摘要:研究R3上的一類Kirchhoff-Schrdinger-Poisson系統(tǒng)解的多重性.當非線性項在無窮遠處滿足漸近二次線性增長條件時,利用變分方法建立系統(tǒng)非平凡解的多重性結(jié)果.
關(guān)鍵詞:Kirchhoff-Schrdinger-Poisson系統(tǒng);變分法;漸近二次線性;多重性
中圖分類號:O 177.91""" 文獻標志碼:A""" 文章編號:1001-988Ⅹ(2024)05-0097-07
Multiplicity of solutions for an asymptotically
2-linear Kirchhoff-Schrdinger-Poisson system
SUN Xin, DUAN Yu, AN Yu-cheng
(College of Science,Guizhou University of Engineering Science,Bijie 551700,Guizhou,China)
Abstract:The multiplicity of solutions is discussed for Kirchhoff-Schrdinger-Poisson system in R3.When the nonlinearity satisfies asymptotically 2-linear at infinity,the multiplicity of nontrivial solutions to this problem is obtained via variational methods.
Key words:Kirchhoff-Schrdinger-Poisson system;variational method;asymptotically 2-linear;multiplicity
近年來,Kirchhoff-Schrdinger-Poisson系統(tǒng)
-a+b∫R3u2dxΔu+V(x)u+
μu=g(x,u), x∈R3,
-Δ=μu2, x∈R3
的研究引起了眾多學者的關(guān)注[1-8].文獻[9-13]研究了分數(shù)階Kirchhoff-Schrdinger-Poisson系統(tǒng)解的存在性和多重性,受此啟發(fā),本文考慮Kirchhoff-Schrdinger-Poisson系統(tǒng)
1+λ∫R3(u2+u2)dx
(-Δu+u)+
u=f(u)+K(x)us-2u, x∈R3,
-Δ=u2, x∈R3,(1)
其中1lt;slt;2,λgt;0是一個參數(shù).文獻[14]在非線性項次線性增長條件下,利用Kajikiya建立的對稱山路定理研究了系統(tǒng)(1)無窮多極小能量解的存在性;文獻[15]在非線性項超三次增長條件下,利用截斷方法研究了帶有擾動項的系統(tǒng)(1)的兩個徑向解的存在性;文獻[16]在非線性項滿足特殊凹凸性條件下,利用Nehari流形方法研究系統(tǒng)(1)的兩個非平凡解的存在性.據(jù)我們所知,具有漸近二次非線性項的系統(tǒng)(1)解的多重性研究暫時還沒有結(jié)果.本文在非線性項f漸近二次線性增長條件下,利用變分法給出了系統(tǒng)(1)非平凡解的多重性結(jié)果,所得結(jié)論完善了已有文獻的相關(guān)結(jié)果.
假設(shè)非線性項滿足下列條件:
(C1)0≤K(x)∈L2/(2-s)(R3), 1lt;slt;2;
(C2)存在非空開集ΩR3,使得對任意的x∈Ω,K(x)gt;0;
(C3)f∈C(R,R),lim|t|→0f(t)t=0;
(C4)存在常數(shù)l∈2258πS32π35/3,+∞滿足
lim|t|→+∞f(t)t2=l,其中
S=infu∈D1,2(R3)\{0}∫R3u2dx∫R3u6dx1/3;
(C5)f(-t)=-f(t), t∈R.
注1 與已有文獻非線性項的假設(shè)不同之處是,本文非線性項在無窮遠處滿足漸近二次線性增長條件,三個非平凡解及無窮多解的存在性結(jié)果可視為已有文獻相關(guān)結(jié)果的補充.
1 預(yù)備知識
設(shè)H1(R3):={u∈L2(R3):u∈L2(R3)},其內(nèi)積和范數(shù)定義分別定義為
u,v=∫R3(u·v+uv)dx,
u:=u,u1/2.
