摘 要:【目的】研究新疆某規(guī)?;鰻倥8篂a癥的主要病原。
【方法】采用RT-PCR方法,檢測14份腹瀉犢牛糞便中的病毒,對(duì)4頭死亡犢牛肝組織進(jìn)行細(xì)菌分離培養(yǎng)及鑒定、小鼠致病性和藥物敏感性試驗(yàn)。將分離的致病菌擴(kuò)增16S rDNA基因片段并測序,并將其結(jié)果在NCBI中用BLAST搜索同源序列,分析遺傳進(jìn)化特性。
【結(jié)果】該牛場犢牛腹瀉的病原為牛冠狀病毒(Bovine coronavirus, BCoV)、牛輪狀病毒(Bovine rotavirus, BRV)、大腸埃希氏桿菌(Escherichia coli, E.coli)和肺炎克雷伯氏菌(Klebsiella pneumoniae, K.pneumoniae)。14份糞便中,BCoV檢出率為64.29%,BRV檢出率為50.00%;4份肝組織中, E.coli檢出率為100.00%,K.pneumoniae檢出率為50.00%。分離的2種致病菌E.coli和K.pneumoniae對(duì)阿米卡星敏感,對(duì)其它16種抗生素均耐藥。
【結(jié)論】該牛場引起犢牛腹瀉的主要病原為BCoV、BRV、E.coli和K.pneumoniae,存在病毒與細(xì)菌的混合感染。選擇阿米卡星藥物防治E.coli和K.pneumoniae。
關(guān)鍵詞:犢牛腹瀉;病原學(xué);檢測;鑒定
中圖分類號(hào):S858.23"" 文獻(xiàn)標(biāo)志碼:A"" 文章編號(hào):1001-4330(2024)06-1535-09
0 引 言
【研究意義】犢牛腹瀉是多因素引起的以腹瀉為主要特征的癥候群。犢牛感染后,生產(chǎn)性能下降、死亡率高[1-2]。預(yù)防是減少疾病發(fā)生的有效方法,而監(jiān)測病原體是重要的預(yù)防措施之一[3]。引起犢牛腹瀉的主要腸道病原體包括病毒[如:BRV、BCoV、牛病毒性腹瀉病毒(Bovine viral diarrhoea virus,BVDV)、牛環(huán)曲病毒(Bovine torovirus,BToV)、牛諾如病毒(Bovine norovirus,BNoV)、牛紐布病毒(Bovine nebovirus,BNeV)]、細(xì)菌(如沙門氏菌、E.coli、產(chǎn)氣莢膜梭菌)和原生動(dòng)物(如微小隱孢子蟲)[4-9]。犢牛腹瀉的病因多而復(fù)雜,病原差異大,僅憑臨床癥狀難以確診,需要通過試驗(yàn)檢測查明病原?!厩叭搜芯窟M(jìn)展】犢牛腹瀉的病原檢測已有報(bào)道[4-12],有文獻(xiàn)報(bào)道該病原主要為病毒和細(xì)菌,病毒主要為BCoV和BRV,細(xì)菌主要為不同種的E.coli[13-21],其中吳靜等[17]認(rèn)為新疆4地犢牛腹瀉的主要病原為BCoV、BNoV、產(chǎn)志賀毒素大腸桿菌(STEC),并對(duì)分離株STEC作了藥物敏感性試驗(yàn)。彭龍[18]檢測到新疆部分地區(qū)的主要病原為BCoV、BRV、BVDV和E.Coli,結(jié)合藥物敏感性試驗(yàn)結(jié)果,對(duì)其中一個(gè)牛場對(duì)因、對(duì)癥、輔助治療后,腹瀉犢牛痊愈?!颈狙芯壳腥朦c(diǎn)】新疆某規(guī)模化牛場犢牛出生第7 d左右時(shí),出現(xiàn)腹瀉,臨床癥狀為排黃色水樣惡臭稀便、嚴(yán)重便血、脫水、衰弱甚至急性死亡等,發(fā)病率為90%,死亡率為70%,急需對(duì)病原開展檢測和鑒定?!緮M解決的關(guān)鍵問題】收集14頭腹瀉犢牛糞便,和其中4頭死亡犢牛肝組織,檢測與鑒定病原14頭腹瀉犢牛的糞便對(duì)該牛場開展病毒檢測及鑒定。中的病毒,對(duì)其中4頭死亡牛的肝組織進(jìn)行細(xì)菌分離培養(yǎng)及鑒定,確定致病原因,并將分離的致病菌進(jìn)行小鼠致病性試驗(yàn)和藥物敏感性試驗(yàn),為腹瀉犢牛的防治提供理論依據(jù)。
