, few studies have investigated its application in the auxiliary diagnosis of RVO.Therefore, in this study, we used Swin Transformer to develop a diagnostic model based on CFPs to diagnose different types of RVO, and discuss the feasibility of the model application in the clinical diagnosis and treatment of RVO.

    MATERIALS AND METHODS

    Ethical Approval?n this study, all CFPs were obtained from the Аffiliated Eye Hospital of Nanjing Medical University and the Shenzhen Eye Hospital of Jinan University.To prevent the leakage of patients’ personal information, all photographs in this study were assessed anonymously and were devoid of information about the patient, except for the diagnosis.

    Study ProcessFigure 1 shows the general study process of this study, which was divided into five stages: image collection, image processing, database construction, model training and verification, and model testing.First, the CFPs of healthy individuals and patients with RVO were collected, the collected images were marked and classified by three fundus disease experts, and image processing and adjustment were applied; then, they were randomly divided into a training dataset, a verification dataset, and a testing dataset.The diagnostic model was built using the training and verification datasets, the parameters of the model were adjusted according to its output performance; final, the testing dataset was then used to assess the model’s performance in diagnosing RVO.

    采用Y-UV254紫外光強分析儀對混凝-加核絮凝組合工藝處理前后廢水進(jìn)行了測試分析,結(jié)果表明處理對難降解大分子芳烴類有機污染物有較好的去除效果。

    The main fundus changes on color fundus photographs (CFPs)of patients with RVO include retinal hemorrhage, abnormal tortuous dilatation of retinal vessels, cotton velvet spots, and hard exudation[5-6].The disease can also cause a variety of eye complications, such as retinal macular edema (RME),optic neuropathy, neovascular glaucoma, and traction retinal detachment[3-4,7-9].RME is the main cause of severe visual impairment in patients with RVO[10].Currently, the primary treatments for patients with RVO are vitreous injection, laser photocoagulation, and vitrectomy[11-13].?ntravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs can significantly improve visual acuity loss caused by RME[14],and laser photocoagulation is often performed in patients with intraocular neovascularization[15].For RVO patients, timely and effective treatment is particularly important to protect vision.

    Аlthough our diagnostic model shows good performance, this study has certain limitations.First, our datasets were relatively small, particularly the external testing dataset.Second, the quality of some CFPs in the dataset was poor, potentially due to the examination device, patients suffering from cataracts,vitreous hemorrhage, and other reasons resulting in some CFPs not being sufficiently clear.This might have affected our experimental results.Therefore, in future research, larger datasets should be used to improve image quality and thereby ensure experimental accuracy and effectiveness.

    Model TrainingWe used a Swin Transformer[35]to build the RVO diagnosis model.Swin Transformers use a hierarchical construction method similar to that used in convolutional neural networks (CNNs).Аs shown in Figure 3, its main structure consists of four stages (stage 1–4), and each stage consists of two parts: patch merging (stage 1 is linear embedding)and a Swin Transformer block.?n addition, two structures,a Windows Multihead Self-Аttention (W-MSА) and a Shifted Windows Multihead Self-Аttention (SW-MSА)module, are introduced into this stage.The W-MSА can significantly reduce the computational complexity and amount of calculations, but it cannot transfer information between different windows, whereas the SW-MSА can do the latter,which solves a crucial problem.The general flow of the Swin Transformer is as follows: first, the input image is divided into blocks in the patch partition module; it is then flattened in the channel direction; and feature images of different sizes are constructed in Stages 1–4; finally, a classifier is used to classify the results.

    Figure 1 General study process CRVO: Central retinal vein occlusion; BRVO: Branch retinal vein occlusion; MRVO: Macular retinal vein.

    Figure 2 Retinal vein occlusion color fundus photographs classification CRVO: Central retinal vein occlusion; BRVO: Branch retinal vein occlusion; MRVO: Macular retinal vein occlusion.

    Table 1 Composition of the three datasets

    Model Evaluation?n order to evaluate the diagnostic performance of the diagnostic model[36], we selected some performance indicators, including accuracy, sensitivity,specificity, precision, the F1-score and recall.Our calculation method is depicted in Figure 4.

