• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiplicative eccentricity resistance-distance of unicyclic graphs with a given parameter

    2024-01-04 01:18:30HongYunchaoMiaoLianying

    Hong Yunchao, Miao Lianying

    (School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China)

    Abstract:The multiplicative eccentricity resistance-distance ξ?R(G) of a graph G is the sum of the product the corresponding eccentricity of vertices and the resistance-distance between the pairs of vertices of all unordered pairs of vertices on the graph. In this paper, we use the transformation method to characterize the extremal graphs having the maximum, the second maximum, the minimum and the second minimum multiplicative eccentricity resistance-distance among n-vertex unicyclic graphs, respectively. Moreover,we characterize the extremal graphs having the maximum, the second maximum and the third maximum multiplicative eccentricity resistance-distance among n-vertex unicyclic graphs with given maximum degree ?, respectively.

    Keywords: resistance-distance, unicyclic graph,multiplicative eccentricity resistance-distance

    1 Introduction

    Throughout this paper, all considered graphs are simple and connected. LetG=(VG,EG) be a graph with vertex setVGand edge setEG.dG(x) is the degree of vertexxinG. The distancedG(x,y)between two verticesxandyofGis defined as the length of a shortest (x,y)-path inG. The eccentricityεG(x) (for simplicity,ε(x)) of a vertexxis the distance betweenxand a furthest vertex fromx. LetPn,CnandSnbe the path, the cycle and the star onnvertices, respectively. IfE0?E(G), we denote byG-E0the subgraph ofGobtained by deleting the edges inE0. IfE1is the subset of the edge set of the complement ofG,G+E1denotes the graph obtained fromGby adding the edges inE1. Similarly, ifW?V(G), we denote byG-Wthe subgraph ofGobtained by deleting the vertices ofWand the edges incident with them. For simplicity, we writeG-xy,G+xyandG-xinstead ofG-{xy},G+{xy} andG-{x}.

    In[1],Klein D J and Randi? Mintroduced a new distance function named resistancedistance in 1993,which is defined to be the effective resistanceRG(x,y)between verticesxandyinG. This distance has proven to have a number of interpretations and applications over a widely variety of fields[2-5]. There is a family of resistive descriptorsF(G) studied in mathematical chemistry, with the general formula

    whereRG(x,y)is the effective resistance between verticesxandyandfG(x,y)is some real function of the vertices.

    IffG(x,y)≡1, it is the well-known KirchhoffindexKf(G), proposed by Klein D J and Randi? M in [1].Kf(G) was defined by the sum of the resistance-distances of all pairs of vertices of a graphG.Kfv(G) was defined by the sum of the resistancedistance of vertexvto the other vertices in the graphG. This index has very nice purely mathematical and physical interpretations (for example, see [6]), and has been investigated extensively in mathematical, physical and chemical literatures, for more detail information the readers are referred to recent papers[7-10] and references therein.In [11], Chen Haiyan and Zhang Fuji introduced naturally an indexR?(G) named multiplicative degree-Kirchhoffindex from the relations between resistance-distance and the nomalized Laplacian spectrum. It is defined exactly by equation(1) when takingfG(x,y) =dG(x) ·dG(y). Comparing with this index, Gutman Ivan, Feng Linhua and Yu Guihai[12]proposed the additive degree-KirchhoffindexR+(G) which can also be obtained by lettingfG(x,y)=dG(x)+dG(y)in equation(1). Some interested properties and relations among these three Kirchhoffian indices are obtained,see[13-17]and references therein.

    Motivated by these works above,Li Shuchao and Wei Wei[18]defined the eccentricity resistance-distance sumξR(G) from equation(1) by takingfG(x,y) =ε(x)+ε(y).Some mathematical properties and extremal problems onξR(G) are considered. Further,Hong Yunchao et. al.[19]defined the multiplicative eccentricity resistance-distanceξ?R(G) from equation(1) by taking

    whereε(·) is the eccentricity of the corresponding vertex andRG(x,y) is the effective resistance between verticesxandy. Some mathematical properties and extremal problems onξ?R(G) are considered, see [20-21].

    In this paper, we concentrate still on unicyclic graphs. A graphGis called a unicyclic graph if it contains exactly one cycle. LetG=U(Ck;T1,T2,··· ,Tk) be the unicyclic graph withCk=v1v2···vkv1as the unique cycle inG, and for eachi(1 ≤i≤k), letTibe the component ofG-(V(Ck)-vi). Obviously,Tiis a tree.Denote |G| = |VG| for a graphG, then anyn-vertex unicyclic graphGwith a cycle onkvertices is of the formU(Ck;T1,T2,··· ,Tk), whereIn particular, ifTi=P|Ti|andviis one terminal vertex ofP|Ti|,then we denoteTiasP|Ti|for 1 ≤i≤k.Obviously, ifTiis trivial, thenTi=P1for 1 ≤i≤k.

    For convenience, letU(n,k) be the set of all unicyclic graphs onnvertices containing cycleCk,Skndenote the graph obtained from cycleCkby addingn-kpendant edges to one vertex ofCk,Pkndenote the graph obtained by identifying one end-vertex ofPn-k+1with any vertex ofCk,U(n)be the unicyclic graph withnvertices. LetPl-1be the path with the verticesv1,v2,··· ,vl-1, the graphT(l,i,1) be constructed fromPl-1by adding one pendant edge to the vertexvi(2 ≤i≤l-2), the unicyclic graphU(Ck;T(l,i,1))(k≥3,2 ≤i≤l-2,l+k=n+1) be the graph obtained from cycleCkby joiningv1ofT(l,i,1) to a vertex ofCk.

