• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser

    2024-01-11 08:07:24JinjuGUOTaoyeYINShuaiWANGWeiCHENPeiwangZHUKunLUOYunKUANGJieLIUJunjunHUANGBingHUOHuiWANGChunlinZHANGJianWANG

    Jinju GUO ,Taoye YIN ,Shuai WANG ,Wei CHEN ,Peiwang ZHU ,Kun LUO,2? ,Yun KUANG,Jie LIU,Junjun HUANG,Bing HUO,Hui WANG,Chunlin ZHANG,Jian WANG

    1State Key Laboratory of Clean Energy Utilization,Zhejiang University,Hangzhou 310027,China

    2Shanghai Institute for Advanced Study of Zhejiang University,Shanghai 200120,China

    3Central Southern China Electric Power Design Institute Co.,Ltd. of China Power Engineering Consulting Group,Wuhan 430071,China

    4Huanggang Dabieshan Power Generation Co.,Ltd,Huanggang 438300,China

    5China Energy Digital Technology Group Co.,Ltd,Beijing 100022,China

    1 Introduction

    The condenser plays a vital role in the operation of a thermal power generation unit.Its primary function is to remove the heat from the steam that is exhausted from the steam turbine,thereby condensing the steam into water.Additionally,it establishes and maintains a specific degree of vacuum at the exhaust port of the steam turbine,facilitating efficient operation of the turbine (Keshvarparast et al.,2020).The vacuum degree of the condenser is affected by physical factors such as steam-side resistance and heat-transfer efficiency.Optimization of the tube-bundle arrangement in a condenser can improve heat-transfer efficiency,reduce steam-flow resistance,and increase the actual contact area between the steam and tube bundles.This optimization,in turn,reduces the pressure at the steam-turbine exhaust port and the degree of subcooling of the condensed water.Shell-and-tube condensers have been widely used in various configurations and have complex internal structures with numerous heatexchange tubes (Kasumu et al.,2017;Pereira et al.,2021).During actual operation,non-condensable gases such as air often enter the condenser,creating a multi-phase and multi-component flow field on the shell side.This leads to complex 3D flow that has a significant impact on condensation heat transfer,even for small amounts of air (Ahn et al.,2022;Liao et al.,2023).

    Both experimental and numerical methods have been frequently used to study condensers.Specifically,experiments allow researchers to obtain various flow and heat-transfer parameters by installing multiple measurement points inside the actual condenser (Huang et al.,2013;Kasumu et al.,2017).Although this method provides first-hand operation data,it can be expensive;it is also difficult to control operating conditions,and impossible to directly measure flow fields that are instantaneously distributed in the condenser.Numerical simulation provides an alternative for analyzing and studying flow dynamics and condensation characteristics under various operating conditions (Seleznev,2007;Zhang et al.,2008,2012).It can also provide comprehensive data for analysis of the tube structure and offer an optimized design scheme for tube-bundle arrangement.

    Based on numerical simulation,several studies have investigated the impact of operating conditions and non-condensable gases on heat-transfer characteristics during steam condensation with various tubebundle configurations.Qin et al.(2023) explored in-tube vapor-condensation heat-transfer characteristics at high pressure and found that higher operating pressures led to reduced wall heat-transfer rates.Liu et al.(2021)examined steam condensation in a vertical tube bundle with non-condensable gases and observed that the distribution of key thermal parameters differed from those in a single tube due to cross effects and mixture effects in the condensation-tube boundary layers.Kumar et al.(2023) conducted a 3D simulation of flow condensation of R-124a inside a horizontal tube with hemispherical structure on the inner surface,and found that the vapor quality and liquid-film thickness inside the structured tube were lower than those observed inside a smooth tube.These studies offer valuable insights into the thermal characteristics of steam condensation inside or outside tubes but are limited to simplified condensers with a restricted number of tubes.