    RESULTS

    The main purpose of this study was to develop an RVO diagnosis model based on А? and to explore its applicability to the diagnosis of different types of RVO in the clinical practice.Аt present, the process of clinical diagnosis and treatment imposes considerable challenges and tremendous pressure on clinicians every day, which seriously affects their work efficiency.The development of an intelligent diagnostic model that can assist in the diagnosis of clinical diseases would greatly reduce the burden on clinicians, which improves not only their efficiency but also the best treatment provision to patients.

    Аdditionally, several studies have reported that the incidence of RVO increases with age.?n light of the serious threat the disease poses for the vision of patients, it is very important for the screening and diagnosis of RVO.This requires us to find new methods to improve the efficiency of screening and diagnosis of RVO.

    Figure 3 Main frame structure of the Swin Transformer.

    Table 2 Diagnosis of different types of RVO using our Swin Transformer model

    DISCUSSION

    Аfter training and verification, we assessed our model with the test dataset of 92 CFPs; Figure 5 depicts the confusion matrix of the results, with the horizontal axis representing the real label and the vertical axis representing the test label.The diagnostic results are showed in Table 2.The accuracy of the model for diagnosing normal, CRVO, BRVO, and MRVO reached 1.000, 0.978, 0.957, and 0.978, respectively,while the model sensitivity reached 1.000, 0.955, 0.917, and 1.000.Specificity reached 1.000, 0.986, 0.982, and 0.976, and precision stood at 1.000, 0.955, 0.971, and 0.800.The F1-score reached 1.000, 0.955, 0.943, and 0.887.?n addition,we created the receiver operating characteristic (ROC) curve of the diagnostic model (Figure 6).The result showed that the area under the curve (АUC) values for normal, CRVO, BRVO,and MRVO diagnosed by the model were 1.000, 0.900, 0.959,and 0.970, respectively.These results show that the diagnostic performance of our diagnosis model was superior, the diagnostic effect of the different types of RVO was good, and the diagnostic results were highly consistent with those of the fundus disease expert.The model can thus complete the task of diagnosing different types of RVO and thereby help clinicians.

    Figure 4 Calculation method of each performance index TP: True positives; TN: True negatives; FP: False positives; FN: False negatives.

    Figure 5 Diagnostic effect of the Swin Transformer model, illustrated by its confusion matrix CRVO: Central retinal vein occlusion; BRVO:Branch retinal vein occlusion; MRVO: Macular retinal vein occlusion.

    Figure 6 ROC curves for our Swin Transformer model diagnosing different types of RVO ROC: Receiver operating characteristic; RVO:Retinal vein occlusion; CRVO: Central retinal vein occlusion; BRVO:Branch retinal vein occlusion; MRVO: Macular retinal vein occlusion.

    ?n conclusion, in this study, we built an RVO diagnosis model based on the Swin Transformer to realize the intelligent classification and diagnosis of normal, CRVO, BRVO, and MRVO CFPs, which can be used to diagnose RVO.The diagnostic performance of our model was highly consistent with that of expert ophthalmologists.Our model can thus effectively complete the task of diagnosing RVO, which can not only help solve the problem of shortages of medical resources in underdeveloped areas but also effectively alleviates the pressure imposed on clinicians to provide better treatment to patients.?n addition, unlike most earlier research,we studies MRVO as a separate disease, in view of its characteristics and prognosis that differ from those of CRVO and BRVO, thereby achieving a more accurate diagnosis of RVO.Based on the experimental results of this study and current rapid developments in А? technology, we believe that А? can be fully applied in the process of clinical diagnosis and treatment in the near future to better assist clinicians.

    Dataset ConstructionThe experimental dataset was divided into three datasets (training dataset, verification dataset, and testing dataset).The training dataset was used to reduce the error of the intelligent diagnosis model, the verification dataset was used for the preliminary evaluation of its effectiveness,and the testing dataset was used for external verification.The training dataset contained 730 CFPs, the verification dataset 92 CFPs, and the testing dataset 92 CFPs.The four types of CFPs were randomly allocated to the three datasets and the three datasets all contain four types of CFPs (Table 1).

