• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Moving Epidemic Method for Surveillance and Early Warning of Hand, Foot, and Mouth Disease in Beijing, China*

    2024-01-12 07:33:00DONGShuaiBingWANGYuHUODaZHAOHaoLIUBaiWeiLIRenQingGAOZhiYongWANGXiaoLiZHANGDaiTaoWANGQuanYiJIALeiandYANGPeng
    Biomedical and Environmental Sciences 2023年12期

    DONG Shuai Bing, WANG Yu, HUO Da,2, ZHAO Hao, LIU Bai Wei, LI Ren Qing, GAO Zhi Yong,2,WANG Xiao Li, ZHANG Dai Tao, WANG Quan Yi,2, JIA Lei,#, and YANG Peng

    Hand, foot, and mouth disease (HFMD) is an acute infection caused by enteroviruses that is commonly seen in children[1].High infectivity, large number of asymptomatic infections, complex transmission routes, and rapid spread make it difficult to control HFMD.Since 2008, China has reported > 23 million HFMD cases, including > 0.15 million severe cases[2].HFMD tops the list of notifiable infectious diseases in terms of case number and incidence rate, leading to a huge disease burden[3].Timely and accurate assessment of HFMD epidemics is essential for a holistic understanding of the outbreaks and for effective prevention and control strategies.Currently, there are no quantitative indicators to determine the duration and intensity of HFMD epidemics in Beijing.

    In 2013, Vega et al.[4]proposed the moving epidemic method (MEM) to establish influenza epidemic thresholds.This method was later adopted for assessing the intensity of influenza epidemics[5].The European Centre for Disease Prevention and Control has achieved favorable results by using MEM for influenza surveillance and early warning in European countries[6].Because the sensitivity,specificity, Youden’s index, and other quantitative indicators of the MEM model can be calculated, the fitting effect of the model can be directly evaluated.At the same time, the model has the advantages of simple operation, fast application, and ease of understanding.In recent years, it has also been used in China, and shows good results in terms of sensitivity and specificity[7].In this study, MEM was used to model the HFMD surveillance data from Beijing as a baseline.The study aimed to explore the feasibility of using MEM for early warning of HFMD epidemics in Beijing, assess HFMD epidemic intensity in Beijing in 2020, and evaluate the reliability of the surveillance data and effectiveness of the MEM model.The results of this study may provide a reference for epidemic threshold development and intensity assessment for HFMD in Beijing.

    The number of HFMD cases in Beijing was obtained from the National Notifiable Infectious Disease Reporting Information System in China between 2011 and 2020.Population data were obtained from the National Bureau of Statistics of China (http://www.stats.gov.cn/).The reported incidence of HFMD (per 100,000 individuals) was calculated as the reported number of HFMD cases /number of permanent residents in a given year ×100,000.The MEM model is typically used for surveillance during the epidemic season characterized by a unimodal pattern.However,HFMD incidence in Beijing has shown a primary peak between April and July in the previous years, with occasional smaller sub-peaks between September and November[8].As a result, the MEM model cannot be directly applied to HFMD in Beijing.Therefore, we focused on the primary HFMD peak during weeks 5–36 for modeling and early warning.

    MEM uses historical HFMD surveillance data for modelling and computes graded intensity thresholds, allowing assessment of the HFMD epidemic status and intensity during the target surveillance year[4,5].The epidemic thresholds in different urban and suburban areas of Beijing were explored through modeling analysis.The urban areas included Dongcheng, Xicheng, Chaoyang, Haidian,Fengtai, and Shijingshan districts, while the suburban areas included Daxing, Tongzhou, Shunyi, Changping,Mentougou, Fangshan, Huairou, Pinggu, Miyun, and Yanqing districts.

    The pre-epidemic, epidemic, and post-epidemic periods were classified based on the maximum accumulated rates percentage (MAP) function of the HFMD surveillance indicator.Thenlargest surveillance indicator values for all pre-pandemic periods were included in the analysis (n= 30/N,whereNis the number of surveillance years included in the analysis, ranging between 5 to 10[5]).Onesided 95% confidence intervals were calculated for the arithmetic means of these values, and the upper limit of the confidence interval was taken as the epidemic start threshold.Similarly, the epidemic end threshold was calculated using the data from postpandemic periods.Meanwhile, thenlargest surveillance indicator values for all epidemic periods were analyzed (n= 30/N), and one-sided 50%, 90%,and 95% confidence intervals were calculated for their geometric means.The upper limits of these confidence intervals were used as the medium, high,and very high epidemic intensity thresholds,respectively.The MAP curve reflects the changes in the surveillance indicator overrconsecutive weeks.The MAP curve rises with the increasingrvalue,although the rate gradually slows down.