    We study some mathematical properties ofξ?R(G). As their applications, the extremal graphs with the maximum, the second maximum, the minimum and the second minimum multiplicative eccentricity resistance-distance among unicyclic graphs are characterized, respectively. Moreover, we characterize the extremal graphs of the maximum, the second maximum and the third maximum multiplicative eccentricity resistance-distance ofn-vertex unicyclic graphs with given maximum degree ?, respectively.

    The following lemma that will be used in the proof of our main results.

    Lemma 1.1[1]Letxbe a cut vertex ofGandu,vbe vertices belonging to different components ofG-x. ThenRG(u,v)=RG(u,x)+RG(x,v).

    Lemma 1.2[1]LetCkbe a cycle with lengthkandv∈Ck. Then

    Lemma 1.3[22]LetGbe a connected graph with a cut-vertexvsuch thatG1andG2are two connected subgraphs ofGhavingvas the only common vertex andV(G1)∪V(G2)=V(G). Letn1=|V(G1)|-1,n2=|V(G2)|-1. Then

    2 Some transformations and proofs

    In this section, we introduce some transformations which will increase or decreaseξ?R(G). For convenience, in the following of our context, for any two verticesx,yofG(resp.G′,G′′), letε(x) =εG(x) (resp.ε′(x) =εG′(x),ε′′(x) =εG′′(x)) andRxy=RG(x,y) (resp.R′xy=RG′(x,y),R′′xy=RG′′(x,y)).

    Lemma 2.1[20]Given a connected graphGwith a cut vertexuanddG(u)≥3.LetPk+1=uu1u2···ukandPt+1=uv1v2···vt(k≥t)be two pendant paths attaching atu, and setG′=G-vt-1vt+ukvt, thenξ?R(G′)>ξ?R(G).

    Given three disjoint connected graphsG1,G2and a pathP=vv1···vt-1vt, letu1∈VG1,u2∈VG2. Suppose thatHis the graph obtained fromG1andG2by identifyingu1andu2tou. We call this procedure an identification operation[22],which denoted by the formula (H,u) = (G1,u1)⊕(G2,u2). LetGbe a connected graph constructed by identifyingvinPanduinH, that is (G,u) = (H,u)⊕(P,v).LetG′be the graphs formed by the identification operation as follows:

    The graphsGandG′are depicted in Fig. 1.

    Fig. 1 Graphs G and G′ in Lemma 2.2

    Lemma 2.2[20]LetGandG′be the graphs defined above. Thenξ?R(G′)>ξ?R(G).

    Lemma 2.3[20]Letuandvbe two vertices inG1such that the distance betweenuandvis the diameter ofG. LetG,G′andG′′be the graphs formed by the identification operation as follows:

    Then

    (i) IfKfv(G1)≥Kfw(G1),ξ?R(G′)>ξ?R(G);

    (ii) IfKfu(G1)≥Kfw(G1),ξ?R(G′′)>ξ?R(G).

    Lemma 2.4[20]LetCk(k≥4) be an end cycle inG, anduk-3,uk-2,uk-1be three successive vertices lying inCk,as shown in Fig. 2. LetG′=G-uuk-1+uk-3uk-1,thenξ?R(G′)>ξ?R(G).

    Fig. 2 Graphs G and G′

    Lemma 2.5[19]LetHbe a connected graph andK1,p+1be a star with centerv.LetGbe the graph obtained fromHandK1,p+1by identifying a vertex ofH, sayu,with a pendant vertex of the star. LetG′be the graph obtained fromGby moving all the pendant edges fromvtou. Thenξ?R(G)≥ξ?R(G′), the equality holds if and only ifHis a trivial graph.

    Lemma 2.6[19]Letu(resp.v) be a vertex ofGsuch that there arep(resp.q)pendant verticesu1,u2,...,up(resp.v1,v2,...,vq) attached atu(resp.v). Let

    Then eitherξ?R(G)>ξ?R(G′) orξ?R(G)>ξ?R(G′′).

    LetCkbe a cycle withk-vertices(k≥3),Tibe a tree withi-vertices(i≥2) andT1,tbe a star with a center vertexv′. Letu,v∈Ckands∈Ti. LetG′andG′′be the graphs formed by the identification operation as follows:

    The graphsG′andG′′as shown in Fig. 3.

    Fig. 3 The graphs G′ and G′′ in Lemma 2.7

    Lemma 2.7LetG,G′,G′′be the graphs defined above, thenξ?R(G′)>ξ?R(G′′).

    ProofLetH=VTi{v} andW={v1,v2,··· ,vt}. Note that

    Hence, one hasVG′=VG′′=VG∪W, and

    This gives

    Therefore, it is easy to see that

    Further, we have

    Letx0be a vertex with the minimum eccentricity inVCkofG′′, that is, there isε′′(x0) =min{ε′′(x),x∈VCk}. Note thatξ?R(G′) -ξ?R(G′′) =ξ1+ξ2andv1∈W.Then we have

    Hence,ξ?R(G′)>ξ?R(G′′).

    Lemma 2.8Among all graphs inU(n,k)(n≥5,k≥4),thenξ?R(Skn)>ξ?R(Sk-1n).