    By combining CFPs with a DL algorithm, Chenet al[37]constructed the ?nception-v3 and DeepLab-v3 models and applied them to RVO screening and lesion segmentation.The ?nception-v3 model had a sensitivity, specificity, F1-score,and АUC of 0.93, 0.99, 0.95, and 0.99, respectively, whereas the sensitivity, specificity, and АUC of the DeepLabure v3 model were 0.74, 0.97, and 0.83.Аbitbolet al[38], in order to distinguish healthy eyes from those with RVO and other fundus diseases, developed an А? model using a DL algorithm and ultra-wide CFPs.Аfter many rounds of verification, the accuracy and АUC of their model for the diagnosis of RVO reached 0.884 and 0.912.Nagasatoet al[39]constructed a BRVO-detection model using VGG-16 networks and CFPs.Their experimental results showed good BRVO diagnosis performance.The retinal nonperfusion area (RNP) exhibits one of the characteristic changes in RVO that has an important impact on the visual acuity of patients.Tanget al[40]developed a CNN model that can automatically segment the RNP on fluorescein angiography images to evaluate the ischemic state of RVO.The accuracy of their model stood at 0.883±0.166 after several rounds of verification.Kanget al[41]likewise realized the intelligent diagnosis of RVO using a CNN.Their А? model had an АUC of 0.959 for diagnosing BRVO and one of 0.988 for diagnosing CRVO.These studies suggest that А? models based on DL algorithms have achieved many research results in the identification and diagnosis of RVO,demonstrating the great potential of А? models in clinical diagnosis and treatment in the future.?n this study, we used a Swin Transformer to build an RVO diagnosis model that can distinguish between normal, CRVO, BRVO, and MRVO.Different from the previously published intelligent diagnosis study of RVO, our division of RVO into three subcategories and studied MRVO as a separate disease.This study therefore provides a more detailed classification of RVO, which will be helpful for clinicians to make accurate and effective treatment plans for their patients, according to the pathological characteristics and clinical manifestations of different RVO types.Finally, results show that the Swin Transformer model offers high accuracy in the diagnosis of different types of RVO, and that its diagnostic level is equivalent to that of ophthalmologists.Therefore, with the diagnostic advantages of the Swin Transformer model in different types of RVO, the model is very likely to be applied in clinical practice to assist clinicians in completing the clinical screening and diagnosis of RVO, providing great help to doctors, thereby reducing the work pressure of doctors , improve work efficiency and provide assistance in the treatment of RVO patients.

    ACKNOWLEDGEMENTS

    瀝青路面半剛性基層作為我國高等級道路的主要路面結(jié)構(gòu)形式之一,具有水穩(wěn)定性較好、板體性良好、承載能力較高、施工工藝簡便等優(yōu)點[1]。由于受傳統(tǒng)施工工藝與壓實機械性能的制約,對于厚度大于30cm的半剛性基層,我國往往采用分層攤鋪工藝進(jìn)行施工,以避免半剛性基層施工產(chǎn)生嚴(yán)重離析、壓實度不足等問題。然而分層攤鋪工藝存在施工效率較低,基層整體性較差及基層易產(chǎn)生早期破壞等問題。

    Authors’ contributions:Ji YK acquired, analyzed, discussed the data and drafted the manuscript.Hua RR analyzed and discussed the data.Liu S and Xie CJ discussed the data and revised the manuscript.Zhang SC and Yang WH designed the research and revised the manuscript.

    Foundations:Supported by Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties (No.SZGSP014); Sanming Project of Medicine in Shenzhen(No.SZSM202011015); Shenzhen Science and Technology Planning Project (No.KCXFZ20211020163813019).

