摘 要:【目的】綜合評價桂西北干熱河谷典型森林類型土壤質(zhì)量,以期為干熱河谷區(qū)域森林經(jīng)營管理和資源可持續(xù)利用提供科學(xué)參考?!痉椒ā恳怨鹞鞅备蔁岷庸攘謪^(qū)內(nèi)的常綠落葉闊葉混交林、落葉闊葉次生林、落葉闊葉人工林和針葉人工純林4種典型林地為研究對象,測定其土壤物理、化學(xué)和生物學(xué)指標(biāo)共14個,運用主成分分析和最小數(shù)據(jù)集法構(gòu)建質(zhì)量評價最小數(shù)據(jù)集,通過加權(quán)綜合指數(shù)法開展土壤質(zhì)量綜合評價?!窘Y(jié)果】1)針葉人工純林土壤化學(xué)養(yǎng)分和蔗糖酶活性顯著低于闊葉林,闊葉人工林土壤性質(zhì)與次生林無顯著差異,總體上桂西北干熱河谷林區(qū)土壤呈干旱缺磷的特征;2)篩選出含水率、全磷和全氮構(gòu)建最小數(shù)據(jù)集,可以解釋全數(shù)據(jù)集質(zhì)量指標(biāo)的77%,能系統(tǒng)有效地評價研究區(qū)內(nèi)土壤質(zhì)量;權(quán)重排序為含水率(0.364)>全磷(0.340)>全氮(0.296),含水率和全磷是影響土壤質(zhì)量的主要指標(biāo);3)不同林型土壤質(zhì)量指數(shù)排序為常綠落葉闊葉混交林(0.618)>落葉闊葉人工林(0.598)>落葉闊葉次生林(0.473)>針葉人工純林(0.282),針葉人工純林土壤質(zhì)量顯著最低(P<0.05)。【結(jié)論】針葉人工林土壤質(zhì)量顯著低于闊葉林,含水率和全磷含量是限制干熱河谷林區(qū)土壤質(zhì)量的關(guān)鍵因素。
關(guān)鍵詞:干熱河谷;主成分分析;最小數(shù)據(jù)集法;土壤質(zhì)量評價
中圖分類號:S714.8 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-923X(2024)06-0156-09
基金項目:廣西科技計劃項目(桂科AB21220026);廣西重點研發(fā)計劃(2023AB26024);廣西林業(yè)科技項目(桂林科研[2022ZC]第29號);廣西自籌經(jīng)費林業(yè)科技項目(桂林科研[2022ZC]第105號)。
Comprehensive evaluation of soil quality of typical forests in dry-hot valley of northwest Guangxi
ZHONG Ping1, LU Zhifeng2, WEI Shuoxing3, HUANG Ling2, GAO Feng3, WANG Zhihui3, CEN Zuozhou2, WANG Guangjun1
(1. College of Life and Environmental Sciences, Central South University of Forestry Technology, Changsha 410004, Hunan, China; 2. Guangxi State-owned Yachang Forest Farm, Baise 533099, Guangxi, China; 3. Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China)
Abstract:【Objective】This study comprehensively evaluated the soil quality of typical forest types in the dry-hot valley of northwest Guangxi, aiming to provide scientific parameters for the management of forested areas and sustainable development of forest resources in this region.【Method】Four typical forest types (evergreen and deciduous broad-leaved mixed forest, deciduous broad-leaved secondary forest, deciduous broad-leaved plantation and pure coniferous plantation) in the dry-hot valley of Northwest Guangxi were selected for the study. Fourteen physical, chemical, and biological soil indicators were measured. The minimum dataset for quality assessment was constructed using principal component analysis and the minimum dataset method. Soil quality comprehensive assessment was conducted using a weighted composite index method.【Result】1) The soil chemical nutrients and sucrase activities of pure coniferous plantations were significantly lower than those of broad-leaved forests, and there was no significant difference between the soil properties of broadleaved plantations and those of secondary forests; 2) The minimum data set of water content, total phosphorus and total nitrogen was screened out to construct the minimum data set, which could explain 77% of the total data quality index, and could effectively and systematically evaluate the soil quality in the study area. The weights were water content (0.364)>total phosphorus (0.340)>total nitrogen (0.296), highlighting moisture content and total phosphorus as the primary indicators influencing soil quality; 3) The soil quality index ranking across different forest types is as follows: evergreen and deciduous broad-leaved mixed forest (0.618)>deciduous broadleaved plantation (0.598)>deciduous broad-leaved secondary forest (0.473)>pure coniferous plantation (0.282). The soil quality of coniferous plantations is significantly the lowest (P<0.05).【Conclusion】The soil quality of coniferous plantations is lower than that of broad-leaved forests. The water content and total phosphorus levels emerge as crucial factors limiting soil quality in the dry-hot valley forested areas.