1 材料與方法
1.1 材 料
1.1.1 病樣來源
自2022年12月5日開始,新疆某規(guī)?;龀錾臓倥?,于出生后第7 d左右,發(fā)生腹瀉,大多數(shù)死亡。將14頭腹瀉犢牛的糞便分別置于50 mL無菌管內(nèi),對(duì)其中的4頭死亡牛,采集肝組織,-20℃ 運(yùn)輸至實(shí)驗(yàn)室,-80℃保存?zhèn)溆谩?/p>
1.1.2 主要試劑
病毒基因組RNA提取試劑盒、一步法RT-PCR擴(kuò)增試劑盒均購自寶生物工程(大連)有限公司; DNA凝膠回收試劑盒購自Axygen公司;培養(yǎng)基購自北京索萊寶科技有限公司;藥敏紙片購自英國Oxford公司。
1.2 方 法
1.2.1 RT-PCR檢測病毒
1.2.1.1 引物設(shè)計(jì)與合成
采用軟件Oligo6.0,參考GeneBank中序列(登錄號(hào):KC853440.1、OP866729.1、NC029645.1)分別設(shè)計(jì)BVDV、BCoV和BNoV基因擴(kuò)增引物。牛腸道病毒(Bovine enterovirus,BEV)、BRV的引物分別參照文獻(xiàn)[22-23]合成。引物均由通用生物(安徽)股份有限公司合成。表1
1.2.1.2 樣品總RNA提取
糞便樣品經(jīng)PBS液稀釋后,反復(fù)凍融3次,于12 000 r/min離心10 min,取上清,按照RNA提取試劑盒說明書操作。
1.2.1.3 RT-PCR擴(kuò)增
根據(jù)一步法RT-PCR試劑盒說明書操作進(jìn)行擴(kuò)增。反應(yīng)體系:模板3 μL,2×1 Step Buffer 25 μL,PrimeScript 1 Step Enzyme Mix 2 μL,上、下游引物各2 μL,去離子水(ddH2O)補(bǔ)足50 μL。反應(yīng)條件:反轉(zhuǎn)錄50℃ 30 min;94℃預(yù)變性2 min;94℃ 30 s,退火20 s,72℃延伸(按1 min/kb計(jì)算時(shí)間),30個(gè)循環(huán);72℃延伸10 min。取10 μL PCR產(chǎn)物進(jìn)行1%瓊脂糖凝膠電泳檢測。
1.2.1.4 目的片段回收、測序
RT-PCR產(chǎn)物經(jīng)瓊脂糖凝膠電泳后,將目的條帶按照DNA凝膠回收試劑盒說明書回收純化,送通用生物(安徽)股份有限公司測序。將測序結(jié)果在NCBI中比對(duì)。
1.2.2 細(xì)菌的分離鑒定
1.2.2.1 引物合成
細(xì)菌16S rDNA基因通用引物由通用生物(安徽)股份有限公司合成。表2
1.2.2.2 細(xì)菌的分離培養(yǎng)
無菌條件下,分別在4份犢牛腹瀉癥肝臟的病健交界處多點(diǎn)剪取適量樣品,每份樣接種一套培養(yǎng)基(麥康凱培養(yǎng)基、腦心浸出液肉湯(BHI)培養(yǎng)基和 SS 瓊脂培養(yǎng)基),共4套培養(yǎng)基,37℃ 恒溫過夜培養(yǎng)。
1.2.2.3 分離菌的鑒定