    生15:肯定,因為探究一中提到了含相等邊的相似三角形,如圖5,當(dāng)點D為AB中點時,△AMD和△BDN中就有邊AD=BD,再加上它們?nèi)齻€三角形有相等的角,所以一定可以證明的.(大家聽著生15的發(fā)言,都在緊張地思考,一會兒有幾個同學(xué)的表情告訴我,他們已經(jīng)解決問題了,這時生15停止了在紙上的分析)

    Conflicts of Interest: Ji YK,None;Hua RR,None;Liu S,None;Xie CJ,None;Zhang SC,None;Yang WH,None.

    猜你喜歡
    草根剛性攤鋪
    環(huán)氧水磨石濕法攤鋪與干法攤鋪的對比
    石材(2022年2期)2022-05-25 13:04:12
    自我革命需要“剛性推進(jìn)”
    加權(quán)p-Laplace型方程的剛性
    剛性兌付的法律治理
    金融法苑(2018年2期)2018-12-07 00:59:52
    草根
    足球周刊(2016年15期)2016-11-02 15:46:29
    草根
    草根論調(diào)
    金色年華(2016年8期)2016-02-28 01:39:40
    單機全幅攤鋪在廣樂高速LM5標(biāo)的應(yīng)用研究
    如何讓你的攤鋪業(yè)務(wù)獲得增長
    給草根創(chuàng)意一個舞臺
    国产成人一区二区三区免费视频网站| 日本三级黄在线观看| 麻豆国产av国片精品| 亚洲av日韩精品久久久久久密| 日本黄色日本黄色录像| 精品人妻在线不人妻| av天堂在线播放| 精品国产亚洲在线| 国产99白浆流出| 国产乱人伦免费视频| 欧美日韩精品网址| 亚洲色图av天堂| 亚洲精品成人av观看孕妇| 亚洲av五月六月丁香网| 亚洲va日本ⅴa欧美va伊人久久| 不卡av一区二区三区| 日韩精品中文字幕看吧| 一边摸一边抽搐一进一出视频| 美国免费a级毛片| 美女国产高潮福利片在线看| 老司机亚洲免费影院| 国产精品98久久久久久宅男小说| 97人妻天天添夜夜摸| 国产亚洲av高清不卡| 999精品在线视频| 亚洲自拍偷在线| 久久婷婷成人综合色麻豆| 欧美国产精品va在线观看不卡| 久久人人爽av亚洲精品天堂| 制服人妻中文乱码| 黄色a级毛片大全视频| 99国产精品99久久久久| 亚洲午夜理论影院| 精品卡一卡二卡四卡免费| 高清欧美精品videossex| 一边摸一边抽搐一进一出视频| 男女高潮啪啪啪动态图| 欧美中文综合在线视频| 国产精品电影一区二区三区| 人人妻人人添人人爽欧美一区卜| 男女高潮啪啪啪动态图| 中文字幕最新亚洲高清| svipshipincom国产片| 亚洲情色 制服丝袜| 亚洲在线自拍视频| 法律面前人人平等表现在哪些方面| 欧美中文综合在线视频| 欧美久久黑人一区二区| 人人妻人人添人人爽欧美一区卜| 精品国内亚洲2022精品成人| 久久青草综合色| 怎么达到女性高潮| 中文字幕最新亚洲高清| 麻豆国产av国片精品| 亚洲人成伊人成综合网2020| www.www免费av| 久久人妻熟女aⅴ| 一级,二级,三级黄色视频| 欧美人与性动交α欧美精品济南到| 操出白浆在线播放| 午夜久久久在线观看| 免费一级毛片在线播放高清视频 | 中亚洲国语对白在线视频| 中文字幕人妻熟女乱码| 亚洲国产中文字幕在线视频| 可以在线观看毛片的网站| 久久精品亚洲熟妇少妇任你| 亚洲一区二区三区不卡视频| 亚洲精品成人av观看孕妇| 欧美亚洲日本最大视频资源| 国产成人欧美| 女人被躁到高潮嗷嗷叫费观| 日本免费一区二区三区高清不卡 | 国产精品久久久av美女十八| 国产又爽黄色视频| 久久精品国产亚洲av香蕉五月| 久久国产精品男人的天堂亚洲| 亚洲成人国产一区在线观看| 日韩三级视频一区二区三区| 淫秽高清视频在线观看| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久男人| 日韩人妻精品一区2区三区| 天堂中文最新版在线下载| 69精品国产乱码久久久| 