Keywords: dry-hot valley; principal component analysis; minimum dataset method; soil quality evaluation
干熱河谷是我國西南特殊的地理單元和重要生態(tài)脆弱區(qū),受季風(fēng)氣候和西南暖濕氣流及深切山谷地形的交錯影響,具有高溫干熱、季節(jié)性干旱明顯的典型環(huán)境特征[1-2]。準(zhǔn)確評價土壤質(zhì)量和識別主要限制因素,對干熱河谷脆弱森林生態(tài)系統(tǒng)恢復(fù)和森林資源可持續(xù)利用具有重要意義。干熱河谷由于氣候干熱、土壤流失嚴(yán)重、植被恢復(fù)困難等生態(tài)環(huán)境問題[3-4],加上人為干擾的影響,已成為我國生態(tài)嚴(yán)重退化和造林極為困難的典型脆弱區(qū)[5]。植被恢復(fù)是干熱河谷生態(tài)環(huán)境重建的基礎(chǔ),而土壤質(zhì)量及演化趨勢是植被恢復(fù)與重建的關(guān)鍵[6-7]。盡管在樹種遴選、植物配置、造林技術(shù)方案等方面開展了許多工作[8],干熱河谷植被退化趨勢得到初步遏制,但仍存在立地困難、生產(chǎn)力低、生態(tài)系統(tǒng)功能退化等諸多問題,這可能與忽視了其土壤質(zhì)量水平有關(guān)。
土壤是植物生長發(fā)育的場所,是森林的重要組成部分。土壤質(zhì)量是土壤維持植物生長、提高植被生產(chǎn)力、維持森林生態(tài)系統(tǒng)功能及可持續(xù)發(fā)展的能力[9-10]。采用土壤物理、化學(xué)和生物學(xué)性質(zhì)進(jìn)行土壤質(zhì)量綜合評價已成為全球可持續(xù)發(fā)展的重要內(nèi)容[11-12]。已有許多學(xué)者對東北林區(qū)[13]、華北林地[14]、黃河三角洲濕地[15]、西北草地[16]、黃土高原[12]及亞熱帶森林[17-18]土壤質(zhì)量評價開展了研究,但關(guān)于干熱河谷森林土壤質(zhì)量綜合評價的研究相對較少。以往的研究主要集中于干熱河谷不同土地利用方式或植被恢復(fù)對土壤物理、化學(xué)性質(zhì)的影響[19-20],對干熱河谷次生林和人工林土壤質(zhì)量水平和限制因素的綜合分析評價較為缺乏。
以桂西北干熱河谷林區(qū)內(nèi)常綠落葉闊葉混交林、落葉闊葉次生林、落葉闊葉人工林和針葉人工純林4種典型林地為研究對象,分析不同林型土壤理化性質(zhì)特征,綜合評價研究區(qū)典型森林土壤質(zhì)量,以期為干熱河谷區(qū)域森林經(jīng)營管理和資源可持續(xù)利用提供科學(xué)參考。
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)為廣西壯族自治區(qū)國有雅長林場典型干熱河谷林區(qū)(106o18′E~110°16′,24o56′~24o59′N),位于廣西西北部,西臨南盤江,北靠紅水河。地形為高山峽谷,山高坡陡谷深,海拔375~1 970.9 m。成土母巖為砂巖、砂頁巖和石灰?guī)r,土層較薄,厚度為40~60 cm,礫石含量30%~70%。氣候干熱,光熱資源充足、降水季節(jié)分布不均。年均降水量約1 051.7 mm,雨季集中在5—8月,占全年降水總量的80%以上,9月至翌年4月為旱季,年蒸發(fā)量1 484.7 mm。具有明顯的季節(jié)性干旱和降水少、蒸散率高的干熱河谷氣候特征[21]。隨著全球氣候變暖,近年研究區(qū)內(nèi)階段性氣象干旱頻發(fā)。
1.2 試驗設(shè)計
選取林區(qū)內(nèi)白櫟-雷公青岡次生林(Quercus fabri-Quercus hui secondary forest)、麻櫟Quercus acutissima次生林、香椿Toona sinensis人工林和馬尾松Pinus massoniana人工林4種典型森林土壤為研究對象,每種林型布設(shè)4個25 m×25 m重復(fù)樣地。樣地內(nèi)每木檢尺(3 cm起測),調(diào)查記錄樣地海拔、坡度、坡向、人為干擾等林分基本信息。
白櫟-青岡次生林和麻櫟次生林為20世紀(jì)90年代封育形成的天然次生林,長年無人為干擾。香椿林和馬尾松林均為1996年造林,造林當(dāng)年適當(dāng)施肥,之后無施肥,造林后連續(xù)撫育3 a,間伐1次,至樣地布設(shè)采樣時約有10 a未間伐和撫育。
1.3 樣品采集與測定
2023年2月7—11日進(jìn)行土壤樣品采集,每個樣方五點取樣采集0~15 cm土壤樣品。至采樣前,連續(xù)天晴5 d以上,連續(xù)約150 d不曾下雨下雪。除環(huán)刀土外,每個樣方的同層土壤樣品充分混合,風(fēng)干過篩后用于化學(xué)性質(zhì)測定。參照《土壤農(nóng)化分析》[22]和《土壤微生物研究原理與方法》[23]相關(guān)要求測定土壤物理化學(xué)性質(zhì)和酶活性。