顯然對任意的2≤p≤6,嵌入H1(R3)Lp(R3)是連續(xù)的.故對任意的2≤p≤6,存在Spgt;0,使得
up≤Spu, u∈H1(R3).(2)
令
H:=H1r(R3)={u∈H1(R3):u(x)=u(x)},
則由文獻[17]推論1.26知,對任意的2lt;slt;2*=6,嵌入HLs(R3)是緊的.
對任意的u∈H1(R3),由Lax-Milgram定理知,存在唯一的u∈D1,2(R3),滿足-Δ=u2.又u具有如下性質(zhì):
引理1[18] (i) u≥0, u∈H1(R3);
(ii)存在C0gt;0使得
∫R3uu2dx≤C0u4, u∈H1(R3);
(iii)tu=t2u, tgt;0, u∈H1(R3);
(iv)若在H1(R3)中,unu,則在D1,2(R3)中,unn;
(v)若un是徑向函數(shù),則un也是徑向函數(shù).
問題(1)對應(yīng)的能量泛函為
Iλ,K(u)=12u2+14λu4+14∫R3uu2dx-
∫R3F(u)dx-1s∫R3K(x)usdx,
其中F(t)=∫t0f(s)ds.由假設(shè)易知,Iλ,K∈C1(H,R),且對任意的u,v∈H,有
I′λ,K(u),v=(1+λu2)×
∫R3(u·v+uv)dx+
∫R3uuvdx-∫R3f(u)vdx-
∫R3K(x)us-2uvdx.
引理2[19] 設(shè)X是一個Banach空間,I∈C1(X,R)是偶泛函、下方有界且滿足(PS)條件,I(0)=0.若對任意的k∈N,存在有限維子空間Xk及ρkgt;0使得supXk∩SρkIlt;0,其中Sρ={u∈X:u=ρ},則I有一列臨界值cklt;0且滿足ck→0,k→∞.
本文常數(shù)Ci在不同段落表示不同的常數(shù).當K=0時,記Iλ,K(u)=Iλ,0(u);
當λ=0時,記Iλ,K(u)=I0,K(u);
當λ=0,K=0時,
記Iλ,K(u)=I0,0(u).
BR={x∈R3:xlt;R}.
令{ei}∞i=1為空間H的一組正交基,記
Xi=Rei,Yk=ki=1Xi,
Zk=∞i=k+1Xi,k∈N.
2 主要結(jié)果
引理3 設(shè)條件(C1),(C3)和(C4)成立,則Iλ,K(u)在H中是下方有界的.
證明 由條件(C3),(C4)可知,對任意的ε∈(0,1/2),存在Cεgt;0,使得對任意的t∈R,有
f(t)≤εt+Cεt2,(3)
從而
F(t)≤ε2t2+Cε3t3, t∈R.(4)
結(jié)合(2)式、(4)式、條件(C1)及引理1可知
Iλ,K(u)=12u2+14λu4+14∫R3uu2dx-
∫R3F(u)dx-1s∫R3K(x)usdx≥
14u2+14λu4-S33Cε3u3-
1sK2/(2-s)Ss2us.(5)
這說明在空間H中,泛函Iλ,K(u)是強制的.故在空間H中,Iλ,K是下方有界的." 】
引理4 設(shè)條件條件(C1),(C3)和(C4)成立,則Iλ,K(u)滿足(PS)條件.
證明 設(shè){un}H是泛函Iλ,K的任一(PS)序列,即
Iλ,K(un)有界,I′λ,K(un)→0,n→∞.(6)
由引理3知,序列{un}是有界的.因為{un}是有界的,且Sobolev嵌入HLp(R3)(p∈(2,6))是緊嵌入,所以存在{un}的一個子列(不失一般性仍記之為{un})和u∈H使得
unu弱收斂于H;
un→u強收斂于Lp(R3),p∈(2,6);
un→u a.e.于R3.(7)
下面證明un→u強收斂于H.
