周燁琦,王 銳
(1. 中英海底系統(tǒng)有限公司,上海 200240; 2. 上海交通大學船舶工程與建筑工程學院海洋工程國重點實驗室,上海 210240)
1986年,全長120km的連接大加那利島和相鄰特內(nèi)里弗島的世界上第一條海底商用光纜建成。1988年,連通歐洲和美國全長6700km的海底光纜建成。之后海底光纜通信技術(shù)得到了蓬勃的發(fā)展[1、 2]。海底光纜的通信容量大、可靠性高、傳輸質(zhì)量好,是現(xiàn)代國際通信的主要基礎(chǔ)設(shè)施,承擔世界上絕大部分互聯(lián)網(wǎng)越洋數(shù)據(jù)和長途通信業(yè)務(wù),在國際通信中起到重要的作用[3]。中國擁有綿長的海岸線長,且島嶼眾多,大力開發(fā)建設(shè)中國沿海地區(qū)海底光纜通信系統(tǒng),對于推動整個國民經(jīng)濟信息化進程、鞏固國防具有重要現(xiàn)實意義。
海底光纜鋪設(shè)時采用的余量不但關(guān)乎建設(shè)成本,而且決定建設(shè)質(zhì)量。海底光纜按其所在的位置可分為岸端、淺海和深海3個部分。不同位置的水動力條件及受拋錨影響程度不同,鋪設(shè)時放纜余量應(yīng)該不同[4]。放纜量控制是光纜深海鋪設(shè)準確性的重要手段[5]。如果沒有足夠的放纜量,光纜張力過大,光纜觸底后無法緊貼海床輪廓,產(chǎn)生懸跨;如果放纜量過多,光纜太過松弛,觸底光纜會出現(xiàn)繩套,光纜維修等產(chǎn)生的張力可能導(dǎo)致繩套出現(xiàn)扭結(jié)等故障。因此,須沿路由合理地分布放纜余量,以保證既緊貼海床輪廓不產(chǎn)生懸跨,也不出現(xiàn)繩套現(xiàn)象。從工程經(jīng)驗統(tǒng)計來看,海底光纜路由的平均放纜余量通常為3%~6%[4、 6],且由于海底光纜往往很長,放纜余量的變化范圍很大,其具體的取值方法尚缺乏科學支撐。江偉等[6]針對深海光纜分析了海底光纜敷設(shè)施工余量控制的原理,將海底光纜余量分為區(qū)域余量、底部余量和釋放余量,并提出了一種控制軟件的操作流程和實施技術(shù)。郭俊宇等[7]通過模糊PID實現(xiàn)深海海纜定余量速度控制方法,當海底斜面角度發(fā)生大幅度變化時,可對設(shè)定余量進行自動修訂,計算出符合當前船速、海底斜面角度施工的修訂余量。但由于海底光纜的鋪設(shè)通常應(yīng)避開存在海底沙波運動的區(qū)域[4、 8],余量計算與控制不需要考慮沙波的影響,現(xiàn)有關(guān)于深海海纜鋪纜余量的計算方法尚未考慮沙波因素。然而,沙波存在的區(qū)域往往范圍廣闊,如果避開它則顯著增加光纜工程成本,有時,光纜路又別無選擇地通過沙波海域。王偉平等[9]在對亞洲快線海底光纜香港段路由條件的調(diào)查中,發(fā)現(xiàn)大量沙波地貌,認為沙波移動會造成已鋪設(shè)光纜的出露、懸空甚至移動等不良地質(zhì)現(xiàn)象,危及光纜的安全,海纜的埋深和放纜余量需謹慎考慮。為此,本文將重點探討海底沙波對光纜鋪設(shè)余量計算影響等相關(guān)問題。首先,從海底沙波的成因、沙波床面上光纜受害的機理入手分析,進而得到可靠的光纜放纜余量計算方法。
海底地形地貌非常復(fù)雜,底床泥沙在波浪或潮汐等水動力作用下會形成大范圍的沙波。海底沙波在我國大陸架海域普遍存在,且深水沙波規(guī)模和分布范圍往往比近岸淺水區(qū)的大得多[10],而海纜鋪設(shè)時不可能完全避開沙波區(qū)域。為使海纜鋪設(shè)時具有合理的放纜余量,保證其安全使用壽命,需要分析海底沙波的成因和幾何特征,以得到合理計算放纜余量的方法。
由于海底洋流的存在,達到超臨界狀態(tài)的挾沙水流(弗汝德數(shù)Fr>1)會形成深水沙波的床面形態(tài)[11]。產(chǎn)生沙波有兩個必要條件:
