• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mixed Electric and Magnetic Coupling Design Based on Coupling Matrix Extraction

    2024-01-12 14:48:40XIONGZhiangZHAOPingFANJiyuanWUZengqiangGONGHongwei
    ZTE Communications 2023年4期

    XIONG Zhiang, ZHAO Ping, FAN Jiyuan,WU Zengqiang, GONG Hongwei

    (1. Xidian University, Xi’an 710000, China;2. ZTE Corporation, Shenzhen 518057, China)

    Abstract: This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters. It derives the quantitative relationship between the coupling coefficients (electric and magnetic coupling, i.e., EC and MC) and the linear coefficients of frequencydependent coupling for the first time. Different from the parameter extraction technique using the bandpass circuit model, the proposed approach explicitly relatesEC and MC to the coupling matrix model. This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices. An example of a 7th-order coaxial combline filter design is given in the paper, verifying the practical value of the approach.

    Keywords: coupling matrix; frequency-dependent coupling; mixed electric and magnetic coupling; parameter extraction

    1 Introduction

    In the design of microwave filters, the realization of finite transmission zeros (TZs) is critical to improving selectivity. Cross-coupling is the most popular method to create TZs[1]. However, this multi-path mechanism often leads to complexity in the design of filter layout, especially for highorder filters with many TZs. To solve this problem, frequencydependent coupling (FDC) is introduced into the filter design.In an FDC, the coupling coefficient will be zero at a specific frequency, creating extra TZs in a given filter network.

    SZYDLOWSKI et al.[2-5]proposed an optimization-based approach to the synthesis of coupling matrices with FDCs.Years later, HE[6-7]and ZHAO[8]developed deterministic matrix transformation approaches that can eliminate one crosscoupling from traditionalN-tuples and introduce FDCs into the network. Constant couplings can be realized as pure electric or magnetic coupling, whereas FDCs need to be implemented as mixed electric and magnetic couplings. However,the mixed electric and magnetic coupling is difficult to control, because there is no quantitative relationship between FDCs and the mixed electric and magnetic couplings.

    In 2006, MA[9]proposed constructing an electrical coupling and a magnetic coupling path between two resonators to generate a TZ. However, he did not give the relationship between the TZ position and the electric and magnetic coupling coefficients. In 2008, CHU[10-11]defined the mixed electric and magnetic coupling coefficient and gave the extraction method of the electric coupling coefficient (EC) and the magnetic coupling coefficient (MC) from the electromagnetic (EM) simulation of mixed electric and magnetic coupling structures. Furthermore, the relationship between the location of TZ and (EC,MC) is found. However, the parameter extraction is carried out in the bandpass domain. The approach does not explicitly relate Ec and Mc to the coupling matrix model, which is popular in filter synthesis. Therefore, it is difficult to design or tune the mixed coupling by coupling matrix extraction approaches.

    This paper derives the explicit relationship between EC(MC)in the mixed electric and magnetic coupling and elements in the coupling and capacitance matrices. With the coupling matrix extracted by the model-based vector fitting (MVF) technique[12], the filter designer can easily design and tune the mixed coupling filter by comparing the extracted matrices with target ones.

    The rest of the paper is organized as follows. Section 2 derives the relationship between the lowpass FDC model and the bandpass mixed coupling coefficients (ECand MC). Section 3 presents a mixed electric and magnetic coupling physical model. The theory proposed in Section 2 is applied to design the mixed coupling structure. We then demonstrate a 7thorder in-line mixed coupling filter design with the aid of coupling matrix extraction. Section 4 concludes this paper.

    2 Relationship Between FDC and Mixed Electric and Magnetic Coupling

    A constant coupling in the coupling matrix is modeled by an ideal J-inverter, the π-equivalent circuit of which consists of three frequency-invariant susceptances (FISs). The characteristic admittance of a frequency-dependent inverter varies with frequency. Fig. 1 shows the π-equivalent circuit model of the frequency-dependent inverter. The circuit model includes three capacitors parallel-connected with FISs.