采用環(huán)刀土烘干法測定土壤含水率、容重和孔隙度;上海雷磁PHS-3C酸度計測定土壤pH值;重鉻酸鉀-水合加熱法測定有機碳;半微量凱氏定氮法測定全氮;凱氏定氮儀堿解蒸餾法測定堿解氮;鉬銻抗比色法測定全磷;火焰光度計測定全鉀和速效鉀;電感耦合等離子體質(zhì)譜儀測定鈣含量;分光光度法測定土壤脲酶、蔗糖酶和酸性磷酸酶活性。
1.4 土壤質(zhì)量評價
綜合選取反映土壤物理、化學(xué)和生物學(xué)性質(zhì)的指標(biāo)共14項,運用主成分分析和相關(guān)性分析構(gòu)建質(zhì)量評價全數(shù)據(jù)集,基于PCA分析、指標(biāo)Norm值及指標(biāo)間相關(guān)性[12,24-25]構(gòu)建最小數(shù)據(jù)集。采用隸屬度和權(quán)重加權(quán)求和計算全數(shù)據(jù)集土壤質(zhì)量綜合指數(shù)和最小數(shù)據(jù)集土壤質(zhì)量指數(shù)[25]。按等距法將土壤質(zhì)量指數(shù)劃分為低(0~0.2)、較低(0.2~0.4)、中(0.4~0.6)、較高(0.6~0.8)和高(0.8~1.0)質(zhì)量5個評價等級。
1.5 數(shù)據(jù)處理
土壤性質(zhì)和土壤質(zhì)量指數(shù)采用單因素方差分析法,分析不同森林類型間的差異(平均值±標(biāo)準(zhǔn)差,P<0.05);全數(shù)據(jù)集和最小數(shù)據(jù)集土壤質(zhì)量指數(shù)進(jìn)行Pearson相關(guān)性分析,驗證最小數(shù)據(jù)集的評價效果。
試驗數(shù)據(jù)處理、分析和圖形繪制分別采用Excel 2021、SPSS 26.0和R4.1.3軟件[27]。
2 結(jié)果與分析
2.1 桂西北干熱河谷不同森林類型土壤性質(zhì)特征
由表2可知,不同森林類型的土壤含水率、容重和孔隙度無顯著差異。研究區(qū)內(nèi)土壤含水率(7.72%±0.30%)低于10%,水分匱乏,十分干旱。土壤容重(1.32±0.02 g·cm-3)和總孔隙度(59.84%±0.86%)適宜,與全國土壤容重平均水平基本一致[28]。
由表3可知,研究區(qū)內(nèi)森林土壤pH值呈弱酸性(5.7±0.2),麻櫟次生林土壤pH值最低(4.3±0.2),顯著低于其他林分(P<0.05)。土壤有機碳和全磷在林型間差異不顯著。全氮、速效鉀在白櫟-青岡次生林、麻櫟次生林和香椿人工林間無顯著性差異,均在馬尾松人工林土壤中顯著最低。土壤堿解氮在麻櫟次生林中顯著最高(161.86±29.41 mg·kg-1,P<0.05),白櫟-青岡次生林、香椿人工林和馬尾松人工林間無顯著性差異。香椿人工林全鉀含量最高(10.12±1.81 g·kg-1),次生林次之,馬尾松人工林含量最低(6.06±0.23 g·kg-1)。白櫟-青岡、麻櫟次生林土壤中鈣含量顯著高于香椿和馬尾松人工林土壤,區(qū)域內(nèi)森林土壤鈣含量為51.5±14.27 mg·kg-1,為低鈣土壤。
由表4可知,土壤脲酶和酸性磷酸酶活性分別為0.31~0.86和0.15~1.51 mg·g-1·d-1,在林型間無顯著性差異。土壤蔗糖酶活性為0.91~42.35 mg·g-1·d-1,在麻櫟次生林與白櫟-青岡次生林、馬尾松人工林間差異顯著(P<0.05)。綜上,pH值、全氮、堿解氮、全鉀、速效鉀、鈣、蔗糖酶活性在4個森林類型間存在顯著差異,其他指標(biāo)在森林類型間無顯著差異。針葉人工純林土壤化學(xué)養(yǎng)分和蔗糖酶活性顯著低于闊葉林土壤。
2.2 桂西北干熱河谷森林土壤最小數(shù)據(jù)集構(gòu)建
全數(shù)據(jù)集的主成分分析結(jié)果(表5)表明,特征值≥1的3個主成分方差累計貢獻(xiàn)率達(dá)78.59%,構(gòu)建的全數(shù)據(jù)集較好地解釋了研究區(qū)內(nèi)土壤質(zhì)量變異。依據(jù)分組方法(表5和圖1),有機碳、全氮、堿解氮、全鉀、速效鉀、蔗糖酶活性為一組,含水率和全磷為一組。對比組內(nèi)指標(biāo)Norm值(表5)及指標(biāo)間相關(guān)性大?。▓D1),篩選出全氮(第1組)、含水率(第2組)和全磷(第2組)共3個指標(biāo)構(gòu)建本研究的質(zhì)量評價最小數(shù)據(jù)集。與最初考慮的14個指標(biāo)相比,指標(biāo)篩選過濾率達(dá)78.57%;與全數(shù)據(jù)集的8個指標(biāo)相比,指標(biāo)篩選過濾率達(dá)62.50%。說明主成分分析結(jié)合最小數(shù)據(jù)集法有效地避免了指標(biāo)間信息冗余對質(zhì)量評價結(jié)果的影響。
2.3 桂西北干熱河谷森林土壤質(zhì)量綜合評價