(1) 床面泥沙顆粒在水流的作用下可以產(chǎn)生運動,水體對底床的切應(yīng)力τb必須大于底床顆粒運動的臨界切應(yīng)力,即:
τb>θcr(γs-γ)d50
(1)
式中,θcr為底床泥沙顆粒粒徑d50對應(yīng)的起動希爾茲數(shù);γs為底床泥沙的容重,N/m3;γ為水的容重,N/m3;d50為底床泥沙中值粒徑,即小于該粒徑的顆粒占沙樣總重量的50%,m。
通常,能起動床面泥沙顆粒的臨底水流為紊流。依據(jù)普朗特紊流理論,其紊流切應(yīng)力可以表達為
(2)
式中,τ為切應(yīng)力,Pa;ρ為水體密度,kg/m3;l為摻混長度,m;u為流速,m/s;z為臨底高度,m。
(3)
對于臨近海底,假設(shè)底床上的切應(yīng)力為τ0,水體摻混長度l=κz,κ為卡門常數(shù)。式(3)積分可得臨底的流速分布遵循對數(shù)關(guān)系:
(4)
假設(shè)高出平均床面d50處的流速為0,則
(5)
將(5)代入(4)得:
(6)
因此,床面泥沙顆粒在水體作用下能夠運動的條件是
(7)
(2) 底床泥沙顆粒運動必須以推移質(zhì)運動形式進行,而非懸移質(zhì)運動形式。參與沙波形態(tài)演變的泥沙必須在沙波的背水面淤積下來。如果泥沙起動后直接成為懸移質(zhì),則無法淤積在背水面。
深海沙波的尺度與當?shù)匮罅鞔笮〖胺较?、海底坡度以及海底床沙質(zhì)特性等因素有關(guān),在砂質(zhì)海床上往往出現(xiàn)不同尺度的沙波。對于均勻流環(huán)境,沙波的幾何特征如圖1所示。海底沙波的高度為Δ,長度是前坡長度lf和背面坡長度ll之和L=lf+ll。平均而言,前坡長度lf是背面坡長度ll長度的3倍[8],即lf=3ll,ll=L/4。
圖1 沙波的幾何特征
在海洋環(huán)境下,Maselli等[12]觀察東地中海黎凡特盆地(Levant Basin)海底,發(fā)現(xiàn)大范圍不對稱沙波,如圖2所示。一類是新月形的沙波,波高35~50m,波長830~1465m,背流和迎流面的坡度分別為12.2°~23.7°和4.1°~6.4°;另外一類有輕微彎頂部平行分布的沙波,其波高5~30m,波長910~1670m,陡度大于50,背流和迎流面的坡度分別為7.3°~2.6°和3.6°~0.5°。在我國南海和臺灣海峽附近均存在大范圍的大尺度海底沙波,在東沙群島和臺灣島水深2100~3000m的海底存在波長為1.3~3.5km、波高為10~77m的沙波[13]。在南中國海的北部發(fā)現(xiàn)了東沙西溝、西臺灣海峽、南臺灣海峽和澎湖西溝4個沙波區(qū)域,波長可達2.8~7.2km,波高可達30~60m[14]。當波峰與海溝方向正交或傾斜時,無論是在下坡方向還是隨著離海溝距離的增加,泥沙波的尺寸都會逐漸減小。目前,尚缺乏對深海沙波尺度的理論研究,預(yù)測深海沙波只能采用明渠均勻流條件下沙波尺度計算公式。
圖2 Levant Basin海底的沙波分布
在均勻流條件下沙波尺度計算方面,國外的代表性學者Van Rijn對水深大于0.1m的84組美國水道試驗站等完成的實驗數(shù)據(jù)(泥沙粒徑0.190~1.35mm)和22組野外數(shù)據(jù)(泥沙粒徑0.35~3.6mm)進行了回歸分析,提出沙波高度和長度的計算公式[15]:
(8)
(9)
式中,T為泥沙的狀態(tài)參數(shù),H為水深,m。
(10)
其中,Δ為波高,m;λ為波長,m;H為水深,m;U′*為沙粒摩阻流速,m/s,U′*=(g0.5/C′)×U,而C′=18log(hb/d90)為謝才系數(shù),U為近底平均流速,m/s;U*cr為泥沙起動的臨界摩阻流速,m/s;d90為累計粒度分布數(shù)達到90%時所對應(yīng)的顆粒粒徑,m。