    Note that the FDC is an element in lowpass circuit models.The bandpass frequency is mapped to the lowpass frequency domain by:

    ▲Figure 1. π-equivalent circuit model: (a) frequency-dependent inverter, where the admittances of capacitance and frequency-invariant susceptances are sC( - sC) and jJ( - jJ) respectively; (b) frequencydependent inverter coupled lowpass network consisting of two resonators, where the two resonators are unit capacitors and resonant frequency is zero rad/s; (c) bandpass circuit model of mixed electric and magnetic coupling

    whereΩis the normalized lowpass frequency,ω0is the center frequency of the bandpass filter,ω2is the upper band edge frequency,ω1is the lower band edge, andωis the bandpass frequency.

    Substituting Eq. (1) into the admittance formula of FIS and capacitor connected in parallel yields

    whereCLPis the capacitance in the lowpass circuit model,CBPis the capacitance, andLBPis the inductance in the bandpass circuit model. According to Eq. (2), the parameters in the lowpass and bandpass circuits are related by:

    where BW is the bandwidth and 2πBW=ω2-ω1. After transformation, the coupling between two resonators is not a pure electric or magnetic coupling form but mixed coupling.Therefore, an FDC should be realized as a mixed electric and magnetic coupling. However, Eq. (3) cannot reveal the qualitative relationship between FDC and mixed electric and magnetic coupling.

    As shown in Fig. 1(b), there are unity capacitors on both sides of the frequency-dependent inverter. The capacitors model parallel resonant circuits with a resonant frequency of zero rad/s. The value of the frequency-dependent inverter issCm+jbm. If the left node index isiand the right node index isj,the coupling matrix elementMijisbm,and the capacitance matrix elementCijisCm. After lowpass-to-bandpass circuit transformation in Eq. (3), the resultant bandpass circuit model is shown in Fig. 1(c), where

    In the above derivation, we use the narrowband condition ofω0>> BW. This condition also applies to the derivation of Eqs. (7), (9) and (10).ωmis the resonant frequency. When the frequency isωm, the parallelCm',Lm'andbm'form an open circuit, and the signal transmission is blocked to generate a TZ.

    For a mixed electric and magnetic coupling, the calculation formula of Ec and Mc can be expressed as follows[10]:

    whereωevis the even mode resonant frequency, andωodis the odd mode resonant frequency of a coupled resonator pair.

    We can calculate ECand MCin the mixed electric and magnetic coupling based onωm,ωev, andωod. To obtain ECand MCof the mixed electric and magnetic coupling in terms of FDC coefficients, we can analyze the even- and odd-mode resonant frequencies of the coupled-resonator circuit model in Fig. 1(c).

    We analyze the odd mode first. The odd-mode sub-circuit is shown in Fig. 2(a). After combining parallel-connected capacitors, inductors, and FISs, the odd-mode sub-circuit is transformed into the form shown in Fig. 2(b). We have:

    ▲Figure 2. Mode circuit of a bandpass circuit model of mixed electric and magnetic coupling

    Therefore, the resonant frequency of the odd mode is

    Similarly, to analyze the even mode, as shown in Fig. 2(c), we have

    Therefore, the resonant frequency of the even mode subcircuit is

    Substituting Eqs. (7) and (9) into Eq. (5) yields

    The results in Eq. (10) show that ECand MCin mixed electric and magnetic coupling filters are almost equal, and both values are approximately equal to -Cm. This analysis result reveals that the majority of electric and magnetic coupling should be canceled with each other to realize an FDC. The electric coupling or magnetic coupling is slightly stronger than the other one to provide a weak total coupling for constructing the narrowband passband. Therefore, if the absolute value of the synthesized capacitance matrix elementCijis larger, the electric and magnetic coupling in the mixed coupling structure should be tuned stronger simultaneously.

    To conclude, the FDC in the lowpass coupling matrix model issCij+jMij, whereMijrepresents the total coupling exhibited by the mixed electric and magnetic coupling at the center frequency, andCmis related to the strength of both the electric and the magnetic coupling coefficient in the mixed coupling.

    3 Analysis of Electromagnetic Model

    For the experimental validation, a 7th-order in-line bandpass filter is designed with coaxial cavity structures in this section.The 7th-order filter contains two mixed electric and magnetic couplings, the structure of which is shown in Fig. 3(a). The simulation results of the second-order filter block are shown in Fig. 3(b). The center frequency of the filter is 3.5 GHz, the bandwidth is 0.2 GHz, and the return loss is 18 dB. The open end of the metal rod is connected to a folded metal sheet.Two adjacent metal sheets form a parallel plate capacitor to realize a strong electric coupling. The height of the platehplateis 3.6 mm. The short ends of adjacent coaxial resonators are connected by a metal ridge to realize a strong magnetic coupling. The height of the ridge,hridge, is 6.3 mm. The strong electrical coupling and the magnetic coupling exist simultaneously to form a mixed electric and magnetic coupling. Ifhplateorhridgeincreases, the electric coupling or magnetic coupling will become stronger in this design.