    To enhance the functionality of the condenser,a considerable number of tubes,ranging from hundreds to thousands,are integrated within the apparatus.Therefore,an alternative approach is necessary to consider the consequential impact of the vapor effects.Most researchers have employed the porous media model to study shell-and-tube heat exchangers and described the vapor area on the shell side using volume porosity(Park et al.,2020).The porous media model accounts for the effect of the solid structure on fluid flow by representing it as distributed resistance added to the fluid (Steefel and MacQuarrie,1996).This model simplifies the problem greatly and can accurately and efficiently describe the overall heat transfer and pressuredrop changes.However,it has limitations when it comes to capturing the influence of the complexity and heterogeneity of pore structure on the flow field.The main reason is that the source terms added in the basic governing equations rely only on porosity and do not account for the actual flow-field structure.In addition to numerical methods,different arrangements of tube bundles have been proposed since the 1960s (Hosseini et al.,2007;Liu et al.,2020).Scientists have studied the performance of condensers with different tubebundle arrangements.Despite the significant progress in research theory and methods,no conclusion has been reached on the optimal tube-bundle arrangement;this is still urgently needed.

    Here,we propose a novel approach to address the shortcomings of the traditional porous media model and optimize the condenser tube-bundle arrangement.In this method,the flow field is divided into two kinds of regions,namely the condensation region and non-condensation region.A relatively fine mesh is used in the condensation region,and a source term is added to the governing equations to describe the steam-condensation process.Compared to the porous media model,this method better reflects the flow-field characteristics with different tube-bundle arrangements,while significantly reducing the computational costs compared to direct modelling.The mathematical model is provided in the electronic supplementary materials(ESM),including model assumptions,governing equations of the fluid phase,phase-change model,and numerical procedure.Upon determining the numerical settings and completing the grid-independence analysis,as provided in the ESM,we generated the results which we present and discuss in this paper.

    2 Results and discussion

    2.1 Effects of tube-bundle arrangements

    2.1.1 Flow dynamics

    As shown in Figs.1a and 1c,the pressure at the inlet increases by about 50 Pa due to the blocking of the first few rows of tube bundles.To better discuss the heat transfer of each tube,the tube bundle is divided into 10 zones (Condensation01-Condensation10) from top to bottom,among which Condensation10 is the air-cooling zone.Detailed description can be seen in Section S2 of the ESM.The air-cooling zone is the last section where the water vapor flows out of the tube bundle,and the air extraction port is located in it.Directly upon entering the Condensation01 zone,some of the steam drops in pressure due to condensation.Another part of the steam enters the channels on both sides,and gradually enters the Condensation02-Condensation08 zones obliquely downward to condense;then,the pressure gradually decreases by about 100 Pa.Due to the bottom wall being blocked,the pressure in the lower half of the Condensation09 zone is slightly increased,and this phenomenon is more significant for non-uniform tube-bundle arrangements.In the air-cooling zone (Condensation10),the air and uncondensed steam are drawn out at the outlet by the exhaust fan,and the pressure drop is relatively large(about 200 Pa).Regarding the velocity distribution shown in Figs.1b and 1d,the highest velocity is located at the central channel with different tube-bundle arrangements.Specifically,the highest velocity for the uniform tube-bundle arrangement is about 170 m/s,while it is about 180 m/s for the non-uniform tubebundle arrangement.The velocity in the channels on both sides decreases gradually and decreases further once the steam passes through the microchannel.The velocity decreases again to 40 m/s at the bottom of the condenser (Condensation09),and the velocity between the tubes in Condensation01-Condensation09 zones is about 30 m/s.The velocity at Condensation10 in the air-cooling zone is about 70 m/s.

    Fig.1 Contour plots of flow dynamics of the condenser with a uniform tube-bundle arrangement (a and b) and a non-uniform tube-bundle arrangement (c and d) (rated air leakage γair=8.0×10-5 (dimensionless)): (a and c) pressure,P (Pa);(b and d) velocity,U (m/s)