由圖2可以看出,最小數(shù)據(jù)集質(zhì)量指數(shù)與全數(shù)據(jù)集質(zhì)量指數(shù)呈極其顯著正相關(guān)(r=0.77,P<0.001),最小數(shù)據(jù)集對研究區(qū)內(nèi)土壤質(zhì)量解釋率達(dá)77%,構(gòu)建的最小數(shù)據(jù)集評價指標(biāo)體系可以替代全數(shù)據(jù)集內(nèi)評價指標(biāo)準(zhǔn)確表征研究區(qū)森林土壤質(zhì)量。由圖3可以看出,最小數(shù)據(jù)集內(nèi)各指標(biāo)權(quán)重系數(shù)表現(xiàn)為含水率(0.364)>全磷(0.340)>全氮(0.296),含水率和全磷對土壤質(zhì)量存在較高貢獻(xiàn)率,可能是影響研究區(qū)土壤質(zhì)量的主要指標(biāo)。
綜合評價結(jié)果(圖4)表明,研究區(qū)內(nèi)典型森林類型土壤質(zhì)量指數(shù)為0.211~0.872,平均土壤質(zhì)量中等(0.493),不同森林類型土壤質(zhì)量排序為白櫟-青岡次生林(0.618)>香椿人工林(0.598)>麻櫟次生林(0.473)>馬尾松人工林(0.282)。根據(jù)土壤質(zhì)量分級標(biāo)準(zhǔn),白櫟-青岡次生林土壤質(zhì)量較高,香椿人工林、麻櫟次生林土壤質(zhì)量中等,馬尾松人工林土壤質(zhì)量較低。白櫟-青岡次生林、香椿人工林、麻櫟次生林土壤質(zhì)量無顯著性差異,馬尾松人工林土壤質(zhì)量顯著低于白櫟-青岡次生林和香椿人工林(P<0.05)。研究結(jié)果表明,針葉人工純林土壤質(zhì)量顯著低于落葉闊葉林和常綠落葉闊葉混交林,而闊葉人工林土壤質(zhì)量與次生林無顯著差異。
3 討 論
指標(biāo)選取和綜合評價模型的合理構(gòu)建是土壤質(zhì)量評價的關(guān)鍵。不同評價方法的指標(biāo)權(quán)重計算和評價側(cè)重點不同,評價結(jié)果和反映的意義不同[29]。主成分分析結(jié)合最小數(shù)據(jù)集法能解決數(shù)據(jù)冗余問題,從較多指標(biāo)中更有效地提取對土壤質(zhì)量有重要影響的因素。崔雪等[30]運用主成分分析和最小數(shù)據(jù)集法基于8項土壤理化指標(biāo)篩選出包含土壤有機質(zhì)、pH值和有效磷3項指標(biāo)評價天然針闊混交林的土壤質(zhì)量;王淑琴等[12]運用主成分分析和最小數(shù)據(jù)集法基于21項土壤理化生指標(biāo)篩選出包含容重、全氮、速效磷、脲酶和真菌多樣性指數(shù)等6項指標(biāo)的最小數(shù)據(jù)集,較客觀、系統(tǒng)地評價了黃土高原紫花苜蓿人工草地土壤質(zhì)量情況。本研究以桂西北干熱河谷區(qū)典型林分土壤為對象,基于涵蓋了土壤物理、化學(xué)和土壤酶活性的14項指標(biāo),通過主成分分析和相關(guān)性分析法篩選構(gòu)建了土壤含水率、有機碳、全氮、堿解氮、全磷、全鉀、速效鉀和蔗糖酶活性等8個指標(biāo)的全數(shù)據(jù)集,進(jìn)一步通過最小數(shù)據(jù)集法構(gòu)建包含含水率、全氮和全磷3項指標(biāo)的最小數(shù)據(jù)集評價體系。這與前人的評價指標(biāo)體系基本一致[12,30],可較全面、系統(tǒng)、客觀地評價桂西北干熱河谷森林土壤質(zhì)量。
本研究中,土壤酶活性未進(jìn)入最小數(shù)據(jù)集評價體系,可能是由于研究區(qū)土壤質(zhì)量受微生物和土壤呼吸作用的影響相對較小。土壤含水率對土壤質(zhì)量貢獻(xiàn)最大,這與該地區(qū)高溫少雨的氣象性干旱環(huán)境有著密切聯(lián)系。4個林地的容重、孔隙結(jié)構(gòu)適宜,由于河谷干熱氣候?qū)е峦寥篮畤?yán)重虧缺,水分的限制也會降低土壤有效性養(yǎng)分的形成[31],成為限制該區(qū)土壤質(zhì)量的關(guān)鍵因素。氮、磷、鉀作為植物生長的必需元素是土壤質(zhì)量評價中的重要因子,在以往大量研究中被頻繁納入評價指標(biāo)體系。根據(jù)全國第2次土壤普查分類標(biāo)準(zhǔn)[32],研究區(qū)內(nèi)4種林地速效鉀含量均處于3級中上水平與2級高水平之間,鉀素供應(yīng)水平較高;4種林地全氮含量處于3級中上至1級極高水平;堿解氮含量除馬尾松林處于5級極低水平外,其他林地均處于3級中上至1級極高水平;氮素供應(yīng)水平在馬尾松林與其他闊葉林地間存在較大變異,氮素供應(yīng)可能對土壤質(zhì)量有明顯影響;全磷含量均處于5級低水平,潛在供磷能力較差,是限制研究區(qū)林地質(zhì)量的另一關(guān)鍵因素。因此,全磷和全氮進(jìn)入本研究的評價指標(biāo)體系,而全鉀和速效鉀未被納入最小數(shù)據(jù)集。研究區(qū)內(nèi)林地土壤呈“干旱缺磷”的特征,且含水率、全磷對土壤質(zhì)量存在較高貢獻(xiàn)率,因此含水率和全磷是限制研究區(qū)森林土壤質(zhì)量的主要因素。建議經(jīng)營管理時保留間伐撫育剩余物,或添加生物炭覆蓋提高林地保水保肥能力,以延緩氣象性干旱對土壤水分的影響。固氮樹種混交種植有利于土壤氮、磷養(yǎng)分的積累和轉(zhuǎn)化[33-34],建議森林經(jīng)營和人工造林時適當(dāng)引入鄉(xiāng)土固氮樹種以維持和改善研究區(qū)土壤質(zhì)量。