    By repeatedly applying the MVF technique to extract the coupling matrix from simulation data[12], we can study the relationship between the mixed coupling coefficients and the element values of the coupling and capacitance matrices. Tables 1 and 2 show the extracted values ofMijandCijwhen ECand MCare changed. It can be found from Table 1 that whenhridgeandhplateincrease simultaneously,Cijincreases, whereasMijalmost does not change. Therefore,Cijis related to both the electric and magnetic coupling coefficients in the mixed coupling.

    Table 2 shows that when ECincreases and MCdecreases,Mijincreases. SinceMijrepresents the total coupling exhibited by the mixed electric and magnetic coupling at the center frequency, it can be seen that ECis stronger than MCin the mixed coupling structure shown in Fig. 3(a). Table 2 also shows that we can controlMijby increasing the difference between ECand MCwithout affectingCij.

    Table 3 shows that when MCincreases, the TZ is shifted tothe right. From Table 4, it can be found that when ECincreases, the TZ is shifted to the left. From Tables 3 and 4, we can also see that when the TZ is located in the lower stopband,ECis stronger than MC. If the TZ is in the upper stopband,then MCis stronger than EC.

    ▼Table 1. Simultaneously changing the heights of the ridge and the plate

    ▼Table 2. Changing the height of the ridge or the plate

    ▼Table 3. Changing the height of the ridge or the plate when TZ is in the lower stopband

    To conclude, the tuning of the mixed electric and magnetic coupling structure in Fig. 3(a) follows two rules:

    Rule 1: We simultaneously increase or decrease ECand MCto tuneCij.

    Rule 2: If the TZ is in the lower stopband, we can increase ECand decrease MCto increaseMij. If the TZ is in the upper stopband, we can increase MCand decrease ECsimultaneously to increaseMij.

    To verify the above theory, take a 7th-order filter with the coupling topology shown in Fig. 4(a) as an example. The center frequency and bandwidth of the filter are 3.5 GHz and 200 MHz, respectively. The in-band return loss level is required to be 18 dB. Two TZs at 3.7 GHz and 3.3 GHz are generated sequentially by two mainline FDCs. The synthesized coupling matrix and capacitance matrix are shown in Figs. 5 and 6, respectively.

    The perspective view of the filter model is shown in Fig. 4(b).With the help of the MVF method to extract the coupling matrix from simulation data, we can identify how to adjust the dimensions and finally obtain satisfactory filter responses. The simulation results with ideal lossless materials are shown in Fig. 7,where solid lines are simulation data, and dashed lines are theideal synthesis responses.

    ▼Table 4. Changing the height of the ridge or the plate when TZ is in the upper stopband

    ▲Figure 4. 7th-order filter with mixed electric and magnetic coupling:(a) target topology and (b) electromagnetic model of the 7th-order filter with mixed electric and magnetic coupling

    4 Conclusions

    In this paper, the relationship between the coupling matrix(capacitance matrix) and EC(MC) is obtained through circuit analysis. A filter example is designed to verify the proposed theory. Although only the inline filter is discussed in detail,the strategy introduced in this paper can be easily generalized to mixed electric and magnetic coupling filters in different coupling topologies. Compared with the existing theory of mixed electric and magnetic coupling filters, this work has the following distinctive features.

    ▲Figure 5. Coupling matrix

    ▲Figure 6. Capacitance matrix

    ▲Figure 7. Response of the 7th-order, where dashed lines are ideal synthesis responses and solid lines are simulation results

    1) It derives the explicit relationship between EC(Mc) in the mixed electric and magnetic coupling and elements in the coupling and capacitance matrices.

    2) The filter tuning procedure is based on analytical coupling matrix extraction and thus is very fast, compared with optimization-based filter tuning techniques.

    This paper gives a guiding idea for designing the physical model of the mixed electric and magnetic coupling filter.