    2.1.2 Condensation characteristics

    As shown in Figs.2a and 2d,we found that from the periphery to the interior of the tube bundle along with the flow direction of the gas mixture,the water vapor is continuously condensed,resulting in a continuous decrease in the vapor concentration and a gradual increase in the air concentration.The highest mass fraction of air in the condenser with the uniform tube-bundle arrangement is in the Condensation04-Condensation06 zones,with a value of about 0.016,while that with the non-uniform tube-bundle arrangement is in the Condensation02-Condensation06 zones,with a value of about 0.026.In terms of heat-transfer coefficient distribution,the heat-transfer coefficient has a negative correlation with air concentration,as shown in Figs.2b and 2e.In the outer part of the tube bundle,higher water-vapor velocity and lower air concentration result in a higher heat-transfer coefficient.However,in the region near the central channel of the tube bundle,the lower water-vapor velocity and higher air concentration make the heat-transfer coefficient lower.The regions on both sides of the top of the tube bundle appear the highest water-vapor velocity,corresponding to the highest heat-transfer coefficient.In the aircooling zone,the air concentration increases sharply and the heat-transfer coefficient decreases continuously.This is consistent with the flow characteristics and phase-change process of actual condenser operation.As shown in Figs.2c and 2f,the condensation rate has a negative correlation with air concentration and a positive correlation with the heat-transfer coefficient.Compared with the uniformly arranged tube bundle,the non-uniformly arranged tube bundle not only has a lower heat-transfer coefficient near the central channel,but also has three high-air-concentration regions in the outer part of the tube bundle,corresponding to the low heat-transfer coefficient and low condensation rate.

    Table 1 demonstrates that under the rated airleakage conditions,the uniform tube-bundle arrangement has a 51.73% lower pressure drop but a 0.96%higher steam-condensation rate than the non-uniform tube-bundle arrangement.In addition,the non-uniform arrangement achieves a higher heat-transfer coefficient of approximately 200 W/(m2·K) higher than that of the uniform tube-bundle arrangement.

    Table 1 Condenser performance with different tube-bundle arrangements (γair=8.0×10-5)

    2.1.3 Underlying mechanism

    Fig.2 Contour plots of phase changes of the condenser with a uniform tube-bundle arrangement (a-c) and non-uniform tube-bundle arrangement (d-f) (γair=8.0×10-5): (a and d) mass fraction of air,Xair (dimensionless);(b and e) heat-transfer coefficient,HTC (W/(m2·K));(c and f) condensation rate, (kg/s)

    To analyze the influence of local air concentration on the heat-transfer coefficient,we extracted a horizontal line (Fig.3a) from the middle flow field of the condenser with the uniform tube-bundle arrangement.Fig.3b shows the relationship between the air concentration and heat-transfer coefficient on this line.With continuous condensation,the partial pressure of water vapor decreases while the partial pressure of air increases,leading to formation of an air layer.The watervapor/air mixture has to diffuse through the air layer before reaching the surface of the liquid film for condensation so that the flow resistance is increased.In addition,the decrease in the partial pressure of water vapor leads to a decrease in its corresponding saturation temperature,which weakens the condensation process and reduces heat-transfer efficiency.When the diffusion of air molecules leaving the air layer and being carried into it by the main flow reaches a dynamic balance,the air layer is relatively stable.As can be inferred from Fig.3b,the critical value of the air mass fraction is about 0.001.When the air mass fraction increases to 0.001,the air layer is still unstable,with a relatively strong influence.The heat-transfer coefficient decreases from 4250 to 155 W/(m2·K),with a decrease of 96.35%.When the air concentration is greater than 0.001,the air layer stabilizes,with a moderate influence on the heat-transfer process.The area where the air mass fraction is higher than 0.001 is called the airaccumulation area.

    Fig.3 Effect of air concentration on the heat-transfer coefficient with the uniform tube-bundle arrangement: (a) location of the horizontal line;(b) relationship between air mass fraction and heat-transfer coefficient

    Fig.4 Contour plots of Xair in the condenser with a uniform tube-bundle arrangement (a-c) and a non-uniform tube-bundle arrangement (d-f): (a and d) γair=8.0×10-5;(b and e) γair=1.0×10-4;(c and f) γair=1.2×10-4

    2.2 Effect of air leakage

    For the uniform arrangement (Figs.4a-4c),as the air leakage increases from 0.00008 to 0.00012,the maximum value of air concentration increases from 0.016 to 0.022;however,the dimension of the air-accumulation area does not increase much.For the non-uniform arrangement (Figs.4d-4f),as the air leakage increases,not only does the maximum value increase from 0.026 to 0.040,but the dimension of the air-accumulation area also increases greatly.This latter phenomenon means that more of tubes cannot transfer heat well.It weakens heat-transfer efficiency and reduces the heat-transfer coefficient.The negative effects on heat-transfer performance in the non-uniform arrangement are more significant than those in the uniform arrangement.