    ProofLetG=Skn,G′=Sk-1nand (G,u) = (Ck,u)⊕(Sn-k+1,u), (G′,u) =(Ck-1,u)⊕(Sn-k+2,u). LetH=G-(Sn-k+1-u),H′=G′-(Sn-k+1-u). According to the construction ofSknand, it is easy to see thatε(x)≥ε′(x) for anyx∈VG.

    By Lemmas 1.2 and 1.3, we have

    Hence by a direct calculation, we have

    Therefore, it is easy to see thatξ?R(G)-ξ?R(G′)>0 fork≥8.

    Now we consider 4 ≤k≤7. Here we only showξ?R(G) >ξ?R(G′) fork= 4.Similarly,ξ?R(G)>ξ?R(G′) holds fork=5,6,7.

    Whenk=4,G′=S3n,G=S4n, we have

    So whenk=4,ξ?R(G)>ξ?R(G′).

    To sum up, we haveξ?R(Skn)>ξ?R(Sk-1n)(n≥5,k≥4).

    3 Main results

    In this section, we will determine the elements inU(n,k) with the maximum, the second maximum, the minimum and the second minimum multiplicative eccentricity resistance-distance by the transformations which we have obtained.

    3.1 Extremal unicyclic graph with the maximum and the second maximum ξ?R(G)-value

    Theorem 3.1LetG∈U(n,k) withn≥5, thenξ?R(G)≤ξ?R(P3n).

    ProofLetG=U(Ck;T1,T2,··· ,Tk) be a any unicyclic graph. By repeating Lemma 2.5,we transform all the pendant tree of each vertex on the cycle of the unicyclic graph into a pendant path, so get

    Take the largest diameter on the cycle of the unicyclic graph, determine its two endpoints,and by repeating Lemma 2.3 to transform the pendant path of other vertices on the cycle to the endpoints, respectively. By repeating Lemma 2.1, we transform all pendant paths at each endpoint into one path; By Lemma 2.2, connect one of the remaining two pendant path to the vertex of degree 1 of the other one. In each of these transformations, the multiplicative eccentricity resistance-distance is increasing,hence we haveξ?R(U(Ck;P|T1|,P|T2|,··· ,P|Tk|)) ≤ξ?R(Pkn). By Lemma 2.4, we haveξ?R(Pkn)≤ξ?R(P3n).

    It is easy to see that we haveξ?R(G)≤ξ?R(P3n).

    Theorem 3.2LetG∈U(n,k)-P3nwithn≥5, then

    ProofBy Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5, the graph inU(n,k) with the second maximum multiplicative eccentricity resistance-distance must be one of a graph in {U(C3;P1,P2,Pn-3),P4n,U(C3;T(n-2,n-4,1))} (as shown in Fig. 4).

    Fig. 4 The graphs U(C3;P1,P2,Pn-3),P4n and U(C3;T(n-2,n-4,1))

    For the transformation fromU(C3;P1,P2,Pn-3)toP4n,it is easy to see thatε(x)=ε′(x) for anyx∈VG. Therefore, we have

    LetH=U(C3;P1,P2,Pn-3)-(Pn-3-v1),H′=P4n-(Pn-3-v1). By Lemmas 1.2 and 1.3, we obtain

    Hence by a direct calculation, we have

    Therefore, it is easy to see thatξ?R(U(C3;P1,P2,Pn-3))-ξ?R(P4n)>0 forn≥5.

    So we haveξ?R(U(C3;P1,P2,Pn-3))>ξ?R(P4n)(n≥5).

    LetU(C3;P1,P2,Pn-3) =H0+u2vn-2, thenU(C3;T(n-2,n-4,1)) =H0+vn-4vn-2. It is obvious to see thatε(x)≥ε′′(x),Rxy=R′′xyfor any {x,y}?VH0andfor anyx∈VH0.

    Therefore, we obtain that

    Whennis even, we have

    Similarly, whennis odd, we still obtain that

    To sum up, we haveξ?R(G)≤ξ?R(U(C3;P1,P2,Pn-3))(n≥5).

    Corollary 3.1Among all graphs inU(n,k),P3nandU(C3;P1,P2,Pn-3) are the graphs with the maximum and the second maximum multiplicative eccentricity resistance-distance, respectively.

    3.2 Extremal unicyclic graph with the minimum and the second minimum ξ?R(G)-value

    Theorem 3.3LetGbe a unicyclic graph of ordern(n≥5), then we have, the equality holds if and only ifG=S3n.

    ProofAccording to Lemmas 2.3, 2.5, 2.6, 2.7 and 2.8, using the same method as Theorem 3.1, we have obtained the result thatξ?R(G)≥ξ?R(S3n).

    By a direct calculation, we have

    In what follows we determine the unique graph inU(n,k) having the second minimumξ?R(G)-value.

    Theorem 3.4LetG∈U(n,k)-S3n(n≥5), thenξ?R(G) ≥9n2-36n+25, the equality holds if and only ifG=S4n.

    ProofBy Lemmas 2.3, 2.5, 2.6, 2.7 and 2.8, the graph inU(n,k) with the second minimum multiplicative eccentricity resistance-distance must be one of a graph in {U?1,U?2,S4n} (as shown in Fig. 5).

    Fig. 5 The graphs U?1,U?2 and S4n

    By direct calculation, we have

    Sincen≥5, so we get

    Thenξ?R(U?1)>ξ?R(S4n),ξ?R(U?2)>ξ?R(S4n). Hence our result holds.