    精品国产乱子伦一区二区三区| 一边摸一边抽搐一进一出视频| 激情视频va一区二区三区| 巨乳人妻的诱惑在线观看| 亚洲无线在线观看| 一区在线观看完整版| 亚洲欧美精品综合久久99| 欧美最黄视频在线播放免费| 9热在线视频观看99| 韩国精品一区二区三区| 国产亚洲欧美在线一区二区| 欧美日韩一级在线毛片| 亚洲色图综合在线观看| 丝袜在线中文字幕| 日韩欧美三级三区| 黄片大片在线免费观看| 精品久久久久久久久久免费视频| 国产精品1区2区在线观看.| 亚洲第一av免费看| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 国产精品99久久99久久久不卡| 日韩成人在线观看一区二区三区| 丝袜美腿诱惑在线| 热99re8久久精品国产| 一级毛片女人18水好多| 18禁观看日本| 欧美激情极品国产一区二区三区| 国产成人av教育| 日日夜夜操网爽| 动漫黄色视频在线观看| 十八禁网站免费在线| 男女下面插进去视频免费观看| 首页视频小说图片口味搜索| 久久精品亚洲熟妇少妇任你| 美女免费视频网站| 色播亚洲综合网| 久久精品国产99精品国产亚洲性色 | 麻豆一二三区av精品| 国产亚洲精品久久久久久毛片| 亚洲精品久久成人aⅴ小说| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区 | 欧美日韩亚洲综合一区二区三区_| 亚洲av第一区精品v没综合| 亚洲色图 男人天堂 中文字幕| 国产精品秋霞免费鲁丝片| 中文字幕色久视频| 国产成人av激情在线播放| 啪啪无遮挡十八禁网站| 亚洲精华国产精华精| 久久九九热精品免费| 久久久久九九精品影院| 两人在一起打扑克的视频| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| ponron亚洲| 99在线视频只有这里精品首页| 日本三级黄在线观看| 美国免费a级毛片| 午夜两性在线视频| 午夜a级毛片| 亚洲片人在线观看| 88av欧美| 丝袜人妻中文字幕| 欧美中文综合在线视频| 国产免费男女视频| 国产精品综合久久久久久久免费 | 国产欧美日韩一区二区三| av在线天堂中文字幕| 欧美乱妇无乱码| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 国产成人欧美| 亚洲,欧美精品.| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 精品日产1卡2卡| 在线观看舔阴道视频| 欧美成人午夜精品| 日本 av在线| 国产精品日韩av在线免费观看 | 精品高清国产在线一区| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉精品热| 韩国精品一区二区三区| 一二三四社区在线视频社区8| 狠狠狠狠99中文字幕| 欧美色视频一区免费| 国产区一区二久久| 多毛熟女@视频| netflix在线观看网站| 亚洲国产精品合色在线| 日韩免费av在线播放| 99精品欧美一区二区三区四区| 国内毛片毛片毛片毛片毛片| 国产精品美女特级片免费视频播放器 | 亚洲人成伊人成综合网2020| 亚洲第一电影网av| 久久 成人 亚洲| 一区二区三区激情视频| 婷婷六月久久综合丁香| 久久久久久久午夜电影| 禁无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 午夜免费鲁丝| 久热爱精品视频在线9| 婷婷精品国产亚洲av在线| 欧美激情 高清一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产精品美女特级片免费视频播放器 | 两个人看的免费小视频| 国产成+人综合+亚洲专区| 激情视频va一区二区三区| 久久天堂一区二区三区四区| 国产精品,欧美在线| 国产成人精品久久二区二区91| 久久精品成人免费网站| 亚洲天堂国产精品一区在线| 中文亚洲av片在线观看爽| 激情视频va一区二区三区| av欧美777| 两个人视频免费观看高清| 桃红色精品国产亚洲av| 黄色丝袜av网址大全| 久久精品亚洲熟妇少妇任你| 国产蜜桃级精品一区二区三区| 一边摸一边做爽爽视频免费| 亚洲三区欧美一区| 日韩精品青青久久久久久| 国产欧美日韩一区二区三| 国产亚洲精品久久久久5区| 久9热在线精品视频| 色尼玛亚洲综合影院| 美国免费a级毛片| 少妇粗大呻吟视频| 婷婷六月久久综合丁香| 欧美成人性av电影在线观看| 在线观看免费日韩欧美大片| 成人亚洲精品av一区二区| 亚洲精品av麻豆狂野| 亚洲中文字幕日韩| 欧美在线黄色| 变态另类丝袜制服| 制服诱惑二区| av电影中文网址| 午夜福利欧美成人| 久9热在线精品视频| 99久久99久久久精品蜜桃| 美女免费视频网站| 波多野结衣一区麻豆| 亚洲国产日韩欧美精品在线观看 | 长腿黑丝高跟| 亚洲成国产人片在线观看| 欧美不卡视频在线免费观看 | 亚洲国产看品久久| 久久香蕉激情| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦观看免费观看视频高清 | 午夜成年电影在线免费观看| 亚洲全国av大片| 精品国产乱码久久久久久男人| 日本三级黄在线观看| 丝袜在线中文字幕| 久久亚洲真实| 国产激情欧美一区二区| 一级a爱片免费观看的视频| 十八禁人妻一区二区| 人人澡人人妻人| 亚洲精品在线观看二区| 视频在线观看一区二区三区| 啦啦啦观看免费观看视频高清 | 国产精品一区二区在线不卡| 午夜福利18| 一级片免费观看大全| 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 亚洲五月天丁香| 精品国产乱子伦一区二区三区| 人人妻人人澡欧美一区二区 | 一进一出抽搐gif免费好疼| av在线天堂中文字幕| 国产精品永久免费网站| 免费看a级黄色片| 一级,二级,三级黄色视频| 久久人人爽av亚洲精品天堂| 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 成人国语在线视频| 久久婷婷成人综合色麻豆| 欧美日韩亚洲综合一区二区三区_| 亚洲第一电影网av| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 精品久久久久久久人妻蜜臀av | 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 久久精品影院6| 欧美丝袜亚洲另类 | 亚洲精品久久国产高清桃花| 国产免费男女视频| 国产亚洲欧美在线一区二区| 午夜成年电影在线免费观看| 成人国产一区最新在线观看| 国产精品 国内视频| 欧美最黄视频在线播放免费| 在线观看免费视频网站a站| 男人操女人黄网站| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 一区在线观看完整版| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品999在线| 欧美激情高清一区二区三区| 免费在线观看亚洲国产| 亚洲av成人av| 热99re8久久精品国产| 国产亚洲精品综合一区在线观看 | 99精品久久久久人妻精品| 欧美性长视频在线观看| 久久久水蜜桃国产精品网| 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 99国产精品一区二区蜜桃av| 窝窝影院91人妻| 午夜a级毛片| 热99re8久久精品国产| 一级a爱视频在线免费观看| 91成年电影在线观看| 日本三级黄在线观看| 国产精品影院久久| 一区二区三区精品91| 国产免费男女视频| 国产精品爽爽va在线观看网站 | 久久久久久久久中文| 亚洲视频免费观看视频| 少妇的丰满在线观看| 欧美日韩黄片免| 两个人视频免费观看高清| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 国产视频一区二区在线看| av在线天堂中文字幕| 精品久久久久久久久久免费视频| 免费看a级黄色片| 欧美激情高清一区二区三区| 国产精品久久久av美女十八| 女性生殖器流出的白浆| 久9热在线精品视频| 淫妇啪啪啪对白视频| av天堂在线播放| 电影成人av| 亚洲国产欧美网| 亚洲,欧美精品.| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 一本久久中文字幕| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 成人欧美大片| 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 纯流量卡能插随身wifi吗| 日本 欧美在线| 久久久久久久久中文| 亚洲视频免费观看视频| 亚洲国产中文字幕在线视频| 免费少妇av软件| 女警被强在线播放| 激情视频va一区二区三区| 亚洲国产精品成人综合色| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 日本三级黄在线观看| 久久久国产欧美日韩av| 日韩有码中文字幕| 国产成人欧美| 久久性视频一级片| 亚洲三区欧美一区| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清 | 国产精品久久视频播放| 不卡av一区二区三区| 淫秽高清视频在线观看| 日日夜夜操网爽| 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| 午夜免费激情av| 亚洲午夜精品一区,二区,三区| 久久久久久大精品| 啦啦啦观看免费观看视频高清 | 色综合婷婷激情| 国产精品免费一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 在线视频色国产色| 操美女的视频在线观看| 一进一出抽搐gif免费好疼| 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 国产精品自产拍在线观看55亚洲| 波多野结衣巨乳人妻| 免费在线观看完整版高清| 精品久久久久久成人av| 