根據(jù)菌落形態(tài)差異,次日在每套平板上隨機(jī)挑取3個(gè)單菌落,先在BHI平板上劃線保菌,再以少許菌作為模板,采用細(xì)菌通用引物進(jìn)行菌落PCR,擴(kuò)增16S rDNA基因,設(shè)陰性對(duì)照。反應(yīng)體系為50 μL,挑取少許菌落為模板,2×Premix Ex Taq 25 μL,上、下游引物各2 μL,去離子水補(bǔ)足50 μL。反應(yīng)條件:94℃預(yù)變性6 min;94℃ 30 s,55℃退火20 s,72℃延伸90 s,30個(gè)循環(huán);72℃延伸10 min。取10 μL PCR產(chǎn)物進(jìn)行1%瓊脂糖凝膠電泳檢測,將陽性產(chǎn)物測序。將測序結(jié)果在NCBI中用BLAST搜索同源序列進(jìn)行分子鑒定。
1.2.2.4 小鼠致病性試驗(yàn)
將鑒定為疑似具有致病性的分離菌分別接種于LB液擴(kuò)菌培養(yǎng),37℃ 225 r/min過夜振蕩,作為攻毒菌;每1菌株為1組。取20~30 g重BALB/c小鼠隨機(jī)分組作為攻毒動(dòng)物,5只/組。腹腔注射新鮮菌液0.2 mL/只(1×109 CFU/mL),另設(shè)對(duì)照組注射相同體積生理鹽水。注射后每隔1 h記錄小鼠發(fā)病死亡情況。
1.2.2.5 回收菌的分離培養(yǎng)及鑒定
無菌條件下,將死亡小鼠肝組織在BHI平板上涂板劃線,37℃恒溫過夜培養(yǎng),獲得回收菌。次日挑取單菌落進(jìn)行菌落PCR,擴(kuò)增16S rDNA基因,將PCR產(chǎn)物測序。將測序結(jié)果在NCBI中用BLAST搜索同源序列,并與攻毒菌16S rDNA序列比對(duì),進(jìn)行遺傳進(jìn)化分析。
1.2.2.6 藥敏試驗(yàn)
將從死亡小鼠肝臟分離的回收菌,參照文獻(xiàn)[24-25]紙片擴(kuò)散法,選取17種抗生素進(jìn)行藥敏試驗(yàn)。以ATCC 25922為E.coli的質(zhì)控菌株,以ATCC 700603為K.pneumoniae 的質(zhì)控菌株。
2 結(jié)果與分析
2.1 病毒RT-PCR檢測
研究表明,在478 bp處擴(kuò)增出BCoV目的序列,在1 356 bp處擴(kuò)增出BRV目的序列,兩者大小與預(yù)期相符。所有樣品均未擴(kuò)增出BVDV、BNoV和BEV的目的條帶。分離的BCoV序列與NCBI中同源序列一致性為99%左右,分離的BRV序列與NCBI中同源序列一致性為99%左右,檢測到BCoV和BRV。圖 1
2.2 細(xì)菌的分離、培養(yǎng)及鑒定
研究表明,1號(hào)~8號(hào)、10號(hào)菌序列相同,為同一菌株,命名為分離株A;9號(hào)、11號(hào)~12號(hào)菌序列相同,為同一菌株,命名為分離株B。分離株A與前100株E.coli的序列一致性在99.79%(GeneBank登錄號(hào):OQ891229.1)~99.93%(GeneBank登錄號(hào):AP024126.1),下載默認(rèn)排序的前20條序列,構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,A與登錄號(hào)為CP104618.1、AP027971.1和AP027256.1的菌株處于一小分支,與其它E.coli處于一大分支。將分離株A命名為E.coli Bachu-1/Xinjiang/China。分離株B與前100株K.pneumoniae的序列一致性在99.51%(GeneBank登錄號(hào):CP103727.1)~99.58%(GeneBank登錄號(hào):CP052372.1),下載默認(rèn)排序的前17條序列,構(gòu)建系統(tǒng)進(jìn)化樹,B與登錄號(hào)為KU212145.1的菌株處于一小分支,與其它肺炎克雷伯氏菌處于一大分支。將分離株B命名為K.pneumoniae Bachu-1/Xinjiang/China。圖2~4,表3