    Corollary 3.2Among all graphs inU(n,k)(n≥5),S3nandS4nare the graphs with the minimum and the second minimum multiplicative eccentricity resistance-distance,respectively.

    Corollary 3.3Among all graphs inU(n,k)(n≥5),ξ?R(S3n) ≤ξ?R(G) ≤ξ?R(P3n)holds.

    Corollary 3.4Letk0be a fixed positive integer andk0≥3, among all graphs inholds.

    4 The multiplicative eccentricity resistance-distance of unicyclic graphs with given maximum degree

    In this section, we determine the maximum multiplicative eccentricity resistancedistance ofn-vertex unicyclic graphs with maximum degree ?, and characterize the extremal graphs.

    For convenience, we employ the following notion. LetTn,?[23]be the tree onnvertex obtained from a pathPn-?+1and empty graphby joining one end-vertex ofPn-?+1with every of. Anddenote the set of the graphs obtained fromPkt(t≤n-1) by attachingn-tpendent edges to one vertex such that its degree achieves maximum degree ?among all vertices. It is obvious thatSnn=Pnn=Cn.

    LetGn,?be the set ofn-vertex graphs with maximum degree ?andU(n,k,?)be the set ofn-vertex unicyclic graphs with maximum degree ?, as we work with connected graphs only, the case ?= 1 becomes possible onlyn= 2. Similarly, for?=2 the only elements ofU(n,k,?)are the pathPnand the cycleCn. Thus,we may assume that 3 ≤?≤n-1 holds in the sequel. We start our proofs with a very simple lemma.

    Lemma 4.1Assume that the vertex of maximum degree belongs toV(Tk). Then

    ProofRepeating the transformation of Lemma 2.5, we have

    Similarly, it is obvious to see that

    And so on and so further, we get the conclusion that

    Then the result follows.

    Lemma 4.2LetG∈U(n,k,?),G?and assume that the vertex of maximum degree belongs toV(Tk). Thenξ?R(G)<ξ?R(H) for anyH∈

    ProofSuppose thatG0=U(Ck;T1,T2,··· ,Tk)has the maximum multiplicative resistance-distance amongU(n,k,?).

    Claim 1For eachi,Tiis a path withuias one of its end vertices.

    For eachi,W(Ti) is maximal if and only ifTiis a path and it is easy to observe thatWui(Ti) is maximal if and only ifTiis a path withuias one of its end vertices.Henceε(ui) andKfui(G) are going to increase. For anyG=U(Ck;T1,T2,··· ,Tk) ,we have

    Therefore, Claim 1 holds.

    Claim 2Ifk

    Suppose to the contrary that there exists at least two trees such that they all have more than one vertices. LetTiandTjbe two such trees. By Claim 1,TiandTjare both paths. Leta≠uiandb≠ujbe end vertices ofTiandTj, respectively. Without loss of generality, assume thatKfa(G0) ≥Kfb(G0). Letcbe the neighbor ofbandG′0=G0-cb+ab. Now we show thatξ?R(G′0)>ξ?R(G0).

    For any two verticesx,ydifferent fromb, letH=G-cb, thenG′=H+ab, we haveRxy=,ε′(x)>ε(x) for anyx,y∈VH. it is obvious to see that

    Let vertexx0be the vertex with the minimum eccentricity inHofG0, that is, there isε(x0)=min{ε(x):x∈VH}. Then

    SinceKfa(G0) ≥Kfb(G0),Rab0.

    It follows thatξ?R(G′0)>ξ?R(G0),it is contradict to the choose ofG0,which implies Claim 2.

    By Claims 1 and 2 yield Lemma 4.2, as desired.

    Lemma 4.3For anyG∈Gn,?, it holds thatξ?R(G) ≤ξ?R(Tn,?) with equality if and only ifG=Tn,?.

    ProofLetube the vertex with maximum degree ?, we consider the following three cases.

    Case 1IfGis tree, letTi(i= 1,2,··· ,?-1,?) be the component ofuandG=G(u;T1,T2,··· ,T?).

    By Lemma 2.5, we have

    Assume thatP|Tj|is the longest path, by repeating use Lemma 2.1, we have

    wherePmbe thej-th component path.

    SinceG(u;P2,··· ,P2,Pm,··· ,P2)∈Tn,?, thenξ?R(G)≤ξ?R(Tn,?)with equality if and only ifG=Tn,?.

    Case 2IfGis not tree, then there exists a cycle inG. Without loss of generality, assume that the vertex with maximum degree ?not in the cycle. By similar arguments as above, according to Lemmas 2.1, 2.4 and 2.5, we can easily getξ?R(G)≤ξ?R(G(u;P2,··· ,P2,P(C3),··· ,P2)),whereP(C3)be thej-th component path and the cycleC3lied in the this path.

    Since for any the graphGofn-vertex, we haveξ?R(G) ≤ξ?R(Pn). It is obvious to see that

    Therefore, we getξ?R(G)≤ξ?R(Tn,?).

    The same is true when there exists at least two cycles inG.

    Case 3IfGis not tree, then there is a cycle inGand the vertex with maximum degree ?in the cycle, we can prove it in the same method, and we will not repeat the statement here.

    To sum up, we obtained thatξ?R(G) ≤ξ?R(Tn,?) holds, the equality if and only ifG=Tn,?.