在國內(nèi),代表性成果為武漢水利水電學院給出的公式[16]:
(11)
值得注意的是,上述公式在推導(dǎo)過程中采用的實驗水深較淺,底床的相當光滑度(H/d50)小,沙波尺度的發(fā)展受到抑制。而海洋中的水深相對河道而言則大得多,沙波尺度得到更多發(fā)展空間。鑒于床面上流速分布是底床切應(yīng)力的決定要素,以及海洋臨底流速和明渠流平均流速分布的相似性,上述公式中的水深應(yīng)該取海洋近底層的邊界層厚度,而非全海水深。動量邊界層的計算公式[17]如下:
(12)
其中,η為動量邊界層厚度,m;η*為邊界層厚度,m;d為底床顆粒泥沙粒徑,m。在水槽試驗或天然淺水試驗中,邊界層厚度一般由流動深度決定,η*=H。
光纜的放纜余量P以百分比表示如下:
(13)
式中,Ib為某一時段內(nèi)的海底光纜布放長度,m;Is為該時間內(nèi)的海纜施工船只航行的距離,m。
鋪設(shè)在深海海底的光纜須完全貼合在海床上。因此,一個完整沙波上鋪設(shè)光纜的最小長度應(yīng)為
(14)
式中,c1、c2分別為前坡的形態(tài)系數(shù)和后坡的形態(tài)系數(shù)。對于對稱正弦波型沙波,c1=c2≈1.3。如果兩波峰之間的放纜量小于L1,則在兩個相鄰波峰之間,海底光纜觸底后無法緊貼海床上的沙波坡面而懸空。洋流和內(nèi)波的不斷作用導(dǎo)致懸跨的光纜渦激振動,最終導(dǎo)致材料疲勞而失效。這種往復(fù)振動促進光纜底下海床泥沙的流化,增大水流對光纜的淘刷能力。兩個波峰間光纜懸空,臨底的高濃度懸移質(zhì)泥沙不斷流過光纜,時刻產(chǎn)生磨蝕,縮短光纜安全壽命。因此,沙波對光纜余量的增量應(yīng)該為
(15)
將lf?3ll代入上式可得
(16)
利用泰勒級數(shù)展開:
(17)
(18)
近似地,c1=c2=C。則沙波對光纜放纜余量的增量應(yīng)為
(19)
(20)
將ll=L/4及C=1.3代入上式,得
(21)
不同大洋海底,由于洋流大小、方向不同,海底底質(zhì)不同,以及海底坡度的變化,沙波的高度與長度會隨時空而不斷發(fā)生變化,放纜余量百分比也將不同。例如,在南中國海的北部發(fā)現(xiàn)了東沙西溝、西臺灣海峽、南臺灣海峽和澎湖西溝4個沙波區(qū)域,波長可達2.8~7.2km,波高可達30~60m。為消除沙波段的懸空,平均放纜余量應(yīng)該增加1.3%。東地中海黎凡特盆地(Levant Basin)的新月形沙波,波高35~50m,波長830~1465m。為消除沙波段的懸空,平均放纜余量應(yīng)該增加3.7%~4.5%。可見,對于存在新月形沙波的海底,平均的放纜余量宜大于3%。
由上述分析可知,大洋海底的大尺度沙波運動危及海纜的安全,大尺度沙波的陡度是影響光纜鋪設(shè)放纜余量的重要因素,計算光纜鋪設(shè)放纜余量必須考慮大尺度沙波的影響。另外,光纜鋪設(shè)放纜余量計算采用了動量邊界層厚度代替水深,提高了計算的精度和降低光纜鋪設(shè)時經(jīng)過沙波存在區(qū)域時的風險。
本文在海底沙波尺度分析光纜鋪設(shè)長度的余量影響,通過理論推導(dǎo)得出如下結(jié)論:
(1) 為消除沙波隆突而造成的光纜懸空引發(fā)的疲勞破壞等問題,光纜鋪設(shè)時必須增加光纜鋪設(shè)長度的余量。
(2) 沙波對光纜鋪設(shè)長度的余量可按公式(21)計算。其中,沙波高度和長度的計算公式(8)、(9)及(11)供參考;在光纜工程設(shè)計時,高精度的海底沙波尺度觀測與分析非常重要。
(3) 新月形沙波的海底光纜的放纜余量應(yīng)大于3%,其他類型沙波的海底光纜的放纜余量應(yīng)大于1.3%。