2株菌均為革蘭氏陰性菌,分離株A為無芽孢的直桿菌、中等大小、兩端鈍圓,散在或成對(duì),符合大腸埃希氏桿菌特點(diǎn);分離株B為較粗短的直桿菌,單個(gè)、成對(duì)或短鏈狀排列,有明顯莢膜,符合肺炎克雷伯氏菌特點(diǎn)。分離株A符合大腸埃希氏桿菌特性,分離株B符合肺炎克雷伯氏菌特性。分離株A為E.coli,分離株B為K.pneumoniae。所有SS平板上未培養(yǎng)出沙門氏菌和志賀氏菌。圖5
2.3 小鼠致病性試驗(yàn)
研究表明,將分離株E.coli和K.pneumoniae,分別接種LB液培養(yǎng),作為攻毒菌。第1組腹腔注射E.coli,第2組腹腔注射K.pneumoniae,第3組腹腔注射生理鹽水。1~4 h,所有小鼠正常;5 h時(shí),第1、2組小鼠精神萎靡、運(yùn)動(dòng)減少,第3組無異常;8 h時(shí),第1組小鼠精神萎靡、蜷縮、顫抖,第2組全部死亡,第3組無異常;26 h時(shí),第1組全死亡,第3組無異常;10 d時(shí),第3組無異常。E.coli和K.pneumoniae均為致病菌。
2.4 回收菌的分離培養(yǎng)及鑒定
研究表明,第1組回收菌E.coli形態(tài)與圖2A形態(tài)一致,第2組回收菌K.pneumoniae形態(tài)與圖2B形態(tài)一致。通過菌落PCR擴(kuò)增兩株回收菌16S rDNA基因,均得到大小約1 500 bp目的條帶。E.coli的回收菌序列與攻毒菌序列一致性為100%,K.pneumoniae的回收菌序列與攻毒菌序列一致性為100%,分離株A、B與相對(duì)應(yīng)的攻毒菌為同一菌株。圖6
2.5 藥敏試驗(yàn)
研究表明,E.coli和K.pneumoniae均對(duì)阿米卡星敏感,對(duì)其它16種抗生素耐藥。表4
2.6 病毒與細(xì)菌混合感染情況
研究表明,14份糞便中,BCoV檢出率為64.29%(9/14),BRV檢出率為50.00%(7/14),未檢測到BVDV、BEV和BNoV。4份肝組織中E.coli檢出率為100.00%(4/4),K.pneumoniae檢出率為50.00%(2/4)。3號(hào)牛存在BCoV和E.coli的混合感染,11號(hào)牛存在BCoV、BRV和E.coli的混合感染,13~14號(hào)牛存在BCoV、BRV、E.coli和K.pneumoniae的混合感染。表5
3 討 論
3.1
犢牛腹瀉是新生犢牛最重要的病癥,感染率高、死亡率高、治愈率低[1,26-30]。
引起新疆地區(qū)犢牛腹瀉最常見的病原為BVDV、BCoV、BRV、BEV、BNoV和E.coli[13-21]。從腹瀉犢牛糞便提取病毒RNA,采用RT-PCR將擴(kuò)增的陽性片段測序,經(jīng)BLAST比對(duì),確定試驗(yàn)樣品中存在BCoV和BRV。對(duì)從肝組織分離的細(xì)菌通過菌落PCR,擴(kuò)增了細(xì)菌16S rDNA序列,經(jīng)BLAST比對(duì)、遺傳進(jìn)化分析和細(xì)菌生化特性試驗(yàn),證明分離菌為E.coli和K.pneumoniae。2株菌為致病菌。
3.2
常繼濤等[26]認(rèn)為,癥狀嚴(yán)重、死亡率更高的犢牛腹瀉,往往是由混合感染導(dǎo)致,病原微生物不斷積累及病毒變異可使這種混合感染機(jī)率增加;當(dāng)有BCoV混合感染時(shí),病情更加嚴(yán)重,死亡率高達(dá)50% ~100%;同時(shí)BRV感染引起的腸細(xì)胞損傷更利于產(chǎn)毒素性E.coli 的附著和感染。試驗(yàn)檢測到該牛場的病原為BCoV、BRV、E.coli和K.pneumoniae,存在病毒與細(xì)菌混合感染情況,其中4頭牛為病毒與細(xì)菌混合感染而死亡,與上述研究結(jié)果相符。