由(3)式、{un}的有界性,以及Hlder不等式和Sobolev不等式可得
∫R3f(un)(un-u)dx≤∫R3f(un)un-udx≤
εun2un-u2+Cεun23un-u3≤
εC1+CεC2un-u3.
根據(jù)(7)式得
∫R3f(un)(un-u)dx→0, n→∞.(8)
由(7)式、{un}的有界性及Hlder不等式知
∫R3unun(un-u)dx≤
∫R3unun(un-u)dx≤
un6un12/5un-u12/5=o(1).(9)
由(7)式可知
uns-2un(un-u)→0, a.e. x∈R3.
由于
∫R3(uns-2un(un-u))2/sdx≤
un2(s-1)/s2un-u2/s2≤
C3un(s-1)2/sun-u2/slt;+∞,
故uns-2un(un-u)在L2/s(R3)空間中是有界的.從而存在{uns-2un(un-u)}的一個子列(不失一般性仍記此子列為{uns-2un(un-u)}),使得在L2/s(R3)空間中,
uns-2un(un-u)0.
結(jié)合條件(C1)可知
∫R3K(x)uns-2un(un-u)dx→0, n→∞.(10)
結(jié)合(6)式及(8)~(10)式可得
(1+λun2)un,un-u=
I′λ,K(un),un-u-
∫R3unun(un-u)dx+
∫R3K(x)uns-2un(un-u)dx+
∫R3f(un)(un-u)dx→0, n→∞,
即un,un-u→0,n→∞.易知u,un-u→0,n→∞.
故un-u,un-u→0,n→∞.即un→u強收斂于H." 】
引理5 設(shè)條件(C3),(C4)成立,則泛函Iλ,0(u)滿足山路結(jié)構(gòu):
(i)存在αgt;0,ρgt;0使得Iλ,0(u)‖u‖=ρ≥α;
(ii)存在λ*gt;0及e∈H滿足egt;ρ,使得對任意的λ∈(0,λ*),有Iλ,0(e)lt;0.
證明 (i) 由(5)式知,對充分小的ε∈(0,1/2),有
Iλ,0(u)≥14u2-S33Cε3u3.
令
g(t)=14-S33Cε3t, t≥0,
則存在ρgt;0使得g(ρ)gt;0.令α:=g(ρ)ρ2,則αgt;0且Iλ,0(u)‖u‖=ρ≥αgt;0.
(ii)令R=8πSν0332π35/3gt;0,其中
ν0:=3πS32π35/3lt;
258πS32π35/3
是某一給定的常數(shù).定義
ωR(x)=1R, x≤R;
1R2-xR, x∈(R,2R];
0, xgt;2R.
則ωR∈H1r(R3),且容易驗證
∫R3ωR(x)2dx=
∫Rlt;|x|≤2R1R2-xR2dx=
28π3R,(11)
∫R3ωR(x)3dx=∫|x|≤R1R3dx+
∫Rlt;|x|≤2R1R2-xR3dx≥
∫|x|≤R1R3dx=4π3,(12)
ωR(x)412/5=∫|x|≤R1R12/5dx+
∫Rlt;|x|≤2R1R2-xR12/5dx5/3≤
∫|x|≤2R1R12/5dx5/3=32π35/3R.(13)
令z(x)=t2ωR(tx),則由Fatou引理,條件(C4)及(11)~(13)式可知
limt→+∞I0,0(t)z3=
limt→+∞1t3
12z2-
∫R3F(z)dx+
14∫R3zz2dx=
12∫R3ωR2dx+14∫R3ωRω2Rdx-
limt→+∞∫R3F(t2ωR)t2ωR3ωR3dx≤
14π3R+14SωR(x)412/5-
∫R3limt→+∞F(t2ωR)t2ωR3ωR3dx≤
14π3R+14S32π35/3R-l3∫R3ωR3dxlt;
14π3R+14S32π35/3R-
132258πS32π35/3∫R3ωR3dx≤
14π3R+14S32π35/3R-4π3ν0≤
14π3R-2π3ν0=-2π3Rlt;0.