    According to Lemmas 4.1 and 4.3, the number of the maximum degree less values is greater, i.e. when only need to discuss only one of the maximum degree situation can be.

    Theorem 4.1LetG∈and 3 ≤k≤n,thenξ?R(G)≤ξ?R(),the equality holds if and only ifG=.

    ProofBy Lemma 4.3,ξ?R(G)(G∈) achieves maximum only ifGis one of two special graphs in(as shown in Fig. 6).

    LetU′(Ck,?)(U′′(Ck,?),respectively)be this kind of graph of(a)((b),respectively)in Fig. 4. By Lemma 2.5, it is obvious to see that

    LetG0=U′′(C3,?)-{vwi}+{uwi}(i= 1,2,··· ,?-3), where graphs,U′′(C3,?) andG0are depicted in Fig. 7.

    Fig. 7 The graphs ,U′′(C3,?) and G0

    By Lemma 2.6, we haveξ?R()>ξ?R(G0).

    LetH=U′′(C3,?)-{vwi}(i=1,2,··· ,?-4,?-3), then we haveH=G0-{uwi}(i=1,2,··· ,?-4,?-3). It is easy to see that

    Hence we get

    So we haveξ?R(G0)=ξ?R(U′′(C3,?)). We obtainξ?R(P3n,?)>ξ?R(U′′(C3,?)). Clearly,the resultξ?R(G)≤ξ?R() holds with the equality holds if and only if

    Theorem 4.2LetG∈U(n,k,?)-(n≥6), thenξ?R(G)≤ξ?R().

    ProofBy Lemmas 4.1, 4.2 and 4.3, the graph inU(n,k,?) with the second maximum multiplicative eccentricity resistance-distance must be one of a graph in(as shown in Fig. 8). Where let the pendant edges ofubeuwi(i=1,2,··· ,?-3) in. And let

    Fig. 8 The graphs ,and

    LetH=-(C4-u). For the transformation fromto, it is easy to see thatε′(x)=ε(x) for anyx∈VG,=Rxyfor any {x,y}?VH.

    Hence, we have

    Whenn-?is odd, we have

    Hence we haveη5> 0. Similarly, whenn-?is even, we still obtain thatη5> 0.Therefore, we obtain thatξ?R()-ξ?R() =η4+η5> 0. It is easily check thatξ?R()>ξ?R() forn≥6.

    LetH?=-(u2vn-?-u),then=H?+w1vn-?. For the transformation fromto, it is easy to see thatε?(x) =ε′(x) for anyx∈VG,=for any {x,y}?VH?.

    Hence we get

    So we getξ?R()>ξ?R()(n≥6).

    To sum up, we haveξ?R(G)≤ξ?R()(n≥6).

    By Theorem 4.2, we get maxCombining with Theorem 4.1, we have the following corollary.

    Corollary 4.1Among all graphs inU(n,k,?)(n≥6),,andthe graphs with the maximum,the second maximum and the third maximum multiplicative eccentricity resistance-distance, respectively.

    Above the extremal graphs with the maximum multiplicative eccentricity resistancedistance among the unicyclic graphs with fixed number of vertices and maximum degree is characterized. In the case of minimal values,the extremal graphs are difficult to characterize, to determine the minimum multiplicative eccentricity resistance-distance is also hard, hence this study will be a very challenge work.