評價結(jié)果表明,桂北干熱河谷林區(qū)內(nèi)針葉人工純林土壤質(zhì)量顯著低于落葉闊葉林和常綠落葉闊葉混交林,而闊葉人工林土壤質(zhì)量與次生林無顯著差異,這與前人研究結(jié)果一致。袁星明等[17]研究報道南亞熱帶闊葉人工林土壤質(zhì)量顯著優(yōu)于針葉純林;呂瑞恒等[35]研究發(fā)現(xiàn)蒙古櫟天然次生林土壤質(zhì)量優(yōu)于油松和落葉松人工林;馮嘉儀等[29]研究發(fā)現(xiàn)華南地區(qū)馬尾松林土壤質(zhì)量顯著低于闊葉混交林。土壤養(yǎng)分是影響土壤質(zhì)量的主要因素,受到植物凋落物性質(zhì)和數(shù)量的顯著影響[36],馬尾松人工林樹種組成和地上枯落物種類單一,由于松針角質(zhì)層發(fā)達(dá)、難分解物質(zhì)含量高[37],凋落物具有較高C/N[38],往往比闊葉落葉喬木(白櫟、麻櫟、香椿等)的落葉分解慢,所以土壤養(yǎng)分相對含量低。此外,馬尾松林雖與香椿同年造林,但馬尾松生長更快,養(yǎng)分需求量大且酶活性較低、地被層分解歸還緩慢,引起土壤堿解氮、磷等養(yǎng)分虧缺,評價結(jié)果處于較低水平。香椿人工林經(jīng)過適宜的人工管理,林分內(nèi)物種豐富,香椿落葉易分解、根系發(fā)達(dá),水解性酶活性較高,對土壤有機碳、全磷、全鉀等養(yǎng)分的積累具有明顯正向作用[39],土壤質(zhì)量處于較高水平。天然次生林接近該地區(qū)的頂極群落,樹種組成豐富、群落結(jié)構(gòu)復(fù)雜,優(yōu)勢樹種為落葉闊葉喬木(白櫟、麻櫟等),枯枝落葉多且分解速度快,具有較好的養(yǎng)分歸還和養(yǎng)分積蓄能力[29,40],因此土壤質(zhì)量較高。這驗證了馮嘉儀等[29]、潘嘉雯等[38]、秦娟等[41]的研究,闊葉混交及針闊混交是比針葉純林更為適宜的林地利用方式?;旖煌ㄟ^較高的物種豐富度和根系豐富度(深淺不一、交叉相錯、根際微生物),為土壤有機質(zhì)積累提供豐富的物質(zhì)來源并加快微生物分解活動,顯著增強林地養(yǎng)分循環(huán),改善土壤質(zhì)量[18,42-43]。因此,建議在干熱河谷森林經(jīng)營過程中應(yīng)加強對現(xiàn)有闊葉混交林的保育和管理,引入適宜樹種開展針葉純林的闊葉化改造。
本研究基于桂西北干熱河谷4種典型森林類型土壤分析其物理、化學(xué)和酶活性特征并進(jìn)行質(zhì)量綜合評價,僅僅是對研究區(qū)內(nèi)森林土壤質(zhì)量水平和限制因素的初步探究,今后可以進(jìn)一步分析干熱河谷氣候?qū)ν寥佬再|(zhì)和質(zhì)量影響的時空尺度效應(yīng),并基于群落功能性狀深入揭示干熱氣候區(qū)林地利用方式對植物-土壤生態(tài)反饋過程的影響機制。
4 結(jié) 論
1)森林類型對土壤物理性質(zhì)及有機碳、全磷、脲酶、酸性磷酸酶活性的影響不顯著,對pH值、全氮、堿解氮、全鉀、速效鉀、鈣和蔗糖酶活性的影響顯著。針葉人工純林土壤化學(xué)指標(biāo)和蔗糖酶活性顯著低于闊葉林,闊葉人工林土壤性質(zhì)與次生林土壤性質(zhì)無顯著差異。桂西北干熱河谷林區(qū)土壤呈干旱缺磷的特征。
2)基于主成分分析和最小數(shù)據(jù)集法,篩選出含水率、全氮、全磷構(gòu)建了研究區(qū)土壤質(zhì)量評價的最小數(shù)據(jù)集,可以解釋全數(shù)據(jù)集質(zhì)量指標(biāo)的77%,該最小數(shù)據(jù)集指標(biāo)能有效替代全數(shù)據(jù)集評價桂西北干熱河谷區(qū)森林土壤質(zhì)量。最小數(shù)據(jù)集內(nèi)指標(biāo)貢獻(xiàn)率排序為含水率(0.364)>全磷(0.340)>全氮(0.296),含水率、全磷是研究區(qū)森林土壤質(zhì)量的主要限制性因素。
3)不同林型土壤質(zhì)量指數(shù)排序為常綠落葉闊葉混交林(0.618)>落葉闊葉人工林(0.598)>落葉闊葉次生林(0.473)>針葉人工純林(0.282),針葉人工純林土壤質(zhì)量顯著低于落葉闊葉林和常綠落葉闊葉混交林(P<0.05)。
評價結(jié)果表明,針葉人工林土壤質(zhì)量顯著低于闊葉林,而闊葉人工林土壤質(zhì)量與次生林無顯著性差異;干旱、貧磷是限制區(qū)域內(nèi)森林土壤質(zhì)量的關(guān)鍵因素。在干熱河谷林地管理實踐中,應(yīng)注重土壤水分和磷素的轉(zhuǎn)化與固定,建議通過保留林內(nèi)剩余物覆蓋、加強針葉純林的闊葉化改造、引入鄉(xiāng)土固氮樹種以及補植改造等方式提升土壤質(zhì)量。
參考文獻(xiàn):
[1] ZHANG J P, YANG Z, WANG D J, et al. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China[J]. Journal of Arid Environments,2002,51(1):153-162.