巨乳人妻的诱惑在线观看| 桃色一区二区三区在线观看| 久久婷婷成人综合色麻豆| 高清黄色对白视频在线免费看| 国产单亲对白刺激| 亚洲专区字幕在线| 亚洲激情在线av| 亚洲男人的天堂狠狠| 搡老岳熟女国产| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 麻豆国产av国片精品| 一区二区三区激情视频| 欧美乱妇无乱码| 亚洲成人免费电影在线观看| 久久性视频一级片| 不卡一级毛片| 欧美乱妇无乱码| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 欧美精品亚洲一区二区| av网站免费在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲国产精品成人综合色| 中文字幕精品免费在线观看视频| 一夜夜www| 精品久久久久久久人妻蜜臀av | 久久午夜亚洲精品久久| 看片在线看免费视频| 美女免费视频网站| 欧美成狂野欧美在线观看| 黑人操中国人逼视频| 精品第一国产精品| 手机成人av网站| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 国产精品乱码一区二三区的特点 | 桃色一区二区三区在线观看| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片 | 又黄又爽又免费观看的视频| 国产av在哪里看| 亚洲欧美一区二区三区黑人| 9色porny在线观看| 一二三四在线观看免费中文在| 91精品三级在线观看| 国产精品久久电影中文字幕| 一区二区三区高清视频在线| 两个人视频免费观看高清| 最近最新中文字幕大全电影3 | 亚洲中文字幕日韩| 在线观看免费日韩欧美大片| 色哟哟哟哟哟哟| 成人手机av| 国产一级毛片七仙女欲春2 | 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 久久婷婷人人爽人人干人人爱 | 1024香蕉在线观看| 我的亚洲天堂| 成人免费观看视频高清| 波多野结衣巨乳人妻| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区视频了| 日韩av在线大香蕉| 欧美一级a爱片免费观看看 | 亚洲精品国产色婷婷电影| av天堂在线播放| 国产欧美日韩综合在线一区二区| 999精品在线视频| 久久精品成人免费网站| 好看av亚洲va欧美ⅴa在| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 国产99白浆流出| 极品教师在线免费播放| 国产片内射在线| 日本五十路高清| 久久久久九九精品影院| netflix在线观看网站| 中文亚洲av片在线观看爽| 男人舔女人的私密视频| 久久香蕉国产精品| 一卡2卡三卡四卡精品乱码亚洲| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 免费在线观看日本一区| 国产xxxxx性猛交| av福利片在线| 亚洲欧美激情在线| 两个人视频免费观看高清| 久久久久久久久中文| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三区在线| 中国美女看黄片| 黑人操中国人逼视频| 亚洲久久久国产精品| 日韩欧美在线二视频| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 天天一区二区日本电影三级 | 如日韩欧美国产精品一区二区三区| 无限看片的www在线观看| 一二三四社区在线视频社区8| 免费久久久久久久精品成人欧美视频| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站| 色老头精品视频在线观看| 国产成人精品在线电影| 亚洲欧美日韩高清在线视频| 亚洲片人在线观看| 操美女的视频在线观看| 国产精品综合久久久久久久免费 | 久久影院123| 欧美av亚洲av综合av国产av| 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 亚洲五月天丁香| 久久精品亚洲熟妇少妇任你| 久久中文字幕一级| 97人妻天天添夜夜摸| 丝袜人妻中文字幕| 久久久久久人人人人人| 女人被狂操c到高潮| 午夜a级毛片| 久久国产精品人妻蜜桃| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 两个人免费观看高清视频| 国产在线精品亚洲第一网站| www.999成人在线观看| 中文字幕av电影在线播放| 成在线人永久免费视频| 老司机在亚洲福利影院| 后天国语完整版免费观看| 国产精品久久久久久亚洲av鲁大| 少妇的丰满在线观看| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| or卡值多少钱| 曰老女人黄片| 后天国语完整版免费观看| 乱人伦中国视频| 人妻久久中文字幕网| 18禁国产床啪视频网站| 黄色毛片三级朝国网站| 