    HFMD epidemic intensity during the target surveillance year was assessed using the epidemic start and end thresholds, as well as medium, high,and very high epidemic intensity thresholds.Baseline epidemic intensity was defined as weekly surveillance indicator values ≤ epidemic start/end thresholds.Low epidemic intensity was defined as epidemic start threshold < weekly surveillance indicator values ≤ medium epidemic intensity threshold.Medium epidemic intensity was defined as medium epidemic intensity threshold < weekly surveillance indicator values ≤ high epidemic intensity threshold.High epidemic intensity was defined as high epidemic intensity threshold< weekly surveillance indicator values ≤ very high epidemic intensity threshold.Very high epidemic intensity was defined as very high epidemic intensity threshold < weekly surveillance indicator values.

    Based on the epidemic period defined by the MEM model, weekly surveillance indicator values obtained from the actual surveillance were compared with the epidemic thresholds obtained from the model.The sensitivity, specificity, Youden’s index, and positive and negative predictive values were calculated to evaluate and validate the model.Sensitivity was defined as the number of weeks above the epidemic threshold divided by the total number of epidemic weeks defined by the MEM algorithm.Specificity was defined as the number of MEM non-epidemic weeks below the epidemic threshold divided by the number of MEM nonepidemic weeks.Positive predictive value was obtained by dividing the number of MEM epidemic weeks above the threshold by the number of weeks above the threshold, while negative predictive value was calculated as the number of MEM non-epidemic weeks below the threshold divided by the number of weeks below the threshold.The Youden’s index(sensitivity + specificity -1) was used to measure the performance of the model.

    Data were analyzed using the Excel 2013 software (Microsoft Corp., Redmond, WA, USA).The‘mem’ package in R 4.2.2 software (https://www.Rproject.org/; The R foundation, Vienna, Austria) was used for modeling analysis.

    The number of historical seasons included and the choice ofδvalue affect the determination of epidemic periods.In a study of influenza, it was recommended to include 5–10 epidemic seasons and to exclude outlier years to avoid bias caused by model data instability[5].China included HFMD among the notifiable infectious diseases in May 2008.After excluding the years with unstable data,the HFMD incidence data from Beijing between 2011 and 2019 were used for fitting.The optimal MEM model achieved a sensitivity of 89.60% and a Youden’s index of 75.63% with the parameter value ofδset as 2.0.However, the optimalδvalue varied slightly when Beijing was further subdivided into urban and suburban areas.In the urban areas of Beijing, the optimal model yielded a sensitivity of 90.63% and Youden’s index of 73.44% with the parameter value ofδset as 1.6.In the suburban areas of Beijing, the optimal model had a sensitivity of 88.90% and a Youden’s index of 73.56% with the parameter value ofδset as 1.9 (Supplementary Table S1, available in www.besjournal.com).

    Based on historical data, the MEM model performance was cross-validated to determine its stability.The sensitivity, specificity, positive predictive value, negative predictive value, and Youden’s index for model fitting were 89.60%,86.03%, 84.42%, 90.73%, and 75.63%, respectively.Its reliability was superior to that of the MEM model for HFMD used in the southern regions of China,including Shanghai, Chongqing, and Zhejiang[7].

    The sensitivity was as high as 100.00% during 2012–2014 and 2018, and was > 95.00% during 2011 and 2015–2016.The specificity, positive predictive value, and negative predictive value ranged between 68.85% and 100.00% during 2011–2019.The Youden’s index was > 80.00% during 2011–2012,2015–2016, and 2018, and reached 71.28% in 2013.Due to the Beijing municipality initiating vaccination for children aged between 0.5 and 5 years with the EV-A71 vaccine in August 2016, and considering the influence of meteorological factors such as temperature and humidity, the incidence of HFMD was low in odd years.As a result, there was a downward trend in the incidence of HFMD in 2017 and 2019[8].The sensitivity and Youden’s index were relatively poor in 2017 (both 53.00%) and 2019 (both 61.56%).This suggests that the data from these two years may be considered outliers compared to the other years, and should be considered with caution for developing the epidemic thresholds.However,after excluding and adjusting the data, the fitting performance for the historical years did not show any significant changes.Therefore, the optimal model was still constructed using data from 2011 to 2019 for the assessment of HFMD epidemic intensity(Table 1).