    亚洲综合色网址| 一边摸一边抽搐一进一出视频| 久久久精品区二区三区| 午夜福利,免费看| 天堂中文最新版在线下载| 婷婷色综合大香蕉| 日日夜夜操网爽| 亚洲中文字幕日韩| 考比视频在线观看| 国产精品久久久久久人妻精品电影 | 老汉色∧v一级毛片| 欧美黑人精品巨大| 男女下面插进去视频免费观看| 色婷婷av一区二区三区视频| 亚洲成人手机| 久热爱精品视频在线9| 午夜影院在线不卡| 永久免费av网站大全| 免费不卡黄色视频| 夜夜骑夜夜射夜夜干| 日韩中文字幕欧美一区二区 | 国产福利在线免费观看视频| 老鸭窝网址在线观看| 国产一卡二卡三卡精品| 高清欧美精品videossex| 亚洲专区国产一区二区| 黄色 视频免费看| 国产成人系列免费观看| 国产午夜精品一二区理论片| 赤兔流量卡办理| kizo精华| 国产高清不卡午夜福利| 国产一区二区三区综合在线观看| www.999成人在线观看| 日本黄色日本黄色录像| 欧美日本中文国产一区发布| 色94色欧美一区二区| 成人亚洲精品一区在线观看| 看免费成人av毛片| 你懂的网址亚洲精品在线观看| 国产成人精品久久久久久| 欧美在线一区亚洲| 久久久亚洲精品成人影院| 大话2 男鬼变身卡| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲av国产电影网| 亚洲五月婷婷丁香| 中文欧美无线码| 亚洲欧美成人综合另类久久久| 亚洲av成人精品一二三区| 啦啦啦在线免费观看视频4| 蜜桃国产av成人99| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 亚洲中文字幕日韩| 国产欧美亚洲国产| 免费不卡黄色视频| 亚洲欧美中文字幕日韩二区| 91麻豆精品激情在线观看国产 | 久久天躁狠狠躁夜夜2o2o | 高清视频免费观看一区二区| 69精品国产乱码久久久| 丝袜美足系列| 精品亚洲成a人片在线观看| 国产一区二区激情短视频 | av在线播放精品| 欧美亚洲日本最大视频资源| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 久久 成人 亚洲| 伊人久久大香线蕉亚洲五| 岛国毛片在线播放| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美软件| 国产免费又黄又爽又色| 美女大奶头黄色视频| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 国产欧美亚洲国产| 精品国产一区二区久久| 免费在线观看视频国产中文字幕亚洲 | 自线自在国产av| 国产欧美日韩精品亚洲av| 欧美日韩视频精品一区| 丝袜美足系列| 国产野战对白在线观看| 狠狠婷婷综合久久久久久88av| 最新在线观看一区二区三区 | 久久鲁丝午夜福利片| 亚洲天堂av无毛| 亚洲精品av麻豆狂野| 在线亚洲精品国产二区图片欧美| 亚洲九九香蕉| 国产精品 欧美亚洲| 久久久久国产精品人妻一区二区| kizo精华| 精品一区二区三区四区五区乱码 | 中文字幕人妻丝袜一区二区| 久久这里只有精品19| 精品久久久精品久久久| 考比视频在线观看| 女警被强在线播放| 在线 av 中文字幕| 亚洲国产精品999| 午夜av观看不卡| 我的亚洲天堂| 男女午夜视频在线观看| 男女下面插进去视频免费观看| 黑人猛操日本美女一级片| 亚洲五月色婷婷综合| 宅男免费午夜| 青草久久国产| 91精品国产国语对白视频| 十八禁高潮呻吟视频| 51午夜福利影视在线观看| 日韩中文字幕视频在线看片| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 观看av在线不卡| 亚洲国产欧美网| 十八禁高潮呻吟视频| 久久精品国产亚洲av高清一级| 欧美国产精品一级二级三级| 久久久久久人人人人人| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| 热99国产精品久久久久久7| 人妻 亚洲 视频| 十八禁人妻一区二区| 一级毛片女人18水好多 | av网站在线播放免费| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 在线观看免费午夜福利视频| 在线 av 中文字幕| 国产在线视频一区二区| av网站在线播放免费| 国产日韩欧美视频二区| 精品久久久久久久毛片微露脸 | 搡老乐熟女国产| 每晚都被弄得嗷嗷叫到高潮| 永久免费av网站大全| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 在线观看一区二区三区激情| 亚洲五月婷婷丁香| 欧美人与性动交α欧美软件| 欧美老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 一二三四在线观看免费中文在| 欧美日韩综合久久久久久| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 一二三四社区在线视频社区8| 极品人妻少妇av视频| 国产免费视频播放在线视频| 80岁老熟妇乱子伦牲交| 一区二区av电影网| 久久久久国产精品人妻一区二区| 精品久久久久久久毛片微露脸 | 国产精品成人在线| 在线观看免费高清a一片| 涩涩av久久男人的天堂| 免费人妻精品一区二区三区视频| 一本久久精品| 亚洲久久久国产精品| 国产成人91sexporn| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 大片电影免费在线观看免费| 热re99久久精品国产66热6| 19禁男女啪啪无遮挡网站| 亚洲精品乱久久久久久| 飞空精品影院首页| 日韩av不卡免费在线播放| 亚洲 欧美一区二区三区| 精品亚洲成国产av| 欧美日韩视频精品一区| 精品福利观看| 久久女婷五月综合色啪小说| 2018国产大陆天天弄谢| 老汉色∧v一级毛片| 久久人妻福利社区极品人妻图片 | 欧美激情极品国产一区二区三区| 多毛熟女@视频| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| av一本久久久久| 纯流量卡能插随身wifi吗| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩高清在线视频 | 晚上一个人看的免费电影| 狠狠婷婷综合久久久久久88av| av一本久久久久| 好男人电影高清在线观看| 99国产精品一区二区蜜桃av | 国产精品一区二区在线观看99| 久久久久视频综合| 欧美成人精品欧美一级黄| 欧美激情高清一区二区三区| 一级毛片女人18水好多 | 丰满迷人的少妇在线观看| 嫩草影视91久久| 日韩人妻精品一区2区三区| 亚洲,一卡二卡三卡| 国产在线观看jvid| 又大又黄又爽视频免费| 午夜激情av网站| 国产精品九九99| 国产精品人妻久久久影院| 激情视频va一区二区三区| 国产高清不卡午夜福利| 黄色a级毛片大全视频| 涩涩av久久男人的天堂| av福利片在线| 亚洲欧美日韩另类电影网站| 亚洲欧美精品自产自拍| 国产免费视频播放在线视频| 亚洲第一青青草原| 午夜激情久久久久久久| 亚洲图色成人| 日本av免费视频播放| 国产精品久久久久成人av| 中文字幕人妻丝袜一区二区| www.