3.3
對(duì)新疆犢牛腹瀉的病原檢測報(bào)道較多[13-21],試驗(yàn)結(jié)果表明,其病原大多為病毒與細(xì)菌混合感染,其中病毒主要為BCoV、BRV 和BVDV,感染率范圍分別為BCoV 9.54%~28.89%(77.59%冬季[19])、BRV 0.90%~60.90%、BVDV 9.30%~24.60%;細(xì)菌大多為E.coli,因類別不同,耐藥性存在差異。試驗(yàn)也檢測到BCoV和BRV,其中BRV陽性率(50.00%)在感染率范圍之內(nèi);BCoV陽性率(64.29%)接近最高感染率(77.59%冬季)。
3.4
喻華英等[21]認(rèn)為,引起新疆犢牛腹瀉的主要細(xì)菌病原為E.coli,吳靜等[17]也檢測到E.coli,試驗(yàn)檢測結(jié)果與上述文獻(xiàn)報(bào)道一致。王哲紅[30]報(bào)道了新疆集約化牛場肺炎克雷伯氏菌的藥敏試驗(yàn)結(jié)果,顯示40株菌均對(duì)阿米卡星敏感,試驗(yàn)分離株K.pneumoniae也對(duì)阿米卡星敏感,與報(bào)道結(jié)果一致。試驗(yàn)分離的E.coli和K.pneumoniae對(duì)多種抗生素耐藥。對(duì)分離的致病菌,后續(xù)可進(jìn)行毒力基因、耐藥性、耐藥基因、致病與免疫逃避機(jī)制等深入研究。
4 結(jié) 論
引起犢牛腹瀉的主要病原為BCoV、BRV、E.coli和K.pneumoniae,存在病毒與細(xì)菌的混合感染。分離出致病性E.coli和K.pneumoniae,2株菌均對(duì)阿米卡星敏感,對(duì)其它抗生素耐藥,阿米卡星可作為防治E.coli和K.pneumoniae的首選藥物。
參考文獻(xiàn)(References)
[1]Maier G U, Breitenbuecher J, Gomez J P, et al. Vaccination for the prevention of neonatal calf diarrhea in cow-calf operations: a scoping review[J]. Veterinary and Animal Science, 2022, 15: 100238.
[2] Fischer S, Bauerfeind R, Czerny C P, et al. Serum interleukin-6 as a prognostic marker in neonatal calf diarrhea[J]. Journal of Dairy Science," 2016, 99(8): 6563-6571.
[3] Pereira RV, Adams-Progar AL, Moore DA. Dairy calf treatment for diarrhea: are the drugs we use effective? [R]. Washington State University Extension. 2017, https://hdl.handle.net/2376/11916.
[4] Izzo M M, Kirkland P D, Mohler V L, et al. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea[J]. Australian Veterinary Journal, 2011, 89(5): 167-173.