    Table 1.MEM model performance evaluation by cross-validation of weekly HFMD incidence in Beijing,China (2011–2019)

    The modeling results for urban areas showed that the sensitivity, specificity, positive predictive value, negative predictive value, and Youden’s index for model fitting were 90.63%, 82.81%, 82.12%,91.03%, and 73.44%, respectively.For the suburban data, the sensitivity, specificity, positive predictive value, negative predictive value, and Youden’s index for model fitting were 88.90%, 84.66%, 82.72%,90.03%, and 73.56%, respectively.Further analysis revealed that the model fitting performance was also satisfactory in the urban and suburban areas of Beijing.This demonstrates that the proposed method can identify the intensity of HFMD epidemics in a timely and accurate manner, and can be used for the surveillance and early warning of HFMD in Beijing.

    The HFMD epidemic start threshold, estimated using the MEM model, was 2.75/100,000, while the epidemic end threshold was 3.09/100,000, in Beijing during weeks 5–36 of 2020.The medium, high, and very high epidemic intensity thresholds were 8.16/100,000, 15.00/100,000, and 17.82/100,000,respectively (Figure 1).When the weekly reported incidence of HFMD exceeded a certain intensity threshold, the corresponding early warning signal was generated.Epidemic intensity assessment showed that the weekly reported incidence was< 2.75/100,000 in Beijing during this period.HFMD activity never exceeded the epidemic threshold, and no epidemic periods emerged (Figure 2).This was consistent with the findings of Zheng et al.[9], who reported that HFMD activity decreased significantly on a national scale during the COVID-19 pandemic of 2020.This also indicates that HFMD transmission can be effectively interrupted through nonpharmacological interventions, such as limiting population mobility, hand hygiene, wearing masks,and social distancing[10].Cities with dense and mobile populations may control HFMD transmission by enhancing the non-pharmacological interventions during future HFMD epidemics.

    HFMD epidemics varied greatly in different regions, which is related to the vaccine inoculation rate, meteorological factors, socioeconomic status,and so on, and varied greatly across different years due to the virus variation, so this disease is difficult to predict.In the future, it may be necessary to develop intelligent early warning multi-point trigger mechanisms, and to improve the multi-channel surveillance and early warning mechanisms.

    Figure 1.Determination of the start and end weeks of HFMD epidemic, and estimation of the incidence thresholds for early warning during the 2020 epidemic season.Based on the data of the incidence of hand, foot, mouth disease in the 5–36 week epidemic season from 2011 to 2019 in Beijing, the MEM model was used to draw Figure 1.Gray line represents the weekly surveillance data of HFMD, green spots, purple spots and yellow spots represent the pre-epidemic, epidemic, and post-epidemic periods,respectively.Purple line from light to deep are the threshold of epidemic, medium epidemic, high epidemic and very high epidemic.MEM, moving epidemic method.

    Figure 2.Weekly HFMD incidence and MEM model epidemic intensity assessment during the 2020 epidemic season in Beijing, China.The green line represents the epidemic start threshold (2.75/100,000)by the MEM model.The epidemic curve represents the incidence of HFMD in the 5–36 week of 2020.When the weekly reported incidence of HFMD exceeded 2.75/100,000, an early warning signal for the epidemic was generated.However, HFMD incidence did not exceeded the epidemic threshold in 2020.MEM, moving epidemic method; HFMD, hand, foot, and mouth disease.

    In summary, the MEM model had a high sensitivity, specificity, and Youden’s index, and provided reliable results.Therefore, this method may be used for early warning of HFMD epidemics in Beijing.The year 2020 was a non-epidemic period,possibly because of the influence of the COVID-19 pandemic.This suggests that non-pharmacological interventions may be effective in the prevention and control of HFMD epidemics.

    #Correspondence should be addressed to JIA Lei, Email: lailajia@126.com; YANG Peng, E-mail: yangpengcdc@163.com

    Biographical note of the first author: DONG Shuai Bing, male, born in 1993, Master of public health, majoring in epidemiology of infectious diseases.