熟女人妻精品国产| av在线app专区| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日韩伦理黄色片| 国产99久久九九免费精品| 日本五十路高清| 亚洲人成电影观看| a级毛片黄视频| 国产精品.久久久| 国产精品三级大全| 欧美av亚洲av综合av国产av| 日韩人妻精品一区2区三区| 中国国产av一级| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 国产免费福利视频在线观看| 一边亲一边摸免费视频| 国产在视频线精品| av在线老鸭窝| 亚洲欧美精品自产自拍| av网站在线播放免费| 好男人视频免费观看在线| 高清不卡的av网站| 亚洲专区国产一区二区| 国产亚洲一区二区精品| 尾随美女入室| 69精品国产乱码久久久| 欧美乱码精品一区二区三区| 波多野结衣av一区二区av| 大陆偷拍与自拍| 最黄视频免费看| 中文字幕高清在线视频| 午夜福利视频在线观看免费| 中文字幕人妻丝袜制服| 各种免费的搞黄视频| 美女国产高潮福利片在线看| 日韩精品免费视频一区二区三区| 国产精品av久久久久免费| 婷婷色综合大香蕉| 看免费av毛片| 国产成人欧美| www.av在线官网国产| 这个男人来自地球电影免费观看| 2018国产大陆天天弄谢| 一二三四在线观看免费中文在| 一区福利在线观看| 国产福利在线免费观看视频| 国产成人欧美在线观看 | 欧美在线黄色| 桃花免费在线播放| 成人国产一区最新在线观看 | 嫩草影视91久久| 成人手机av| 丝袜脚勾引网站| 国产高清不卡午夜福利| 中文字幕高清在线视频| 国产不卡av网站在线观看| 日本av免费视频播放| 91麻豆精品激情在线观看国产 | 亚洲熟女毛片儿| 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 日日夜夜操网爽| 一个人免费看片子| 欧美成狂野欧美在线观看| 大片免费播放器 马上看| 18禁观看日本| 欧美日韩亚洲综合一区二区三区_| 国产高清videossex| 国产亚洲一区二区精品| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影| 成年人免费黄色播放视频| 18禁黄网站禁片午夜丰满| 丰满少妇做爰视频| av视频免费观看在线观看| 国产一区二区三区av在线| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 久久人妻福利社区极品人妻图片 | 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 啦啦啦在线观看免费高清www| 国产亚洲av高清不卡| 国产在线免费精品| 2018国产大陆天天弄谢| 悠悠久久av| 国产成人精品久久久久久| 欧美精品av麻豆av| 人人妻,人人澡人人爽秒播 | www.熟女人妻精品国产| 18禁观看日本| 丝袜美腿诱惑在线| 成年女人毛片免费观看观看9 | 麻豆乱淫一区二区| 18在线观看网站| 亚洲欧美中文字幕日韩二区| av网站免费在线观看视频| 午夜福利影视在线免费观看| 免费观看人在逋| 精品少妇内射三级| 女性生殖器流出的白浆| 99国产精品一区二区三区| 最近中文字幕2019免费版| 脱女人内裤的视频| 国产在线免费精品| 中文字幕高清在线视频| www.av在线官网国产| 人人妻人人添人人爽欧美一区卜| 国产成人一区二区在线| 天堂8中文在线网| 1024香蕉在线观看| 久久热在线av| 99re6热这里在线精品视频| 亚洲精品国产色婷婷电影| 久久狼人影院| 啦啦啦在线观看免费高清www| 波多野结衣av一区二区av| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久| 操美女的视频在线观看| 亚洲少妇的诱惑av| 亚洲精品乱久久久久久| 日本欧美视频一区| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 亚洲综合色网址| 人人妻,人人澡人人爽秒播 | 精品第一国产精品| 激情视频va一区二区三区| 免费看不卡的av| 免费人妻精品一区二区三区视频| 看免费av毛片| 久久久久久人人人人人| 日本a在线网址| 亚洲 欧美一区二区三区| 99re6热这里在线精品视频| 青青草视频在线视频观看| 亚洲,欧美精品.| 中国国产av一级| 熟女av电影| 久久久久精品国产欧美久久久 | 十八禁网站网址无遮挡| av在线播放精品| 黄色视频不卡| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 欧美精品啪啪一区二区三区 | 国产成人影院久久av| 亚洲精品第二区| 亚洲精品自拍成人| 久热爱精品视频在线9| av网站免费在线观看视频| a 毛片基地| 男女边摸边吃奶| 秋霞在线观看毛片| 国产精品一国产av| 久久精品久久久久久久性| 欧美日韩成人在线一区二区| 老汉色∧v一级毛片| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 久久精品久久久久久噜噜老黄| 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| 亚洲伊人色综图| 性少妇av在线| 丝袜喷水一区| 一边亲一边摸免费视频| 在线观看免费视频网站a站| 国产精品欧美亚洲77777| 久久亚洲精品不卡| 欧美精品av麻豆av| 国产欧美日韩精品亚洲av| 国产av国产精品国产| 黄色视频不卡| 一区二区三区乱码不卡18| 久久人妻福利社区极品人妻图片 | 免费人妻精品一区二区三区视频| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| av线在线观看网站| 