[2] 劉方炎,李昆,孫永玉,等.橫斷山區(qū)干熱河谷氣候及其對植被恢復(fù)的影響[J].長江流域資源與環(huán)境,2010,19(12):1386-1391. LIU F Y, LI K, SUN Y Y, et al. Effects of climate on vegetation recovery in dry hot valleys of Hengduan mountainous region in southwest China[J]. Resources and Environment in the Yangtze Basin,2010,19(12):1386-1391.
[3] 劉芝芹,黃新會,王克勤.金沙江干熱河谷不同土地利用類型土壤入滲特征及其影響因素[J].水土保持學(xué)報,2014,28(2): 57-62. LIU Z Q, HUANG X H, WANG K Q. Soil infiltration characteristics and its influencing factors of different forest soils in Jinshajiang dry-hot valley region[J]. Journal of Soil and Water Conservation,2014,28(2):57-62.
[4] 許智萍,袁建民,楊曉瓊,等.云南干熱河谷野生余甘子土壤肥力評價[J].應(yīng)用與環(huán)境生物學(xué)報,2021,27(2):309-314. XU Z P , YUAN J M, YANG X Q, et al. Soil fertility evaluation of wild Phyllanthus emblica Linn. in Yunnan dryhot valleys[J]. Chinese Journal of Applied and Environmental Biology,2021,27(2):309-314.
[5] 歐漢彪,王豐勝,韋鑠星,等.桂西北干熱河谷區(qū)不同林齡香合歡天然次生林土壤理化性質(zhì)分析[J].廣西林業(yè)科學(xué), 2023,52(3):297-304. OU H B, WANG F S, WEI S X, et al. Analysis on soil physical and chemical properties of natural secondary forests of Albizia odoratissima at different ages in dry-hot valley of northwest Guangxi[J]. Guangxi Forestry Science,2023,52(3):297-304.
[6] 黃雪菊.典型干旱河谷土壤質(zhì)量空間異質(zhì)性研究[D].成都:四川大學(xué),2005. HUANG X J. Spatial variability of soil quality in the dry valley along a river’s length of the Hengduan mountains[D]. Chengdu: Sichuan University,2005.
[7] 王文武,朱萬澤,李霞,等.基于最小數(shù)據(jù)集的大渡河干暖河谷典型植被土壤質(zhì)量評價[J].中國水土保持科學(xué),2021,19(6): 54-59. WANG W W, ZHU W Z, LI X, et al. Soil quality assessment of typical vegetation in dry and warm valley of Dadu river based on minimum data set[J]. Science of Soil and Water Conservation, 2021,19(6):54-59.
[8] 王以靜,方福生.干熱河谷生態(tài)環(huán)境特點與植被恢復(fù)技術(shù)探討[J].中國林副特產(chǎn),2021(1):78-79. WANG Y J, FANG F S. Discussion on ecological environment characteristics and vegetation restoration technology of dry-hot valley[J]. Forest By-Product and Speciality in China,2021(1): 78-79.
[9] KARLEN D L, STOTT D E. A framework for evaluating physical and chemical indicators of soil quality[J]. Defining Soil Quality for a Sustainable Environment,1994,35:53-72.
[10] 沈文森.北京低山地區(qū)人工林土壤質(zhì)量的研究[D].北京:北京林業(yè)大學(xué),2010. SHEN W S. Soil quality of different man-made forest types in lower mountain area, Beijing[D]. Beijing: Beijing Forestry University,2010.
[11] 張甘霖,吳華勇.從問題到解決方案:土壤與可持續(xù)發(fā)展目標(biāo)的實現(xiàn)[J].中國科學(xué)院院刊,2018,33(2):124-134. ZHANG G L, WU H Y. From “problems” to “solutions”: soil functions for realization of sustainable development goals[J]. Bulletin of Chinese Academy of Sciences,2018,33(2):124-134.
[12] 王淑琴,羅珠珠,牛伊寧,等.基于最小數(shù)據(jù)集的黃土高原半干旱區(qū)苜蓿地土壤質(zhì)量評價[J].中國草地學(xué)報,2023,45(7): 81-90. WANG S Q, LUO Z Z, NIU Y N, et al. Soil quality evaluation of Alfalfa fields in semi-arid areas of the loess plateau based on minimum data set[J]. Chinese Journal of Grassland, 2023,45(7):81-90.