    Received: July 3, 2023;

    Accepted: August 23, 2023

    欧美国产精品一级二级三级| 99久久99久久久精品蜜桃| 欧美中文综合在线视频| 免费观看性生交大片5| 一二三四中文在线观看免费高清| 国产无遮挡羞羞视频在线观看| 青春草视频在线免费观看| 精品国产一区二区三区久久久樱花| 哪个播放器可以免费观看大片| 欧美精品av麻豆av| 日韩免费高清中文字幕av| 免费黄网站久久成人精品| 亚洲精品美女久久久久99蜜臀 | 日本一区二区免费在线视频| 国产视频首页在线观看| 激情视频va一区二区三区| 97在线人人人人妻| 国产av码专区亚洲av| 国产精品一国产av| 久久午夜综合久久蜜桃| 婷婷成人精品国产| www.av在线官网国产| 亚洲美女黄色视频免费看| 国产亚洲最大av| 一边摸一边抽搐一进一出视频| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕大全免费视频 | 王馨瑶露胸无遮挡在线观看| 久久久久久人人人人人| 午夜福利免费观看在线| 视频区图区小说| 啦啦啦在线免费观看视频4| 蜜桃国产av成人99| 五月开心婷婷网| 观看av在线不卡| 国产成人av激情在线播放| 麻豆乱淫一区二区| 一本一本久久a久久精品综合妖精| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 韩国av在线不卡| 欧美黑人精品巨大| 日韩一本色道免费dvd| 亚洲精品乱久久久久久| 一本大道久久a久久精品| 涩涩av久久男人的天堂| 欧美激情高清一区二区三区 | 少妇被粗大的猛进出69影院| 只有这里有精品99| av在线播放精品| 老司机靠b影院| 亚洲久久久国产精品| 久久精品亚洲av国产电影网| 久久热在线av| 18禁动态无遮挡网站| 国产探花极品一区二区| 日本av免费视频播放| 成人漫画全彩无遮挡| 水蜜桃什么品种好| a级片在线免费高清观看视频| 18在线观看网站| 国产视频首页在线观看| 丝袜在线中文字幕| 老司机影院毛片| 性少妇av在线| 中文乱码字字幕精品一区二区三区| 午夜影院在线不卡| 国产精品久久久久久人妻精品电影 | 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 一级毛片电影观看| 亚洲精品成人av观看孕妇| 国产成人午夜福利电影在线观看| 日本av免费视频播放| 精品少妇久久久久久888优播| 蜜桃国产av成人99| 国产熟女欧美一区二区| 亚洲国产中文字幕在线视频| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 亚洲av成人精品一二三区| 大片免费播放器 马上看| 伊人久久国产一区二区| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 国产乱来视频区| 久久av网站| 黄片无遮挡物在线观看| 91精品国产国语对白视频| 伊人久久大香线蕉亚洲五| 久久久久久久久久久免费av| 秋霞伦理黄片| 欧美人与性动交α欧美精品济南到| 啦啦啦中文免费视频观看日本| 亚洲精品国产av蜜桃| 大香蕉久久网| 性少妇av在线| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 欧美在线黄色| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| 日韩制服丝袜自拍偷拍| 国产成人精品无人区| 国产精品 欧美亚洲| 亚洲熟女毛片儿| 精品人妻熟女毛片av久久网站| 最黄视频免费看| 毛片一级片免费看久久久久| 丝袜喷水一区| 丝袜人妻中文字幕| 午夜福利视频精品| 青春草视频在线免费观看| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 亚洲精品国产av蜜桃| 欧美日韩综合久久久久久| 久久久久视频综合| 热re99久久精品国产66热6| 亚洲在久久综合| 操出白浆在线播放| 在现免费观看毛片| 免费看不卡的av| 制服诱惑二区| 亚洲精品国产av成人精品| 男女无遮挡免费网站观看| 亚洲人成电影观看| 嫩草影院入口| 考比视频在线观看| 精品久久久久久电影网| 国产精品99久久99久久久不卡 | 一级毛片我不卡| 精品国产一区二区三区四区第35| 国产精品无大码| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 国产免费一区二区三区四区乱码| 精品人妻在线不人妻| 国产黄频视频在线观看| 最近手机中文字幕大全| 久久久精品免费免费高清| 男女边摸边吃奶| 国产99久久九九免费精品| 午夜精品国产一区二区电影| 午夜福利网站1000一区二区三区| 欧美久久黑人一区二区| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o | 波多野结衣一区麻豆| 国产在线视频一区二区| 亚洲中文av在线| 51午夜福利影视在线观看| 香蕉国产在线看| 激情五月婷婷亚洲| 99久国产av精品国产电影| 国产爽快片一区二区三区| 国产毛片在线视频| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 美国免费a级毛片| 亚洲专区中文字幕在线 | 亚洲美女视频黄频| 日本爱情动作片www.