国产成人欧美在线观看 | 亚洲国产精品一区三区| www.999成人在线观看| 日日夜夜操网爽| 午夜福利免费观看在线| 亚洲欧美清纯卡通| 黄频高清免费视频| 精品福利观看| 久久九九热精品免费| 日韩中文字幕欧美一区二区 | 免费黄频网站在线观看国产| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 成人免费观看视频高清| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 99热全是精品| 免费在线观看黄色视频的| 精品亚洲乱码少妇综合久久| 啦啦啦在线观看免费高清www| 成人午夜精彩视频在线观看| 高潮久久久久久久久久久不卡| 国产在线视频一区二区| 咕卡用的链子| 国产女主播在线喷水免费视频网站| 久热爱精品视频在线9| 中文欧美无线码| 飞空精品影院首页| 国产97色在线日韩免费| 国产淫语在线视频| 青青草视频在线视频观看| 亚洲中文av在线| 99九九在线精品视频| 欧美激情高清一区二区三区| 亚洲欧美精品综合一区二区三区| 国产色视频综合| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频| 男人添女人高潮全过程视频| 久久影院123| 在线天堂中文资源库| 天天躁日日躁夜夜躁夜夜| www.999成人在线观看| 人人妻人人添人人爽欧美一区卜| 国产男女超爽视频在线观看| 老司机亚洲免费影院| 国产黄色免费在线视频| 久久久久久久国产电影| 大码成人一级视频| 亚洲视频免费观看视频| 啦啦啦中文免费视频观看日本| 国产高清不卡午夜福利| 777久久人妻少妇嫩草av网站| 青草久久国产| 日本五十路高清| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三 | 日日爽夜夜爽网站| 成年美女黄网站色视频大全免费| 一级a爱视频在线免费观看| 免费人妻精品一区二区三区视频| 亚洲图色成人| 久久久国产一区二区| 亚洲第一青青草原| netflix在线观看网站| 永久免费av网站大全| 久久久精品区二区三区| 日本wwww免费看| 精品视频人人做人人爽| 我的亚洲天堂| 中文字幕人妻丝袜制服| 亚洲熟女毛片儿| 亚洲欧洲国产日韩| 成年动漫av网址| 50天的宝宝边吃奶边哭怎么回事| 国产熟女欧美一区二区| 亚洲午夜精品一区,二区,三区| 汤姆久久久久久久影院中文字幕| 狠狠精品人妻久久久久久综合| 久久久久久亚洲精品国产蜜桃av| 两个人免费观看高清视频| 久久99热这里只频精品6学生| 久久人妻福利社区极品人妻图片 | 国产欧美日韩综合在线一区二区| 久久国产精品男人的天堂亚洲| 国产人伦9x9x在线观看| 久久女婷五月综合色啪小说| 国产精品一区二区精品视频观看| 欧美日韩一级在线毛片| 国产成人系列免费观看| 久久综合国产亚洲精品| 久久国产精品大桥未久av| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 国产深夜福利视频在线观看| 一边亲一边摸免费视频| 成年人免费黄色播放视频| 欧美 亚洲 国产 日韩一| 亚洲五月婷婷丁香| 精品亚洲成国产av| 精品第一国产精品| 人体艺术视频欧美日本| 亚洲欧美激情在线| 99热网站在线观看| 18禁国产床啪视频网站| 国产成人精品久久二区二区免费| 亚洲国产欧美一区二区综合| 伊人久久大香线蕉亚洲五| 国产一区亚洲一区在线观看| 中文字幕人妻丝袜一区二区| 2021少妇久久久久久久久久久| 久久精品亚洲av国产电影网| 女人高潮潮喷娇喘18禁视频| 久久久久精品国产欧美久久久 | 国产女主播在线喷水免费视频网站| 婷婷色av中文字幕| 久久久久视频综合| 精品少妇黑人巨大在线播放| 欧美国产精品va在线观看不卡| 制服诱惑二区| 国产亚洲av片在线观看秒播厂| 欧美大码av| 大陆偷拍与自拍| 亚洲欧美激情在线| 日韩大片免费观看网站| 人人妻人人爽人人添夜夜欢视频| 老司机深夜福利视频在线观看 | 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 久久久久久久大尺度免费视频| 高清av免费在线| 日本黄色日本黄色录像| 亚洲午夜精品一区,二区,三区| 精品熟女少妇八av免费久了| 午夜免费观看性视频| 国精品久久久久久国模美| 亚洲国产精品一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产中文字幕在线视频| 久久久国产精品麻豆| 一级a爱视频在线免费观看| 日本wwww免费看| 久久天堂一区二区三区四区| 咕卡用的链子| 中文欧美无线码| 国产日韩欧美在线精品| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看| 黄色 视频免费看| 一边亲一边摸免费视频| videosex国产| 亚洲欧美激情在线| 可以免费在线观看a视频的电影网站| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 日本午夜av视频| 国产主播在线观看一区二区 | 伊人亚洲综合成人网| 嫩草影视91久久| av天堂久久9| 肉色欧美久久久久久久蜜桃| 悠悠久久av| 男女边吃奶边做爰视频| 午夜福利免费观看在线| 亚洲熟女毛片儿| 大码成人一级视频| 美女高潮到喷水免费观看| 侵犯人妻中文字幕一二三四区| 七月丁香在线播放| 十八禁网站网址无遮挡| 精品福利观看| av片东京热男人的天堂| 中文字幕人妻丝袜一区二区| 曰老女人黄片| 一区二区av电影网| 国产欧美日韩一区二区三 | 亚洲精品第二区| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 久热爱精品视频在线9| 欧美黄色淫秽网站| 欧美日本中文国产一区发布| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品免费大片| 成人亚洲欧美一区二区av| 国产无遮挡羞羞视频在线观看| 亚洲综合色网址| 90打野战视频偷拍视频| 在线观看www视频免费| 中文精品一卡2卡3卡4更新| 日韩熟女老妇一区二区性免费视频| 欧美成人午夜精品| 成人国语在线视频| 老汉色av国产亚洲站长工具| 国产精品免费视频内射| 两人在一起打扑克的视频| 捣出白浆h1v1| 九色亚洲精品在线播放| 久久久久久亚洲精品国产蜜桃av| 亚洲国产日韩一区二区| 久久人人爽人人片av| 亚洲精品乱久久久久久| 国产精品.久久久|