因為
z(x)2=t2ωR(tx)2=
t3∫R3ωR2dx+t∫R3ω2Rdx,
所以存在t0gt;0,使得t20ωR(t0x)2gt;ρ,且I0,0(t20ωR(t0x))lt;0.令e(x):=t20ωR(t0x),則egt;ρ且I0,0(e)lt;0.由于當λ→0+時,Iλ,0(e)→I0,0(e),故存在λ*gt;0,使得當λ∈(0,λ*)時,有Iλ,0(e)lt;0." 】
引理6 設(shè)條件(C1),(C3)和(C4)成立,則泛函Iλ,K(u)滿足山路結(jié)構(gòu):
(i)存在α1gt;0,ρgt;ρ1gt;0及k1gt;0使得當K2/(2-s)lt;k1時,Iλ,K(u)‖u‖=ρ1≥α1gt;0,其中ρ已由引理5給出;
(ii)存在λ*gt;0及e∈H滿足egt;ρ1,使得對任意的λ∈(0,λ*),有Iλ,K(e)lt;0.
證明 (i) 由(5)式知,對充分小的ε∈(0,1/2),有
Iλ,K(u)≥14u2-S33Cε3u3-
1sK2/(2-s)Ss2us.
令
γ(t)=14t2-s-S33Cε3t3-s, t≥0,
則取充分小的ρ1gt;0滿足ρ1lt;ρ,使得γ(ρ1)gt;0.
令k1:=s2Ss2γ(ρ1),α1:=12γ(ρ1)ρs1,則k1gt;0,α1gt;0
且當K2/(2-s)lt;k1時,
Iλ,K(u)‖u‖=ρ1≥α1gt;0.
(ii)由條件(C1)知,Iλ,K(u)≤Iλ,0.類似于引理5(ii)的證明易證結(jié)論成立." 】
引理7 設(shè)條件(C1),(C3)和(C4)成立,則泛函Iλ,K(u)滿足:
(i)存在常數(shù)αgt;0,ρgt;0,使得
Iλ,KBρ∩Zk≥α;
(ii)對任意的有限維子空間H存在R=R()gt;0,使得Iλ,K\BR≤0.
證明 (i) 在(4)式中取ε=ε0為區(qū)間(0,1/2)的某一給定常數(shù),則存在Cε0gt;0滿足
F(u)≤ε02u2+Cε03u3.(14)
令βk:=supu∈Zk,‖u‖=1up,2lt;plt;6,則βk→0,k→∞.因為1lt;slt;2,所以存在R0gt;1使得當u≥R0時,有
1sK2/(2-s)Ss2us≤18u2.(15)
由(14)~(15)式可知,任取u∈Zk,則當u≥R0時,有
Iλ,K(u)=12u2+14λu4+14∫R3uu2dx-
∫R3F(u)dx-1s∫R3K(x)usdx≥
14u2-Cε03u33-1sK2/(2-s)S22us≥
18u2-Cε03β3ku33.
令ρ=14β3kCε0,α=124ρ2,則ρgt;0,αgt;0,且當k→∞時ρ→∞.從而存在k0gt;1使得當kgt;k0時,ρ≥R0.故當kgt;k0,u∈Zk,u=ρ時,Iλ,K(u)≥α=124ρ2.即Iλ,KBρ∩Zk≥α.
(ii)對任意給定的u∈H\{0},令
h(t)=t-2u(t-1x)2-1=
1t3∫R3u2dx+
1t∫R3u2dx-1, tgt;0.
顯然,h(t)是單調(diào)遞減的且limt→+∞h(t)=-1,limt→0+h(t)=+∞.