在线观看| 777久久人妻少妇嫩草av网站| 精品亚洲成国产av| 国产在线免费精品| 99精品久久久久人妻精品| 亚洲,一卡二卡三卡| 丝袜喷水一区| 欧美日韩福利视频一区二区| 男人爽女人下面视频在线观看| 熟女av电影| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久男人| 激情五月婷婷亚洲| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 国产免费视频播放在线视频| 另类亚洲欧美激情| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 高清黄色对白视频在线免费看| 色视频在线一区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲激情五月婷婷啪啪| 亚洲四区av| 尾随美女入室| 国产97色在线日韩免费| 欧美日韩亚洲高清精品| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 国产毛片在线视频| 国产精品欧美亚洲77777| 亚洲专区中文字幕在线 | 欧美 日韩 精品 国产| 国产伦人伦偷精品视频| 久久热在线av| 午夜免费观看性视频| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 久久国产精品大桥未久av| 精品一区在线观看国产| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 久久国产亚洲av麻豆专区| h视频一区二区三区| 久久精品久久久久久噜噜老黄| 黄色视频在线播放观看不卡| 丝袜美腿诱惑在线| 国产av国产精品国产| 欧美97在线视频| 精品国产乱码久久久久久小说| a 毛片基地| av有码第一页| 人人澡人人妻人| 巨乳人妻的诱惑在线观看| 别揉我奶头~嗯~啊~动态视频 | 日韩欧美精品免费久久| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 伊人久久国产一区二区| 制服诱惑二区| a级毛片黄视频| 性高湖久久久久久久久免费观看| 伦理电影免费视频| 国产日韩欧美在线精品| 少妇人妻 视频| 一级黄片播放器| 欧美日韩综合久久久久久| 欧美变态另类bdsm刘玥| 99热网站在线观看| 亚洲精品国产av蜜桃| 亚洲精品视频女| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 亚洲国产看品久久| 女人精品久久久久毛片| 999久久久国产精品视频| 电影成人av| 好男人视频免费观看在线| 免费在线观看完整版高清| 成年女人毛片免费观看观看9 | 丁香六月天网| 大话2 男鬼变身卡| 欧美少妇被猛烈插入视频| 亚洲国产欧美网| 久久天堂一区二区三区四区| 一级片'在线观看视频| 三上悠亚av全集在线观看| 天天躁夜夜躁狠狠久久av| 91精品国产国语对白视频| 丁香六月天网| 久久久久久久久久久久大奶| 搡老乐熟女国产| 亚洲欧美日韩另类电影网站| 久久久精品免费免费高清| 最新的欧美精品一区二区| 午夜免费鲁丝| 久久久久久久大尺度免费视频| 天天操日日干夜夜撸| 久久韩国三级中文字幕| 久久久久精品人妻al黑| 成人漫画全彩无遮挡| 美女中出高潮动态图| 午夜老司机福利片| 中文字幕制服av| 亚洲精品自拍成人| av不卡在线播放| 欧美激情极品国产一区二区三区| 七月丁香在线播放| av女优亚洲男人天堂| 亚洲精品美女久久久久99蜜臀 | 亚洲自偷自拍图片 自拍| 黄色一级大片看看| 亚洲 欧美一区二区三区| kizo精华| 丰满乱子伦码专区| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看 | 老司机深夜福利视频在线观看 | 午夜福利,免费看| 国产男女内射视频| 欧美精品高潮呻吟av久久| 视频区图区小说| 亚洲成人一二三区av| 男的添女的下面高潮视频| 欧美乱码精品一区二区三区| 色94色欧美一区二区| 日本av手机在线免费观看| 人妻 亚洲 视频| 可以免费在线观看a视频的电影网站 | 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 男女之事视频高清在线观看 | 九色亚洲精品在线播放| 永久免费av网站大全| 一区二区三区乱码不卡18| 19禁男女啪啪无遮挡网站| 丰满迷人的少妇在线观看| 秋霞伦理黄片| 免费av中文字幕在线| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 成年av动漫网址| 国产 一区精品| 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 国产1区2区3区精品| 人人妻人人爽人人添夜夜欢视频| 黄片播放在线免费| 亚洲,欧美,日韩| 制服人妻中文乱码| kizo精华| 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 我的亚洲天堂| 99国产精品免费福利视频| 久久久久人妻精品一区果冻| 久久亚洲国产成人精品v| www.