[5] Peter S G, Gitau G K, Richards S, et al. Risk factors associated with Cryptosporidia, Eimeria, and diarrhea in smallholder dairy farms in Mukurwe-ini Sub-County, Nyeri County, Kenya[J]. Veterinary World, 2016, 9(8): 811-819.
[6] Uhde F L, Kaufmann T, Sager H, et al. Prevalence of four enteropathogens in the faeces of young diarrhoeic dairy calves in Switzerland[J]. The Veterinary Record, 2008, 163(12): 362-366.
[7] Cho Y I, Yoon K J. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention[J]. Journal of Veterinary Science," 2014, 15(1): 1.
[8] Holland R E. Some infectious causes of diarrhea in young farm animals[J]. Clinical Microbiology Reviews, 1990, 3(4): 345-375.
[9] Chae J B, Kim H C, Kang J G, et al. The prevalence of causative agents of calf diarrhea in Korean native calves[J]. Journal of Animal Science and Technology, 2021, 63(4): 864-871.
[10] Cho Y I, Han J I, Wang C, et al. Case-control study of microbiological etiology associated with calf diarrhea[J]. Veterinary Microbiology, 2013, 166(3/4): 375-385.
[11] Dall Agnol A M, Lorenzetti E, Leme R A, et al. Severe outbreak of bovine neonatal diarrhea in a dairy calf rearing unit with multifactorial etiology[J]. Brazilian Journal of Microbiology, 2021, 52(4): 2547-2553.
[12] Wei X J, Wang W W, Dong Z, et al. Detection of infectious agents causing neonatal calf diarrhea on two large dairy farms in Yangxin County, Shandong Province, China[J]. Frontiers in Veterinary Science, 2020, 7: 589126.
[13] 崔鑫, 孟凡艷, 魚?,|, 等. 新疆南疆部分規(guī)模牛場犢牛輪狀病毒、冠狀病毒感染情況調(diào)查與基因鑒定[J]. 中國獸醫(yī)雜志, 2020, 56(12): 40-44.
CUI Xin, MENG Fanyan, YU Haiwei, et al. Infection investigation and gene identity of bovine rotavirus and bovine coronavirus in large-scale cow farms in southern Xinjiang[J]. Chinese Journal of Veterinary Medicine, 2020, 56(12): 40-44.
[14] 王凡, 馬雪連, 孫亞偉, 等. 新疆南疆地區(qū)部分集約化肉牛繁育場主要臨床病癥和生物安全調(diào)查[J]. 中國動(dòng)物檢疫, 2022, 39(7): 22-28.
WANG Fan, MA Xuelian, SUN Yawei, et al. Investigation on major clinical symptoms and biosafety in some intensive beef cattle farms in southern Xinjiang[J]. China Animal Health Inspection, 2022, 39(7): 22-28.
[15] 張偉, 孫力, 覃杰. 新疆鐵門關(guān)地區(qū)犢牛腹瀉流行病學(xué)調(diào)查[J]. 中國獸醫(yī)雜志, 2020, 56(5): 49-51.
ZHANG Wei, SUN Li, QIN Jie. Epidemiological investigation of calf diarrhea in Tiemenguan area of" Xinjiang [J]. Chinese Journal of Veterinary Medicine," 2020, 56(5): 49-51.
[16] 于穎, 周軍, 張斌. 新疆地區(qū)奶牛6種腹瀉相關(guān)病毒的檢測[J]. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2021, 42(10): 139-142.
YU Ying, ZHOU Jun, ZHANG Bin. Molecular detection of six diarrhea-associated pathogens in dairy cows in Xinjiang[J]. Progress in Veterinary Medicine, 2021, 42(10): 139-142.
[17] 吳靜, 劉涵棋, 白婷, 等. 新疆部分地區(qū)犢牛腹瀉主要病原調(diào)查及分離菌耐藥性分析[J]. 黑龍江畜牧獸醫(yī), 2022,(20): 86-92, 143.