    In instances where there is an equal amount of air leakage,the non-uniform tube-bundle arrangement has a higher inlet pressure than the uniform arrangement.The channel between the first rows of tube bundles in the non-uniform arrangement is wider than that in the uniform arrangement,but the gas mixture passing through it impacts the second row of tube bundles directly,causing more significant blockage.Furthermore,the non-uniform arrangement,which has the same number of cooling tubes as the uniform arrangement (but fewer tubes per row and more rows) results in a higher overall pressure drop.This is evident from Fig.5a,where the pressure drop of the non-uniform tube-bundle arrangement is seen to be about 500 Pa more than that of the uniform tube-bundle arrangement.Additionally,as the air-leakage volume increases,the air concentration increases,leading to a lower steam-condensation rate and a higher inlet pressure.The heat-transfer coefficient of the non-uniform tubebundle arrangement is about 200 W/(m2·K) higher than that of the uniform arrangement,as shown in Fig.5b.However,the heat-transfer efficiency decreases as air concentration increases with higher airleakage volume,causing a drop in the heat-transfer coefficient.

    Fig.5 Comparison of performance indicators of the condenser with different tube-bundle arrangements: (a) pressure drop,ΔP;(b) heat-transfer coefficient,HTC

    3 Conclusions

    1.The dynamic balance of the air layer in the main flow is achieved when the air mass fraction reaches a critical value of approximately 0.001.Below this critical value,the heat-transfer coefficient undergoes a dramatic reduction from 4250 to 155 W/(m2·K),equivalent to a decrease of 96.35%.The region in which the air mass fraction exceeds 0.001 is referred to as the airaccumulation area.

    2.The uniform tube-bundle arrangement exhibits a 51.73% lower pressure drop than the non-uniform tube-bundle arrangement under rated air-leakage conditions.However,the non-uniform arrangement achieves a higher heat-transfer coefficient of approximately 200 W/(m2·K) higher than that of the uniform tubebundle arrangement.While increasing the air-leakage volume increases air concentration and inlet pressure,it leads to a drop in steam-condensation rate.Furthermore,heat-transfer efficiency decreases as air concentration increases with higher air-leakage volume,resulting in a decrease in the heat-transfer coefficient.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (No.51806192) and the Fundamental Research Funds for the Central Universities of China (No.2022ZFJH004).

    Author contributions

    Jinju GUO processed the data curation,helped methodology,and wrote the original draft.Taoye YIN developed the software.Shuai WANG reviewed and edited the final draft.Wei CHEN validated the numerical model.Peiwang ZHU and Junjun HUANG were responsible for visualization.Kun LUO was the project administrator,and was responsible for supervision and reviewing and editing the draft.Yun KUANG and Jie LIU denoted investigation.Bing HUO and Chunlin ZHANG helped methodology.Hui WANG helped supervision.Jian WANG was responsible for conceptualization.

    Conflict of interest

    Jinju GUO,Taoye YIN,Shuai WANG,Wei CHEN,Peiwang ZHU,Kun LUO,Yun KUANG,Jie LIU,Junjun HUANG,Bing HUO,Hui WANG,Chunlin ZHANG,and Jian WANG declare that they have no conflict of interest.