精华液| 日韩视频在线欧美| 亚洲国产中文字幕在线视频| 久久久精品免费免费高清| 国产精品免费大片| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 久久久欧美国产精品| www.精华液| 久久精品熟女亚洲av麻豆精品| 一本色道久久久久久精品综合| 亚洲av在线观看美女高潮| 成人国产麻豆网| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 青春草国产在线视频| 亚洲精品视频女| 一二三四在线观看免费中文在| 男女下面插进去视频免费观看| 免费在线观看视频国产中文字幕亚洲 | 十八禁高潮呻吟视频| 免费在线观看黄色视频的| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 在线亚洲精品国产二区图片欧美| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 哪个播放器可以免费观看大片| 丝袜在线中文字幕| 日韩精品有码人妻一区| 99久久人妻综合| 日韩精品有码人妻一区| 女人高潮潮喷娇喘18禁视频| 18禁裸乳无遮挡动漫免费视频| 亚洲少妇的诱惑av| av又黄又爽大尺度在线免费看| 国产精品久久久av美女十八| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 丰满迷人的少妇在线观看| 亚洲国产精品999| 青青草视频在线视频观看| 国产毛片在线视频| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 咕卡用的链子| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 亚洲第一区二区三区不卡| 我要看黄色一级片免费的| 51午夜福利影视在线观看| 色婷婷久久久亚洲欧美| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 亚洲美女黄色视频免费看| 黄色 视频免费看| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 一个人免费看片子| 欧美中文综合在线视频| 亚洲国产精品999| 人人妻人人添人人爽欧美一区卜| 看十八女毛片水多多多| 精品国产国语对白av| 国产av精品麻豆| 一区二区三区乱码不卡18| av.在线天堂| 欧美 亚洲 国产 日韩一| 成人毛片60女人毛片免费| a 毛片基地| 又大又爽又粗| 999精品在线视频| 观看av在线不卡| 嫩草影视91久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲伊人色综图| 国产精品亚洲av一区麻豆 | 免费高清在线观看日韩| 99久久综合免费| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 国产成人精品久久二区二区91 | 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 色精品久久人妻99蜜桃| 蜜桃国产av成人99| 日本vs欧美在线观看视频| av在线老鸭窝| 男女边吃奶边做爰视频| 亚洲久久久国产精品| 日日爽夜夜爽网站| 中文字幕人妻丝袜制服| 欧美日韩av久久| av在线观看视频网站免费| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 高清av免费在线| 另类亚洲欧美激情| 国产av国产精品国产| 色网站视频免费| 五月天丁香电影| 麻豆av在线久日| 丰满饥渴人妻一区二区三| av免费观看日本| 九九爱精品视频在线观看| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 久久影院123| 九草在线视频观看| 无限看片的www在线观看| 亚洲精品aⅴ在线观看| 亚洲精品第二区| av免费观看日本| 极品少妇高潮喷水抽搐| 多毛熟女@视频| 99国产精品免费福利视频| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| 成人手机av| 亚洲图色成人| 国产男人的电影天堂91| 