從而對任意的u∈H\{0},存在唯一的T:=(u)gt;0滿足h(T)=0.這意味著由h(t)=0可在空間H\{0}定義一個泛函T=(u).定義(0)=0,則易知泛函T=(u)是連續(xù)的且(u)→+∞(u→+∞).由h(t)的定義知,對任意的u∈H\{0},存在v(x)=T-2u(T-1x)∈H滿足v=1,即
u(x)=T2v(Tx)∈H1(R3),v=1.(16)
因為有限維空間上任意兩個范數(shù)是等價的,所以對任意的u∈H,存在常數(shù)Csgt;0使得us≥Csu,s∈[2,6].故對任意的u∈H,由(16)式、條件(C1)及引理1可得
Iλ,K(u)=12u2+14λu4+
14∫R3uu2dx-
∫R3F(u)dx-1s∫R3K(x)usdx≤
12C22u22+14C42λu42+
C04C42u42-∫R3F(u)dx=
T2C22∫R3v2dx+T2(λ+C0)4C42×
∫R3v2dx2-1T3∫R3F(T2v)dx≤
T2C22+T2(λ+C0)4C42-1T3∫R3F(T2v)dx=
T312C22T2+λ+C04C42T-1T6∫R3F(T2v)dx.(17)
記
Φ(T):=12C22T2+λ+C04C42T-1T6∫R3F(T2v)dx.
注意到v≠0,結(jié)合條件(C4)知,當T→+∞時,F(xiàn)(T2v)T6v3→l3關(guān)于x∈R3幾乎處處成立,從而當T→+∞時,有
limT→+∞Φ(T)≤-1T6∫R3limT→+∞F(T2v)T2v3dx=
-l3∫R3v3dxlt;0.(18)
由于當u→+∞時,T=(u)→+∞,因此結(jié)合(17)和(18)式可知
lim‖u‖→+∞Iλ,K(u)≤limT→+∞T3Φ(T)=-∞.
故存在R=R()gt;0使得對任意的u∈,u≥R時,有Iλ,K(u)lt;0,即Iλ,K\BR≤0." 】
定理1 若條件(C1)成立,則存在Λ*gt;0及k*gt;0,使得對任意的λ∈(0,Λ*),當K2/(2-s)lt;k*時,問題(1)至少存在3個非平凡解.
證明 分四步完成證明.
(i)證明問題(1)存在一個具有正能量的山路解.由引理6知,Iλ,K具有山路結(jié)構(gòu);再由引理4知,Iλ,K滿足(PS)條件,故由山路定理(見文獻[20]定理2.2)知,問題(1)存在一個非平凡解u1∈H且Iλ,K(u1)gt;0.
(ii)證明問題(1)存在一個具有負能量的全局極小解.由引理3知,在空間H中,Iλ,K是下方有界的,故可定義其下確界:d:=infHIλ,K.由引理6知,dlt;0.再由引理4知,Iλ,K滿足(PS)條件.故由文獻[20]中的定理2.7知,d是泛函Iλ,K的一個臨界值,即存在u2∈H滿足Iλ,K(u2)=dlt;0,使得u2是泛函Iλ,K的一個非零臨界點.因此,問題(1)存在一個負能量的全局極小解.
(iii)證明問題(1)存在一個具有負能量的局部極小解.根據(jù)引理6,給定ρ1gt;0,令
ρ1={u∈H:u≤ρ1},
Bρ1={u∈H:u=ρ1},
則當K2/(2-s)lt;k1時,有
Iλ,KBρ1gt;0.(19)
顯然在ρ1中,Iλ,K是弱下半連續(xù)的且下方有界.定義c1:=inf{Iλ,K(u):u∈ρ1},則c1gt;-∞.由條件(C2),取v∈C∞0(Ω),使得
1s∫R3K(x)vsdxgt;0.
從而結(jié)合(4)式及1lt;slt;2知,當tgt;0充分小時,有
Iλ,K(tv)=12tv2+14λtv4+
14∫R3tv(tv)2dx-∫R3F(tv)dx-
1s∫R3K(x)tvsdx≤
t22v2+λt44v4+t44∫R3vv2dx+
εS22t22v2+CεS33t33v3-
tss∫R3K(x)vsdxlt;0,
故c1lt;0.由(19)式、引理4及Ekeland變分原理知,存在u3∈ρ1使得Iλ,K(u3)=c1lt;0且I′λ,K(u3)=0.即u3是Iλ,K的一個具有負能量的局部極小解.