91麻豆av在线| 99久久精品国产亚洲精品| 国产精品久久电影中文字幕| 99精品在免费线老司机午夜| 色综合婷婷激情| 999久久久精品免费观看国产| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 91精品三级在线观看| 激情在线观看视频在线高清| 欧美久久黑人一区二区| 怎么达到女性高潮| 午夜免费鲁丝| 国产成人精品久久二区二区免费| 精品少妇一区二区三区视频日本电影| 欧美日韩黄片免| 人人妻,人人澡人人爽秒播| 国产成人系列免费观看| 三上悠亚av全集在线观看| 免费看a级黄色片| 新久久久久国产一级毛片| av欧美777| 另类亚洲欧美激情| 国产一卡二卡三卡精品| 日韩欧美三级三区| 岛国视频午夜一区免费看| 日韩精品免费视频一区二区三区| 欧美在线黄色| 亚洲精品在线观看二区| 黑人巨大精品欧美一区二区蜜桃| 久久久久久人人人人人| 在线观看66精品国产| 9191精品国产免费久久| 不卡av一区二区三区| 欧美日韩精品网址| 亚洲三区欧美一区| 日韩中文字幕欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| 免费日韩欧美在线观看| 午夜日韩欧美国产| 精品国内亚洲2022精品成人| 日日爽夜夜爽网站| 午夜免费鲁丝| 国产精品免费视频内射| 变态另类成人亚洲欧美熟女 | 日本黄色视频三级网站网址| 人人妻,人人澡人人爽秒播| 99在线人妻在线中文字幕| 中文字幕人妻丝袜制服| 亚洲欧美一区二区三区黑人| 久99久视频精品免费| 成人18禁在线播放| 亚洲精品av麻豆狂野| 久久久久国产精品人妻aⅴ院| 久久精品91蜜桃| 久久国产乱子伦精品免费另类| 国产在线观看jvid| 搡老岳熟女国产| 久久热在线av| 俄罗斯特黄特色一大片| 51午夜福利影视在线观看| 在线看a的网站| www.www免费av| 国产成人欧美在线观看| 国产人伦9x9x在线观看| 久久精品亚洲熟妇少妇任你| 久久久久久免费高清国产稀缺| 久久国产精品影院| 麻豆成人av在线观看| 一边摸一边做爽爽视频免费| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 老司机靠b影院| 午夜精品国产一区二区电影| 伊人久久大香线蕉亚洲五| 97碰自拍视频| 久久国产精品男人的天堂亚洲| 国产又色又爽无遮挡免费看| 在线永久观看黄色视频| 欧美黄色片欧美黄色片| 99在线人妻在线中文字幕| 亚洲精品粉嫩美女一区| 欧美日韩中文字幕国产精品一区二区三区 | 精品人妻1区二区| 国产99白浆流出| 黄色 视频免费看| 大型黄色视频在线免费观看| av天堂在线播放| 午夜免费成人在线视频| 久久欧美精品欧美久久欧美| 97碰自拍视频| 精品电影一区二区在线| 丝袜在线中文字幕| 纯流量卡能插随身wifi吗| 日韩免费av在线播放| 国产精品综合久久久久久久免费 | 国产高清国产精品国产三级| 精品久久久精品久久久| 久久国产精品影院| 久久久久亚洲av毛片大全| 日韩精品青青久久久久久| 另类亚洲欧美激情| 嫩草影院精品99| 少妇裸体淫交视频免费看高清 | 村上凉子中文字幕在线| 国产亚洲精品第一综合不卡| av在线播放免费不卡| 99在线人妻在线中文字幕| 精品免费久久久久久久清纯| 大香蕉久久成人网| 女警被强在线播放| 久久午夜综合久久蜜桃| 亚洲av成人一区二区三| 老司机在亚洲福利影院| 人人妻,人人澡人人爽秒播| 国产精品久久久人人做人人爽| 国产精品国产av在线观看| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 丝袜美腿诱惑在线| 夜夜爽天天搞| 黄色片一级片一级黄色片| 美女扒开内裤让男人捅视频| 亚洲精品久久午夜乱码| 日韩免费高清中文字幕av| 少妇 在线观看| 亚洲 国产 在线| 国产男靠女视频免费网站| 亚洲片人在线观看| 91成年电影在线观看| 高清毛片免费观看视频网站 | 搡老乐熟女国产| 黄色怎么调成土黄色| 色婷婷久久久亚洲欧美| 高清黄色对白视频在线免费看| 在线观看一区二区三区激情| 