好男人视频免费观看在线| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 国产精品国产三级专区第一集| 久久久久久人人人人人| 国产精品人妻久久久影院| av视频免费观看在线观看| 午夜免费鲁丝| 精品国产乱码久久久久久男人| 欧美精品亚洲一区二区| 午夜av观看不卡| 久久久久久人人人人人| 精品午夜福利在线看| 国产不卡av网站在线观看| 最近中文字幕高清免费大全6| 精品国产一区二区三区久久久樱花| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 亚洲伊人色综图| 日本猛色少妇xxxxx猛交久久| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| 永久免费av网站大全| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产淫语在线视频| av国产精品久久久久影院| 欧美日韩综合久久久久久| 欧美精品亚洲一区二区| 99热国产这里只有精品6| 日本欧美视频一区| 国产一区二区 视频在线| 夫妻性生交免费视频一级片| 欧美日韩精品网址| 欧美日韩福利视频一区二区| 欧美97在线视频| 欧美日韩视频高清一区二区三区二| 日韩熟女老妇一区二区性免费视频| 老司机亚洲免费影院| 国产黄频视频在线观看| av在线app专区| 欧美另类一区| videosex国产| 国产精品免费视频内射| 一区二区av电影网| avwww免费| 午夜免费鲁丝| 成年美女黄网站色视频大全免费| 性色av一级| 女人精品久久久久毛片| 亚洲欧美成人精品一区二区| 精品卡一卡二卡四卡免费| 纵有疾风起免费观看全集完整版| 如何舔出高潮| 色综合欧美亚洲国产小说| 99国产精品免费福利视频| 婷婷色综合www| 只有这里有精品99| 无遮挡黄片免费观看| 亚洲av电影在线观看一区二区三区| 欧美最新免费一区二区三区| 亚洲欧美日韩另类电影网站| 菩萨蛮人人尽说江南好唐韦庄| 两个人免费观看高清视频| 啦啦啦中文免费视频观看日本| 国产成人精品久久久久久| 丰满饥渴人妻一区二区三| 亚洲免费av在线视频| 宅男免费午夜| 国语对白做爰xxxⅹ性视频网站| 最新的欧美精品一区二区| 高清在线视频一区二区三区| 青春草亚洲视频在线观看| 国产精品一区二区在线观看99| 国产精品99久久99久久久不卡 | 日韩电影二区| 国产免费视频播放在线视频| 日韩一本色道免费dvd| 黑人巨大精品欧美一区二区蜜桃| 欧美国产精品一级二级三级| 久久女婷五月综合色啪小说| 少妇人妻精品综合一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产成人午夜福利电影在线观看| 99九九在线精品视频| 丝袜人妻中文字幕| 日本91视频免费播放| 成人18禁高潮啪啪吃奶动态图| 欧美日韩亚洲综合一区二区三区_| 亚洲精品成人av观看孕妇| 免费不卡黄色视频| 熟女av电影| 亚洲自偷自拍图片 自拍| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 日日摸夜夜添夜夜爱| 日韩人妻精品一区2区三区| 亚洲av成人不卡在线观看播放网 | 色综合欧美亚洲国产小说| 黄色视频不卡| 九色亚洲精品在线播放| 少妇人妻久久综合中文| 久久av网站| 久久精品亚洲熟妇少妇任你| 欧美日韩福利视频一区二区| 欧美变态另类bdsm刘玥| 国语对白做爰xxxⅹ性视频网站| 国产精品成人在线| 男人添女人高潮全过程视频| 日本爱情动作片www.在线观看| 亚洲精品aⅴ在线观看| 伊人久久大香线蕉亚洲五| 欧美精品av麻豆av| av.在线天堂| 国产精品蜜桃在线观看| 欧美国产精品一级二级三级| 99精国产麻豆久久婷婷| 婷婷色av中文字幕| 亚洲综合色网址| 亚洲av日韩精品久久久久久密 | 黑人巨大精品欧美一区二区蜜桃| 久久午夜综合久久蜜桃| 天堂中文最新版在线下载| 中文字幕亚洲精品专区| 国产精品欧美亚洲77777| 国产av精品麻豆| 欧美亚洲日本最大视频资源| www.精华液| 精品国产一区二区三区久久久樱花| 亚洲成人一二三区av| 国产激情久久老熟女| 国产成人精品在线电影| 久久精品久久久久久久性| 中文精品一卡2卡3卡4更新| 看十八女毛片水多多多| 建设人人有责人人尽责人人享有的| 亚洲一级一片aⅴ在线观看| 成年人免费黄色播放视频| 97人妻天天添夜夜摸| 七月丁香在线播放| 欧美日本中文国产一区发布| 久热爱精品视频在线9| 国产成人欧美在线观看 | 久久这里只有精品19| 一本一本久久a久久精品综合妖精| 亚洲一区中文字幕在线| 亚洲av成人精品一二三区| 黄片小视频在线播放| 亚洲一区中文字幕在线| 免费不卡黄色视频| 欧美日本中文国产一区发布| 亚洲精品第二区| xxx大片免费视频| 午夜福利在线免费观看网站| 亚洲精品在线美女| 国产亚洲午夜精品一区二区久久| 国产熟女欧美一区二区| 亚洲精品国产av蜜桃|