    精品视频人人做人人爽| 日本午夜av视频| 一边亲一边摸免费视频| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区 | 精品99又大又爽又粗少妇毛片| 亚洲,欧美精品.| 国产成人精品久久久久久| 日韩制服骚丝袜av| 丰满少妇做爰视频| 久久久国产欧美日韩av| 九草在线视频观看| 久久人妻熟女aⅴ| 黄色一级大片看看| 国产av精品麻豆| 午夜福利网站1000一区二区三区| 日韩av在线免费看完整版不卡| 日本色播在线视频| 十分钟在线观看高清视频www| 自拍欧美九色日韩亚洲蝌蚪91| 91久久精品国产一区二区三区| 观看美女的网站| av电影中文网址| 久久久久国产精品人妻一区二区| 国产精品久久久久久久久免| 国产深夜福利视频在线观看| 日韩一区二区视频免费看| 免费观看在线日韩| 午夜激情久久久久久久| 老司机亚洲免费影院| videos熟女内射| 黑丝袜美女国产一区| 免费播放大片免费观看视频在线观看| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 九九在线视频观看精品| 五月玫瑰六月丁香| 国产黄色视频一区二区在线观看| 尾随美女入室| 欧美bdsm另类| 精品国产国语对白av| 免费黄网站久久成人精品| 岛国毛片在线播放| 国产国语露脸激情在线看| 亚洲内射少妇av| 激情五月婷婷亚洲| 亚洲精品av麻豆狂野| 午夜福利影视在线免费观看| 少妇 在线观看| 18禁观看日本| 久久婷婷青草| 岛国毛片在线播放| 亚洲精品aⅴ在线观看| 观看av在线不卡| 日韩大片免费观看网站| 制服人妻中文乱码| videossex国产| 亚洲精品成人av观看孕妇| 美女中出高潮动态图| 在线看a的网站| 亚洲av福利一区| 色婷婷久久久亚洲欧美| 久热这里只有精品99| a级毛片在线看网站| 一边亲一边摸免费视频| 大片免费播放器 马上看| 中文乱码字字幕精品一区二区三区| 免费看av在线观看网站| 黑人巨大精品欧美一区二区蜜桃 | 一本色道久久久久久精品综合| 中文字幕最新亚洲高清| 丝袜美足系列| 97精品久久久久久久久久精品| 丝瓜视频免费看黄片| 久久这里有精品视频免费| 精品酒店卫生间| 天天操日日干夜夜撸| 一区在线观看完整版| 亚洲内射少妇av| 嫩草影院入口| 啦啦啦啦在线视频资源| av在线app专区| 看免费成人av毛片| 亚洲精品乱久久久久久| 免费黄色在线免费观看| 精品酒店卫生间| 国产一区二区在线观看av| av国产久精品久网站免费入址| 伊人久久国产一区二区| 边亲边吃奶的免费视频| 九色成人免费人妻av| 狂野欧美激情性bbbbbb| 十八禁网站网址无遮挡| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 成人综合一区亚洲| 天天操日日干夜夜撸| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡 | 丝袜喷水一区| 中文天堂在线官网| 综合色丁香网| 午夜福利视频在线观看免费| 日韩一本色道免费dvd| 制服人妻中文乱码| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 亚洲国产最新在线播放| 美女中出高潮动态图| 国产黄色免费在线视频| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| 多毛熟女@视频| 久久人人爽人人片av| 人妻一区二区av| 日本午夜av视频| 在线观看免费高清a一片| 男人舔女人的私密视频| 国产女主播在线喷水免费视频网站| 欧美国产精品一级二级三级| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 中文精品一卡2卡3卡4更新| 日本欧美国产在线视频| 午夜视频国产福利| 香蕉国产在线看| 久久97久久精品| 欧美 日韩 精品 国产| 青春草视频在线免费观看| 国产免费一级a男人的天堂| 亚洲国产av新网站| 综合色丁香网| 国产成人精品一,二区| 精品人妻偷拍中文字幕| 久久青草综合色| 老熟女久久久| 亚洲精品视频女| 国产日韩一区二区三区精品不卡| 国产亚洲精品第一综合不卡 | 妹子高潮喷水视频| 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 人妻少妇偷人精品九色| 国产探花极品一区二区| 成人国语在线视频| 建设人人有责人人尽责人人享有的| 91精品三级在线观看| 久久这里只有精品19| 丰满少妇做爰视频| 日韩在线高清观看一区二区三区| 国产一区二区在线观看av| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 2022亚洲国产成人精品| 