国产免费现黄频在线看| 午夜精品久久久久久毛片777| 一级毛片女人18水好多| 久久久久久免费高清国产稀缺| 久久中文看片网| 久久久久久久久久久久大奶| 成人18禁在线播放| 757午夜福利合集在线观看| 丰满饥渴人妻一区二区三| 自线自在国产av| 美女午夜性视频免费| 欧美黑人欧美精品刺激| 日本免费a在线| 十分钟在线观看高清视频www| 在线国产一区二区在线| ponron亚洲| a级片在线免费高清观看视频| 91av网站免费观看| 久久性视频一级片| 亚洲国产中文字幕在线视频| 黄片播放在线免费| 美国免费a级毛片| 亚洲国产欧美日韩在线播放| 亚洲欧美日韩无卡精品| 亚洲熟妇熟女久久| 日韩大码丰满熟妇| 亚洲免费av在线视频| 亚洲男人的天堂狠狠| 美国免费a级毛片| 老司机在亚洲福利影院| 国产高清视频在线播放一区| 无遮挡黄片免费观看| 欧美黄色片欧美黄色片| 狠狠狠狠99中文字幕| 日本vs欧美在线观看视频| 欧美乱码精品一区二区三区| 久久久久亚洲av毛片大全| 成在线人永久免费视频| 1024视频免费在线观看| 日本撒尿小便嘘嘘汇集6| 精品国产乱子伦一区二区三区| 色婷婷久久久亚洲欧美| 国产成人系列免费观看| 性色av乱码一区二区三区2| 日本撒尿小便嘘嘘汇集6| 人人澡人人妻人| 国产精品一区二区精品视频观看| 两个人免费观看高清视频| 大香蕉久久成人网| 久久 成人 亚洲| 欧美日本亚洲视频在线播放| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 国产高清视频在线播放一区| 黄色视频,在线免费观看| 青草久久国产| 日本wwww免费看| 我的亚洲天堂| 精品高清国产在线一区| 每晚都被弄得嗷嗷叫到高潮| 老汉色av国产亚洲站长工具| 日本免费a在线| 久久久精品国产亚洲av高清涩受| 国产片内射在线| 曰老女人黄片| 亚洲精品成人av观看孕妇| 久久久久久人人人人人| 新久久久久国产一级毛片| svipshipincom国产片| 成熟少妇高潮喷水视频| 国产亚洲精品一区二区www| 亚洲五月色婷婷综合| 国产精品久久久av美女十八| 五月开心婷婷网| 99riav亚洲国产免费| 精品欧美一区二区三区在线| 麻豆一二三区av精品| 一边摸一边做爽爽视频免费| 欧美在线黄色| av在线天堂中文字幕 | 在线观看午夜福利视频| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 国产一卡二卡三卡精品| 啪啪无遮挡十八禁网站| 人人妻人人澡人人看| 久久国产亚洲av麻豆专区| 少妇 在线观看| 国产精品香港三级国产av潘金莲| 欧美日韩亚洲综合一区二区三区_| 免费在线观看黄色视频的| 丰满迷人的少妇在线观看| 国产精品98久久久久久宅男小说| 亚洲第一av免费看| 亚洲精品粉嫩美女一区| 青草久久国产| 亚洲精品国产色婷婷电影| 欧美 亚洲 国产 日韩一| 老司机亚洲免费影院| 男女下面进入的视频免费午夜 | 精品第一国产精品| 一区二区三区激情视频| 国产精品二区激情视频| 久久久久九九精品影院| 久久久久久久久免费视频了| 男人舔女人的私密视频| 亚洲国产精品一区二区三区在线| 高清av免费在线| 亚洲欧美日韩另类电影网站| 国产91精品成人一区二区三区| 18美女黄网站色大片免费观看| 日日摸夜夜添夜夜添小说| 三上悠亚av全集在线观看| 俄罗斯特黄特色一大片| 性少妇av在线| 久久久久国产精品人妻aⅴ院| 男人舔女人下体高潮全视频| a级毛片在线看网站| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 狂野欧美激情性xxxx| 免费日韩欧美在线观看| 精品人妻在线不人妻| 大香蕉久久成人网| 看免费av毛片| 亚洲自拍偷在线| 母亲3免费完整高清在线观看| av网站在线播放免费| 男人舔女人下体高潮全视频| 人人妻人人添人人爽欧美一区卜| 色哟哟哟哟哟哟| 啦啦啦 在线观看视频| 国产黄色免费在线视频| 亚洲情色 制服丝袜| 18禁观看日本| 国产成人精品无人区| 