亚洲精品中文字幕一二三四区| 国产熟女xx| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 一区二区日韩欧美中文字幕| 精品日产1卡2卡| 久久国产乱子伦精品免费另类| aaaaa片日本免费| 嫩草影视91久久| 日韩av在线大香蕉| 国产国语露脸激情在线看| 国产乱人伦免费视频| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 夜夜看夜夜爽夜夜摸| 麻豆国产av国片精品| 亚洲成人久久性| 别揉我奶头~嗯~啊~动态视频| 激情视频va一区二区三区| 香蕉国产在线看| 亚洲精品国产区一区二| 十八禁人妻一区二区| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| 欧美激情久久久久久爽电影 | 啦啦啦观看免费观看视频高清 | 久久精品国产综合久久久| 俄罗斯特黄特色一大片| 精品卡一卡二卡四卡免费| 免费女性裸体啪啪无遮挡网站| 手机成人av网站| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 欧美成人一区二区免费高清观看 | av天堂在线播放| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕色久视频| 久久国产乱子伦精品免费另类| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 十分钟在线观看高清视频www| 在线视频色国产色| 国产亚洲欧美精品永久| 波多野结衣av一区二区av| 欧美黄色淫秽网站| 午夜福利18| 久久草成人影院| 亚洲精品在线观看二区| 女警被强在线播放| 一进一出抽搐gif免费好疼| 欧美人与性动交α欧美精品济南到| 老司机靠b影院| 欧美色视频一区免费| 国产高清视频在线播放一区| 国产极品粉嫩免费观看在线| 欧美+亚洲+日韩+国产| 精品一区二区三区四区五区乱码| 麻豆久久精品国产亚洲av| 99在线视频只有这里精品首页| 日韩免费av在线播放| 国产成人一区二区三区免费视频网站| 此物有八面人人有两片| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 老司机福利观看| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 成人国产综合亚洲| 国产精品久久视频播放| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 侵犯人妻中文字幕一二三四区| 午夜福利在线观看吧| 久久香蕉精品热| 午夜精品在线福利| 精品电影一区二区在线| 欧洲精品卡2卡3卡4卡5卡区| 90打野战视频偷拍视频| 精品不卡国产一区二区三区| 国产亚洲欧美98| 亚洲男人天堂网一区| 香蕉久久夜色| 青草久久国产| 免费在线观看影片大全网站| 女警被强在线播放| 村上凉子中文字幕在线| bbb黄色大片| 中文字幕久久专区| 国产av一区二区精品久久| 丰满人妻熟妇乱又伦精品不卡| 少妇被粗大的猛进出69影院| av天堂久久9| 国产午夜精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 人成视频在线观看免费观看| 精品一区二区三区视频在线观看免费| 欧美色视频一区免费| 伊人久久大香线蕉亚洲五| 欧美丝袜亚洲另类 | 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 国产精品亚洲av一区麻豆| 丰满的人妻完整版| 91精品国产国语对白视频| 国产成人精品无人区| 精品不卡国产一区二区三区| 真人一进一出gif抽搐免费| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看| 国产精品久久久人人做人人爽| 精品久久久久久成人av| 一进一出好大好爽视频| 国产人伦9x9x在线观看| 久久精品人人爽人人爽视色| 久久久久国产精品人妻aⅴ院| 久久久久国内视频| 日韩免费av在线播放| www国产在线视频色| av视频免费观看在线观看| 制服丝袜大香蕉在线| 国产aⅴ精品一区二区三区波| 亚洲成人国产一区在线观看| 可以在线观看毛片的网站| videosex国产| 99国产精品一区二区三区| 国产成人精品无人区| 欧美成人午夜精品| 真人一进一出gif抽搐免费| 久久欧美精品欧美久久欧美| 精品日产1卡2卡| 在线免费观看的www视频| 波多野结衣巨乳人妻| 日日干狠狠操夜夜爽| 黄色成人免费大全| 男人操女人黄网站| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 美女高潮喷水抽搐中文字幕| 热re99久久国产66热| 亚洲av熟女| 老汉色∧v一级毛片| 精品一区二区三区四区五区乱码| 久久国产精品男人的天堂亚洲| www.熟女人妻精品国产| 老汉色av国产亚洲站长工具| 亚洲专区字幕在线| 日韩高清综合在线| 成人国产一区最新在线观看| 国产亚洲欧美精品永久| 88av欧美|