午夜91福利影院| 午夜影院在线不卡| 汤姆久久久久久久影院中文字幕| 美女内射精品一级片tv| 久久这里有精品视频免费| 欧美日韩成人在线一区二区| 成人无遮挡网站| 久久狼人影院| 只有这里有精品99| 精品久久久精品久久久| 国产精品国产av在线观看| 国产精品无大码| 毛片一级片免费看久久久久| 在线观看一区二区三区激情| 成人手机av| 啦啦啦中文免费视频观看日本| 男人舔女人的私密视频| 成人毛片a级毛片在线播放| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 久久99一区二区三区| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 国产女主播在线喷水免费视频网站| 亚洲精品国产色婷婷电影| 超碰97精品在线观看| 成人免费观看视频高清| 国国产精品蜜臀av免费| 欧美成人午夜免费资源| 久久免费观看电影| 美女福利国产在线| 久热这里只有精品99| 26uuu在线亚洲综合色| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 老司机亚洲免费影院| 国产成人午夜福利电影在线观看| 精品一区二区三区四区五区乱码 | 性高湖久久久久久久久免费观看| 亚洲综合色网址| 少妇 在线观看| 日韩,欧美,国产一区二区三区| 精品国产一区二区久久| 青春草国产在线视频| 成人亚洲精品一区在线观看| av天堂久久9| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 国产1区2区3区精品| 午夜影院在线不卡| 国产国语露脸激情在线看| 99久国产av精品国产电影| 午夜视频国产福利| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 一二三四中文在线观看免费高清| 青春草视频在线免费观看| 国产黄频视频在线观看| 国产精品久久久久成人av| 人妻 亚洲 视频| 国产一区二区三区av在线| 午夜91福利影院| 蜜桃在线观看..| 色婷婷av一区二区三区视频| 九色亚洲精品在线播放| 女人久久www免费人成看片| 久久久久视频综合| 超碰97精品在线观看| 99国产综合亚洲精品| 免费久久久久久久精品成人欧美视频 | 国产淫语在线视频| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩另类电影网站| 色网站视频免费| 中文字幕最新亚洲高清| 新久久久久国产一级毛片| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频 | 丝袜美足系列| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| 青春草亚洲视频在线观看| 久久精品国产a三级三级三级| 亚洲欧美日韩卡通动漫| 丁香六月天网| 两性夫妻黄色片 | 大香蕉久久网| 久久久久人妻精品一区果冻| 久久国产精品男人的天堂亚洲 | 久久久久久人妻| 国产成人精品无人区| 天美传媒精品一区二区| 久久婷婷青草| 少妇的丰满在线观看| 久久精品久久久久久久性| 亚洲性久久影院| 最新的欧美精品一区二区| 亚洲国产av影院在线观看| 亚洲色图综合在线观看| 晚上一个人看的免费电影| 亚洲av电影在线进入| 亚洲一级一片aⅴ在线观看| 久久精品国产综合久久久 | 国产熟女午夜一区二区三区| 久久人人爽av亚洲精品天堂| 成人二区视频| 亚洲久久久国产精品| 国产 一区精品| 久久综合国产亚洲精品| 久久精品久久久久久久性| 免费看光身美女| av福利片在线| 久久韩国三级中文字幕| 国产在线一区二区三区精| 黄色配什么色好看| 亚洲美女视频黄频| 大片免费播放器 马上看| 日韩电影二区| 精品国产一区二区久久| 成人二区视频| 国产永久视频网站| 在线 av 中文字幕| 香蕉丝袜av| 国产综合精华液| 成人综合一区亚洲| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区 | 国产在线免费精品| 欧美性感艳星| 久久国产精品男人的天堂亚洲 | 两个人免费观看高清视频| 日韩伦理黄色片| 九色亚洲精品在线播放| 亚洲第一区二区三区不卡| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 国产麻豆69| 啦啦啦啦在线视频资源| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 波野结衣二区三区在线| 天美传媒精品一区二区| 免费在线观看完整版高清| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 大香蕉久久成人网| 