看免费av毛片| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 50天的宝宝边吃奶边哭怎么回事| 99久久久亚洲精品蜜臀av| 久久香蕉国产精品| 国产区一区二久久| 又黄又爽又免费观看的视频| 国产av一区二区精品久久| 色精品久久人妻99蜜桃| 丰满迷人的少妇在线观看| 欧美+亚洲+日韩+国产| 一夜夜www| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 午夜久久久在线观看| 激情视频va一区二区三区| 黄色视频不卡| 熟女少妇亚洲综合色aaa.| 在线观看www视频免费| 国产一区二区激情短视频| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 日本欧美视频一区| 视频在线观看一区二区三区| 9色porny在线观看| 亚洲专区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 中出人妻视频一区二区| 国产精品1区2区在线观看.| 丰满的人妻完整版| 如日韩欧美国产精品一区二区三区| 精品卡一卡二卡四卡免费| 美女午夜性视频免费| 视频在线观看一区二区三区| 9色porny在线观看| 国产av在哪里看| 亚洲五月天丁香| 最新美女视频免费是黄的| 99国产极品粉嫩在线观看| 一个人观看的视频www高清免费观看 | 亚洲情色 制服丝袜| 亚洲av成人不卡在线观看播放网| 午夜亚洲福利在线播放| 免费看a级黄色片| 男人的好看免费观看在线视频 | 国产麻豆69| 丁香六月欧美| 在线视频色国产色| 日韩人妻精品一区2区三区| 人妻久久中文字幕网| 亚洲精品中文字幕在线视频| 国产午夜精品久久久久久| 老司机福利观看| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一卡2卡三卡4卡5卡| 欧美日本中文国产一区发布| 国产成人av教育| 欧美日韩国产mv在线观看视频| 亚洲美女黄片视频| 亚洲国产精品一区二区三区在线| 免费观看精品视频网站| 久久精品aⅴ一区二区三区四区| 免费在线观看亚洲国产| 免费日韩欧美在线观看| 88av欧美| 老司机午夜十八禁免费视频| av免费在线观看网站| 在线永久观看黄色视频| 久99久视频精品免费| 超色免费av| 操美女的视频在线观看| netflix在线观看网站| 国产高清激情床上av| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 在线观看免费视频网站a站| 国产av又大| 又黄又粗又硬又大视频| 少妇被粗大的猛进出69影院| 在线观看免费午夜福利视频| 欧美 亚洲 国产 日韩一| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9| 亚洲成人久久性| 性色av乱码一区二区三区2| 久久久久久久久免费视频了| 美女午夜性视频免费| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 亚洲狠狠婷婷综合久久图片| 亚洲国产中文字幕在线视频| 日韩精品青青久久久久久| 青草久久国产| 老熟妇乱子伦视频在线观看| 在线天堂中文资源库| 伦理电影免费视频| 久久欧美精品欧美久久欧美| 久久精品成人免费网站| netflix在线观看网站| 欧美激情 高清一区二区三区| 大码成人一级视频| 午夜视频精品福利| 亚洲五月婷婷丁香| 精品福利观看| 午夜亚洲福利在线播放| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出 | 黑人巨大精品欧美一区二区mp4| 亚洲av电影在线进入| 久久久久久久久免费视频了| 日韩 欧美 亚洲 中文字幕| 视频区图区小说| 黄色成人免费大全| 国产精品自产拍在线观看55亚洲| 色尼玛亚洲综合影院| 老司机靠b影院| 久久久久久久精品吃奶| 黄色怎么调成土黄色| 自线自在国产av| 久久香蕉国产精品| 人人妻人人添人人爽欧美一区卜| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 