(iv)證明u1,u2,u3互不相同,即問題(1)有3個不同的解.
因為Iλ,K(u1)gt;0gt;Iλ,K(u2),Iλ,K(u1)gt;0gt;Iλ,K(u3),
所以u1≠u2,u1≠u3.受文獻[21]定理4.1證明的啟發(fā),下面通過證明dlt;c1來說明u2u3.由引理3的證明過程易知,Iλ,0(u)在空間H中是下方有界的,故可定義其下確界:cλ:=infHIλ,0;由引理5知,cλ=infHIλ,0lt;0;再由引理4的證明過程易知,
Iλ,0滿足(PS)條件.故由文獻[20]定理2.7知,cλ是泛函Iλ,0的一個臨界值,即存在v∈H滿足Iλ,0(v)=cλ使得v是泛函Iλ,0的一個非零臨界點.由引理5的證明過程知,存在ρgt;ρ1使得對任意的u∈Bρ\{0},Iλ,0(u)gt;0且
infu∈BρIλ,0(u)=0.由c1:=inf{Iλ,K(u):u∈ρ1}知,當K2/(2-s)→0時c1→0.因此存在k2gt;0使得當K2/(2-s)lt;k2時,cλlt;c1.又
Iλ,K(v)=Iλ,0(v)-1s∫R3K(x)vsdx≤
Iλ,0(v)=cλ,
故d=Iλ,K(u2)=infHIλ,K≤Iλ,K(v)≤cλ.
令k*:=min{k1,k2},Λ*=min{λ*,λ*},
則當K2/(2-s)lt;k*,λlt;Λ*時,
有d≤cλlt;c1,即u2u3." 】
定理2 若條件(C1)~(C5)成立,則對任意的λgt;0,問題(1)有一列負能量解
證明 由條件(C5)知,Iλ,K是偶泛函;由引理3知,Iλ,K在空間H中是下方有界的;再由引理4知,Iλ,K滿足(PS)條件.由引理2,只需證明:存在有限維子空間Xk及ρkgt;0,使得
supXk∩SρkIλ,Klt;0.
事實上,對任意k∈N,取k個線性無關(guān)的函數(shù)e1,e2,…,ek∈C∞0(Ω),定義Xk:=span{e1,e2,…,ek}.
因為對任意的x∈Ω,K(x)gt;0,所以在子空間Xk上可定義一個等價范數(shù)
us,K:=∫R3K(x)usdx1/s.
由于有限維空間Xk上的各種范數(shù)是等價的,故對任意的u∈Xk,有
Iλ,K(u)=12u2+14λu4+14∫R3uu2dx-
∫R3F(u)dx-1s∫R3K(x)usdx≤
12u2+λ4u4+C04u4+
εS222u2+CεS333u3-1suss,K.(20)
因為1lt;slt;2,所以由(20)式知,存在充分小的ρk∈(0,1)滿足Iλ,K(u)‖u‖=ρklt;0,從而supXk∩SρkIλ,Klt;0. "】
定理3 若條件(C1),(C3)~(C5)成立,則對任意的λgt;0,問題(1)有一列高能量解.
證明 由條件(C5)知,泛函Iλ,K是偶的;結(jié)合引理4及引理7知,能量泛函Iλ,K滿足對稱山路定理(見文獻[20]定理9.12)的條件.因此Iλ,K有一列趨于+∞的臨界值,即問題(1)具有一列高能量解." 】
參考文獻:
[1] LIU F X,WANG S L.Positive solutions of Schrdinger-Kirchhoff-Poisson system without compact condition[J].Bound Value Probl,2017,156:1.