[13] 張軍.黑土區(qū)防護(hù)林土壤質(zhì)量評價及其土壤細(xì)菌多樣性研究[D].哈爾濱:東北林業(yè)大學(xué),2021. ZHANG J. Evaluation of soil quality and study on soil bacterial diversity of shelterbelts in the black soil region[D]. Harbin: Northeast Forestry University,2021.
[14] 趙金滿,韓馨悅,程瑞明,等.塞罕壩自然保護(hù)區(qū)華北落葉松和樟子松人工林土壤質(zhì)量評價[J].東北林業(yè)大學(xué)學(xué)報,2023, 51(7):123-127,168. ZHAO J M, HAN X Y, CHENG R M, et al. Soil quality evaluation of Larix principis-rupprechtii and Pinus sylvestris plantations in the Saihanba nature reserve[J]. Journal of Northeast Forestry University,2023,51(7):123-127,168.
[15] ZHANG G, BAI J, XI M, et al. Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set[J]. Ecological Indicators,2016,66:458-466.
[16] 張麗星,海春興,常耀文,等.羊草及芨芨草草原和西北針茅草原土壤質(zhì)量評價[J].草業(yè)學(xué)報,2021,30(4):68-79. ZHANG L X, HAI C X, CHANG Y W, et al. Evaluation of soil quality in Leymus chinensis-Achnatherum splendens grassland and in Stipa sareptana grassland[J]. Acta Prataculturae Sinica, 2021,30(4):68-79.
[17] 袁星明,朱寧華,郭耆,等.南亞熱帶不同人工林對土壤理化性質(zhì)的影響及土壤質(zhì)量評價[J].林業(yè)科學(xué)研究,2022,35(3): 112-122. YUAN X M, ZHU N H, GUO Q, et al. Effects of different plantations on soil physical and chemical properties and soil quality evaluation in south subtropical zone[J]. Forest Research, 2022,35(3):112-122.
[18] 曹小玉,趙文菲,李際平,等.中亞熱帶幾種典型森林土壤養(yǎng)分含量分析及綜合評價[J].生態(tài)學(xué)報,2022,42(9):3525-3535. CAO X Y, ZHAO W F, LI J P, et al. A comprehensive evaluation of soil nutrients in main typical forests in central-subtropical China[J]. Acta Ecologica Sinica,2022,42(9):3525-3535.
[19] 劉培靜,王克勤,李苗苗,等.元謀干熱河谷不同土地利用類型雨季前后土壤養(yǎng)分變化[J].中國水土保持,2012(10): 56-59,75. LIU P J, WANG K Q, LI M M, et al. Variations of soil nutrient of different types of land use before and after rainy season in Yuanmou dry-hot valley[J]. Soil and Water Conservation in China, 2012(10):56-59,75.
[20] 李歡,魏雅麗,閆幫國,等.元謀干熱河谷溝蝕地區(qū)植被恢復(fù)對土壤養(yǎng)分和酶活性的影響[J].土壤通報,2020,51(5):1118-1126. LI H, WEI Y L, YAN B G, et al. Effect of vegetation restoration on soil nutrients and enzyme activities in the gully eroded areas of Yuanmou dry-hot valley[J]. Chinese Journal of Soil Science, 2020,51(5):1118-1126.
[21] ZHANG S. Symposium on vegetation recovery and silviculture techniques in dry-hot valley in Jinsha river[J]. Journal of Southwest Forestry College,1997,17(2):75-85.
[22] 鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國農(nóng)業(yè)出版社, 2000. BAO S D. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Press,2000.
[23] 林先貴.土壤微生物研究原理與方法[M].北京:高等教育出版社,2010. LIN X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press,2010.
[24] ANDREWS S S, MITCHELL J P, MANCINELLI R, et al. On‐farm assessment of soil quality in California’s central valley[J]. Agronomy Journal,2002,94(1):12-23.
[25] 楊振奇,秦富倉,于曉杰,等.基于最小數(shù)據(jù)集的砒砂巖區(qū)人工林地土壤質(zhì)量評價指標(biāo)體系構(gòu)建[J].土壤通報,2019,50(5): 1072-1078. YANG Z Q, QIN F C, YU X J, et al. Construction of artificial forest soil quality evaluation indices in the feldspathic sandstone region based on minimum data set[J]. Chinese Journal of Soil Science,2019,50(5):1072-1078.
[26] CHEN Y D, WANG H Y, ZHOU J M, et al. Minimum data set for assessing soil quality in farmland of northeast China[J]. Pedosphere,2013,23(5):564-576.
[27] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. URL https://www.r-project.org/.
[28] 柴華,何念鵬.中國土壤容重特征及其對區(qū)域碳貯量估算的意義[J].生態(tài)學(xué)報,2016,36(13):3903-3910. CHAI H, HE N P. Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale[J]. Acta Ecologica Sinica,2016,36(13): 3903-3910.
[29] 馮嘉儀,儲雙雙,王婧,等.華南地區(qū)5種典型林分類型土壤肥力綜合評價[J].華南農(nóng)業(yè)大學(xué)學(xué)報,2018,39(3):73-81. FENG J Y, CHU S S, WANG J, et al. Comprehensive evaluation of soil fertility of five typical forest stands in south China[J]. Journal of South China Agricultural University,2018,39(3):73-81.