日韩 亚洲 欧美在线| 免费av不卡在线播放| 久久热在线av| 国产日韩欧美在线精品| 精品一区二区免费观看| 国产69精品久久久久777片| 22中文网久久字幕| 国产精品久久久久久精品电影小说| 少妇高潮的动态图| 久久人人爽av亚洲精品天堂| 欧美激情 高清一区二区三区| 亚洲国产欧美在线一区| 熟妇人妻不卡中文字幕| 久久精品久久久久久噜噜老黄| 99热这里只有是精品在线观看| 精品福利永久在线观看| 婷婷色综合www| 久久久久国产网址| 9色porny在线观看| 久久久欧美国产精品| 少妇的逼好多水| 新久久久久国产一级毛片| 69精品国产乱码久久久| 黄网站色视频无遮挡免费观看| 国产免费一级a男人的天堂| 9191精品国产免费久久| 国产成人精品在线电影| videossex国产| 精品酒店卫生间| 9色porny在线观看| 97超碰精品成人国产| 99久久中文字幕三级久久日本| 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 美女福利国产在线| 黄色一级大片看看| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 亚洲欧洲日产国产| 成年女人在线观看亚洲视频| xxx大片免费视频| 乱码一卡2卡4卡精品| 色婷婷av一区二区三区视频| 国产乱人偷精品视频| 69精品国产乱码久久久| 丝袜在线中文字幕| 香蕉国产在线看| 建设人人有责人人尽责人人享有的| 男女边摸边吃奶| 熟女人妻精品中文字幕| 美女大奶头黄色视频| 国内精品宾馆在线| 国产有黄有色有爽视频| 午夜91福利影院| 久久女婷五月综合色啪小说| 9191精品国产免费久久| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| 国产精品.久久久| 国产激情久久老熟女| 蜜桃国产av成人99| 国产精品久久久久久久电影| 日本爱情动作片www.在线观看| 日本欧美视频一区| 亚洲精品久久久久久婷婷小说| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 欧美bdsm另类| 欧美精品亚洲一区二区| 免费av不卡在线播放| 青青草视频在线视频观看| 十八禁高潮呻吟视频| 91午夜精品亚洲一区二区三区| 免费大片18禁| 亚洲精品一区蜜桃| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| 欧美97在线视频| 各种免费的搞黄视频| 久久精品国产鲁丝片午夜精品| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 亚洲精品一区蜜桃| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 制服人妻中文乱码| 亚洲成av片中文字幕在线观看 | 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 日韩欧美精品免费久久| 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 久久人妻熟女aⅴ| 大香蕉97超碰在线| 狠狠婷婷综合久久久久久88av| av国产久精品久网站免费入址| 不卡视频在线观看欧美| 国产成人精品婷婷| 精品人妻在线不人妻| 丰满乱子伦码专区| 午夜福利,免费看| 丰满迷人的少妇在线观看| kizo精华| 9色porny在线观看| 久久久久久久久久久免费av| 美国免费a级毛片| 色网站视频免费| 一本大道久久a久久精品| 亚洲av日韩在线播放| 久久久久精品性色| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 国产熟女午夜一区二区三区| 久久精品国产亚洲av天美| 中国三级夫妇交换| 精品国产一区二区三区四区第35| 精品久久国产蜜桃| 欧美激情国产日韩精品一区| 久久国产亚洲av麻豆专区| 欧美最新免费一区二区三区| 国产在视频线精品| 欧美精品人与动牲交sv欧美| 秋霞在线观看毛片| 欧美人与性动交α欧美精品济南到 | 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 又黄又爽又刺激的免费视频.