[2] WANG Y,ZHANG Z.Ground state solutions for Kirchhoff-Schrdinger-Poisson system with sign-changing potentials[J].Bullet Malays Math Sci Soc,2021,44(4):2319.
[3] WANG D B,LI T J,HAO X N.Least-energy""nbsp;" sign-changing solutions for Kirchhoff-Schrdin-ger-Poisson systems in" [J].Bound Value Probl,2019,75:1.
[4] ZHANG J L,WANG D B.Existence of least energy nodal solution for Kirchhoff-Schrdinger-Poisson system with potential vanishing[J].Bound Value Probl,2020,111:1.
[5] CHE G F,CHEN H B.Existence and multiplicity of solutions for Kirchhoff-Schrdinger-Poisson" system with concave and convex nonlinearities[J].J Korean Math Soc,2020,57(6):1551.
[6]" QIAN A,ZHANG M M.Ground state sign-changing solutions for a class of" Schrdinger-Poisson-Kirchhoff type problems with a critical nonlinearity in" [J].J Korean Math Soc,2021,58(5):1181.
[7] LIU C G,ZHANG H B. Ground state and nodal solutions for critical Kirchhoff-Schrdinger-Poisson systems with an asymptotically 3-linear growth nonlinearity[J].Bound Value Probl,2020,133:1.
[8] CHE G F,CHEN H B.Existence and multiplicity of positive solutions for Kirchhoff-Schrdinger-Poisson system with critical growth[J].Racsam Rev R Acad A,2020,114(2):1.
[9] XIANG M Q,WANG F L.Fractional Schrdinger-Poisson-Kirchhoff type systems involving critical nonlinearities[J].Nonlinear Anal,2017,164:1.
[10] De ALBUQUERQUE J C,CLEMENTE R,F(xiàn)ERRAZ D.Existence of infinitely many small solutions for sublinear fractional Kirchhoff-Sch-dinger-Poisson systems[J].Electron J Differ Eq,2019,2019(13):1.
[11] LI W,RADULESCU V D,ZHANG B L.Infinitely many solutions for fractional Kirchhoff-Schrdinger-Poisson systems[J].J Math Phys,2019,60(1):011506.
[12] LIU C G,ZHANG H B.Ground state and nodal solutions for fractional Schrdinger-Maxwell-Kirchhoff systems with pure critical growth non linearity[J].Commun Pur Appl Anal,2021,20(2):817.
[13] AMBROSIO V.An existence result for a fractional Kirchhoff-Schrdinger-Poisson system[J].Z Angew Math Phys,2018,69(30):483.
[14] ZHAO G L,ZHU X L,LI Y H.Existence of infinitely many solutions to a class of Kirchhoff-Schrdinger-Poisson system[J].Appl Math Compu,2015,256:572.
[15] SHI H X.Positive solutions for a class of nonhomogeneous Kirchhoff-Schrdinger-Poisson systems[J].Bound Value Probl,2019,139:1.
[16] BAI Y C.Multiplicity results for a class of Kirchhoff-Schrdinger-Poisson system involving sign-changing weight functions[J].J Funct Space,2019,2019(2):6059459.
[17] WILLEM M.Minimax Theorems[M].Boston:Springer,1996.
[18] AZZOLLINI A,D’AVENIA P,POMPONIO A.On the Schrdinger-Maxwell equations under the effect of a general nonlinear term[J].Ann Inst Henri Poincare Anal Non Lineaire,2010,27(2):779.
[19] WANG Z Q.Nonlinear boundary value problems with concave nonlinearitiesnear the origin[J].Nonlinear Differ Eq Appl,2001,8:15.
[20] RABINOWITZ P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].CBMS Reg Conf,Ser Math,New York:American Mathematical Soc,1986.
[21] SUN J T,CHEN Y H,WU T F.On the indefinite Kirchhoff type equations with local sublinearity and linearity[J].Appl Anal,2017,96(5):827.
(責任編輯 馬宇鴻)