[30] 崔雪,王海燕,鄒佳何,等.應(yīng)用最小數(shù)據(jù)集評價不同采伐強度天然針闊混交林的土壤質(zhì)量[J].東北林業(yè)大學(xué)學(xué)報, 2022,50(5):88-94. CUI X, WANG H Y, ZHOU J H, et al. Soil quality assessment of natural coniferous and broad-leaved mixed forest under different cutting intensities using minimum data set[J]. Journal of Northeast Forestry University,2022,50(5):88-94.
[31] 王春明,包維楷,陳建中,等.岷江上游干旱河谷區(qū)褐土不同亞類剖面及養(yǎng)分特征[J].應(yīng)用與環(huán)境生物學(xué)報,2003,9(3): 230-234. WANG C M, BAO W K, CHEN J Z, et al. Profile characteristics and nutrients of dry cinnamon soils in dry valley of the upper Minjiang river[J]. Chinese Journal of Applied and Environmental Biology,2003,9(3):230-234.
[32] 全國土壤普查辦公室.中國土壤[M].北京:中國農(nóng)業(yè)出版社, 1998. National Soil Census Office. Soil of China[M]. Beijing: China Agricultural Press,1998.
[33] 李茂萍,繆寧,劉世榮.固氮樹種旱冬瓜對退化林地土壤修復(fù)和林下植被重建的生態(tài)驅(qū)動效應(yīng)[J].生態(tài)學(xué)報,2022,42(6): 2321-2330. LI M P, MIAO N, LIU S R. Effects of nitrogen-fixing tree species Alnus nepalensis on the degraded soils and understory restoration in the upper reaches of the Jinsha river, China[J]. Acta Ecologica Sinica,2022,42(6):2321-2330.
[34] LI M, YOU Y, TAN X, et al. Mixture of N2-fixing tree species promotes organic phosphorus accumulation and transformation in topsoil aggregates in a degraded karst region of subtropical China[J]. Geoderma,2022,413:115752.
[35] 呂瑞恒,劉勇,李國雷,等.北京延慶飛播林區(qū)不同植被類型土壤肥力的差異[J].東北林業(yè)大學(xué)學(xué)報,2009,37(5):39-42. LYU R H, LIU Y, LI G L, et al. Difference in soil fertility for different vegetation types in Yanqing aerial seeding area, Beijing[J]. Journal of Northeast Forestry University,2009,37(5): 39-42.
[36] 王利彥,周國娜,朱新玉,等.凋落物對土壤有機碳與微生物功能多樣性的影響[J].生態(tài)學(xué)報,2021,41(7):2709-2718. WANG L Y, ZHOU G N, ZHU X Y, et al. Effects of litter on soil organic carbon and microbial functional diversity[J]. Acta Ecologica Sinica,2021,41(7):2709-2718.
[37] 馮衛(wèi)生,畢躍峰,鄭曉珂,等.馬尾松松針中木脂素類化學(xué)成分的研究[J].藥學(xué)學(xué)報,2003,38(3):199-202. FENG W S, BI Y F, ZHENG X K, et al. Studies on the lignan chemical constituents from pine needles of Pinus massoniana Lamb.[J]. Acta pharmaceutica Sinica,2003,38(3):199-202.
[38] 潘嘉雯,李吉躍,何茜,等.馬尾松兩種林型土壤養(yǎng)分特征及其與凋落物質(zhì)量的關(guān)系[J].中南林業(yè)科技大學(xué)學(xué)報,2020,40(2): 54-63. PAN J W, LI J Y, HE Q, et al. Study on the soil nutrient characteristics and their relationship with litter quality in two forest types of Pinus massoniana[J]. Journal of Central South University of Forestry Technology,2020,40(2):54-63.
[39] 王玲.川南香椿人工林土壤質(zhì)量月際動態(tài)研究[D].都江堰:四川農(nóng)業(yè)大學(xué),2016. WANG L. The monthly dynamic of soil quality of Toon sinensis plantation in south of Sichuan area[D]. Dujiangyan: Sichuan Agricultural University,2016.
[40] 李靜鵬,徐明鋒,蘇志堯,等.不同植被恢復(fù)類型的土壤肥力質(zhì)量評價[J].生態(tài)學(xué)報,2014,34(9):2297-2307. LI J P, XU M F, SU Z Y, et al. Soil fertility quality assessment under different vegetation restoration patterns[J]. Acta Ecologica Sinica,2014,34(9):2297-2307.
[41] 秦娟,唐心紅,楊雪梅.馬尾松不同林型對土壤理化性質(zhì)的影響[J].生態(tài)環(huán)境學(xué)報,2013,22(4):598-604. QIN J, TANG X H, YANG X M. Effects of soil physical and chemical properties on different forest types of Pinus massoniana[J]. Ecology and Environmental Sciences,2013,22(4): 598-604.
[42] CHEN C, FANG X, XIANG W, et al. Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China[J]. Forest Ecosystems,2020,7(1):1-17.
[43] HUANG Y X, WU Z J, ZONG Y Y, et al. Mixing with coniferous tree species alleviates rhizosphere soil phosphorus limitation of broad-leaved trees in subtropical plantations[J]. Soil Biology and Biochemistry,2022,175:108853.
[本文編校:吳 彬]