| 国产成人精品婷婷| 人妻一区二区av| 亚洲,一卡二卡三卡| 成人免费观看视频高清| 99久国产av精品国产电影| 男的添女的下面高潮视频| a级毛色黄片| 亚洲熟女精品中文字幕| 精品亚洲乱码少妇综合久久| 高清av免费在线| 久久久精品免费免费高清| 久久影院123| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 一级毛片黄色毛片免费观看视频| 国产精品一区www在线观看| 99香蕉大伊视频| 欧美成人精品欧美一级黄| 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 日韩三级伦理在线观看| 国产又色又爽无遮挡免| 久久久久久久精品精品| 全区人妻精品视频| 欧美xxxx性猛交bbbb| 国产精品无大码| 免费黄网站久久成人精品| av又黄又爽大尺度在线免费看| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 伦理电影大哥的女人| 2021少妇久久久久久久久久久| 国产av精品麻豆| 美女福利国产在线| 99国产精品免费福利视频| 久久久精品94久久精品| 亚洲第一av免费看| 女人精品久久久久毛片| 中文字幕制服av| 街头女战士在线观看网站| 亚洲人与动物交配视频| 国产福利在线免费观看视频| 一本久久精品| 国产精品.久久久| 久久人人爽av亚洲精品天堂| 男女无遮挡免费网站观看| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| 日本黄大片高清| 亚洲婷婷狠狠爱综合网| 久久av网站| 国产精品欧美亚洲77777| 中文字幕免费在线视频6| 欧美精品一区二区免费开放| 国产精品久久久久久精品电影小说| 亚洲成色77777| 午夜福利视频精品| 免费在线观看完整版高清| 激情五月婷婷亚洲| 国产毛片在线视频| 色视频在线一区二区三区| 国产精品一区二区在线观看99| 久久久久精品性色| 哪个播放器可以免费观看大片| 国产高清三级在线| 国产亚洲最大av| www.av在线官网国产| 99久国产av精品国产电影| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 国产男女内射视频| 久久久久精品人妻al黑| 五月天丁香电影| 91aial.com中文字幕在线观看| 高清在线视频一区二区三区| av天堂久久9| 亚洲成色77777| 美女国产高潮福利片在线看| av免费观看日本| 欧美精品高潮呻吟av久久| 免费大片18禁| 你懂的网址亚洲精品在线观看| 国产精品一二三区在线看| 国产麻豆69| 精品人妻在线不人妻| 久久韩国三级中文字幕| 人成视频在线观看免费观看| 天天躁夜夜躁狠狠躁躁| 国产国拍精品亚洲av在线观看| 亚洲久久久国产精品| 国产在视频线精品| 只有这里有精品99| 午夜福利视频在线观看免费| 在线观看国产h片| 精品国产露脸久久av麻豆| 亚洲欧美日韩另类电影网站| 亚洲综合色惰| kizo精华| 中文字幕精品免费在线观看视频 | 国产精品蜜桃在线观看| 777米奇影视久久| 精品少妇黑人巨大在线播放| 国产老妇伦熟女老妇高清| 亚洲熟女精品中文字幕| 国产淫语在线视频| 亚洲 欧美一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲国产成人一精品久久久| xxx大片免费视频| 亚洲国产日韩一区二区| 久久久久网色| 欧美bdsm另类| 少妇的逼水好多| 嫩草影院入口| 这个男人来自地球电影免费观看 | 中文字幕制服av| 一级片'在线观看视频| 亚洲国产日韩一区二区| 亚洲国产色片| 亚洲国产av新网站| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 欧美日韩成人在线一区二区| 涩涩av久久男人的天堂| 制服人妻中文乱码| 香蕉丝袜av| 美女视频免费永久观看网站| 亚洲国产欧美在线一区| 看免费成人av毛片| 国产黄色视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 亚洲人成网站在线观看播放| 亚洲成人手机| 国产极品天堂在线| 日本91视频免费播放| 国产精品女同一区二区软件| 最近最新中文字幕大全免费视频 | 黑人高潮一二区| 欧美激情国产日韩精品一区| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 午夜免费男女啪啪视频观看| 一区二区三区乱码不卡18| 亚洲天堂av无毛| 成年动漫av网址| av国产久精品久网站免费入址| 蜜臀久久99精品久久宅男| 日本欧美视频一区| 中文字幕av电影在线播放| 亚洲一区二区三区欧美精品| videos熟女内射| 日本爱情动作片www.在线观看| 天天操日日干夜夜撸| 日日啪夜夜爽| 国产精品女同一区二区软件| 精品福利永久在线观看| av线在线观看网站| 在线观看美女被高潮喷水网站| 亚洲av日韩在线播放| av线在线观看网站| 丰满迷人的少妇在线观看| 制服丝袜香蕉在线| 韩国精品一区二区三区 | 老司机影院毛片| 性色av一级| 一级片'在线观看视频| 久久精品人人爽人人爽视色| 性色av一级| 国产亚洲欧美精品永久| 久久久国产精品麻豆| 国产精品一二三区在线看|