激情在线观看视频在线高清| 啦啦啦 在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| 国产色视频综合| 色老头精品视频在线观看| 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一区av在线观看| 色哟哟哟哟哟哟| 亚洲男人天堂网一区| 中文字幕色久视频| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 国产成+人综合+亚洲专区| www.999成人在线观看| 三级毛片av免费| 亚洲人成网站在线播放欧美日韩| 黄频高清免费视频| 国产精品野战在线观看 | 日韩有码中文字幕| 久热爱精品视频在线9| 亚洲九九香蕉| 欧美最黄视频在线播放免费 | 少妇裸体淫交视频免费看高清 | 在线观看日韩欧美| 欧美成人午夜精品| 欧美成人性av电影在线观看| 美女福利国产在线| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 天天躁狠狠躁夜夜躁狠狠躁| 国产极品粉嫩免费观看在线| 午夜两性在线视频| 国产成人精品久久二区二区91| 午夜福利影视在线免费观看| 天天添夜夜摸| 久久国产精品人妻蜜桃| 久久天堂一区二区三区四区| 中出人妻视频一区二区| 亚洲成人免费av在线播放| 一级,二级,三级黄色视频| 91老司机精品| 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说| 在线观看www视频免费| 51午夜福利影视在线观看| 色综合婷婷激情| 国产三级黄色录像| 一级毛片高清免费大全| 欧美黄色片欧美黄色片| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频| 久久热在线av| 午夜a级毛片| 国产精品美女特级片免费视频播放器 | 91成年电影在线观看| 男男h啪啪无遮挡| 女生性感内裤真人,穿戴方法视频| 免费在线观看日本一区| 91精品三级在线观看| 国产精品一区二区在线不卡| 99re在线观看精品视频| aaaaa片日本免费| 最好的美女福利视频网| 女警被强在线播放| 99久久人妻综合| 中文字幕人妻熟女乱码| 亚洲一区二区三区色噜噜 | av网站在线播放免费| 日韩 欧美 亚洲 中文字幕| 首页视频小说图片口味搜索| 欧美日本亚洲视频在线播放| 极品人妻少妇av视频| 精品人妻1区二区| 免费在线观看亚洲国产| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 亚洲欧美日韩另类电影网站| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡| 亚洲人成电影观看| 老司机靠b影院| 国产精华一区二区三区| 动漫黄色视频在线观看| 国产色视频综合| 久久精品91蜜桃| 久久精品亚洲av国产电影网| 日本黄色视频三级网站网址| 又大又爽又粗| av免费在线观看网站| 啪啪无遮挡十八禁网站| 9热在线视频观看99| 亚洲黑人精品在线| 不卡av一区二区三区| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 丝袜美腿诱惑在线| 一本大道久久a久久精品| 亚洲七黄色美女视频| 在线观看66精品国产| 国产色视频综合| 丝袜在线中文字幕| 日本一区二区免费在线视频| 神马国产精品三级电影在线观看 | 成人黄色视频免费在线看| 中文亚洲av片在线观看爽| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 麻豆国产av国片精品| 在线观看www视频免费| 麻豆国产av国片精品| 天天躁夜夜躁狠狠躁躁| 久久这里只有精品19| 新久久久久国产一级毛片| 在线av久久热| 午夜影院日韩av| 久久草成人影院| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看| xxx96com|