WU Jing, LIU Hanqi, BAI Ting, et al. Investigation on main pathogens of calf diarrhea in some areas of Xinjiang Uygur Autonomous Region and analysis of drug resistance of the isolates[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022,(20): 86-92, 143.
[18] 彭龍. 犢牛病毒性腹瀉病原檢測及牛冠狀病毒ELISA方法建立[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2022.
PENG Long. Pathogen Detection of Calf Viral Diarrhea and Establishment of Bovine Coronavirus ELISA Method[D]. Urumqi: Xinjiang Agricultural University, 2022.
[19] 吳靜, 史晉成, 薩妮耶·庫爾班, 等. 新疆喀什地區(qū)安格斯?fàn)倥8篂a主要病毒性病原調(diào)查及牛諾如病毒全基因序列分析[J]. 中國畜牧獸醫(yī), 2022, 49(11): 4420-4428.
WU Jing, SHI Jincheng, Saniye Kerban, et al. Investigation of the main viral pathogens of Angus calf diarrhea in Kashgar Region of Xinjiang and whole gene sequence analysis of bovine norovirus[J]. China Animal Husbandry amp; Veterinary Medicine, 2022, 49(11): 4420-4428.
[20] 王夢(mèng)嬌,蔣倩, 馬學(xué)軍, 等. 新疆地區(qū)牛冠狀病毒的分子流行病學(xué)調(diào)查 [J].畜牧獸醫(yī)學(xué)報(bào),2023,54(12):5125-5133.
WANG Mengjiao, JIANG Qian, MA Xuejun, et al. Molecular epidemiological investigation of bovine coronavirus in Xinjiang [J]. ActaVeterinarta et Zootechnitca Sinica, 2023,54(12):5125-5133.
[21] 喻華英, 底麗娜. 新疆犢牛腹瀉病病原菌的分離鑒定和藥敏試驗(yàn)[J]. 中國獸醫(yī)雜志, 2012, 48(5): 41-43.
YU Huaying, DI Lina. Isolation, identification and drug sensitivity test of pathogenic bacteria of calf diarrhea in Xinjiang [J]. Chinese Journal of Veterinary Medicine, 2012, 48(5): 41-43.
[22] 侯佩莉, 王洪梅, 何洪彬. 牛病毒性腹瀉病毒、牛冠狀病毒和牛腸道病毒多重RT-PCR檢測方法的建立及初步應(yīng)用[J]. 中國獸醫(yī)學(xué)報(bào), 2016, 36(10): 1672-1675, 1700.
HOU Peili, WANG Hongmei, HE Hongbin. Establishment and application of a multiple RT-PCR for detection of BVDV, BCoV and BEV[J]. Chinese Journal of Veterinary Science," 2016, 36(10): 1672-1675, 1700.
[23] 羅雪. 中國部分地區(qū)A群牛輪狀病毒VP6蛋白的分子特征及其應(yīng)用研究[D]. 成都: 西南民族大學(xué), 2019.
LUO Xue. Molecular Characteristics and Applications of VP6 Protein in Group A Bovine Rotavirus in Some Areas of China[D]. Chengdu: Southwest University for Nationalities, 2019.
[24] NY/T 4144-2022.動(dòng)物源細(xì)菌抗菌藥物敏感性測試技術(shù)規(guī)程 紙片擴(kuò)散法 [S].
NY/T 4144-2022.Technical code of practice of antimicrobial susceptibility tests for bacteria isolated from animals-Disk diffusion method [S].
[25] Performance Standards for Antimicrobial Susceptibility Testing - 32nd Edition: CLSI M100-Ed32[S]. Clinical And Laboratory Standards Institute [clsi], .
[26] 常繼濤, 于力. 牛輪狀病毒引起的犢牛腹瀉研究進(jìn)展[J]. 中國奶牛, 2016,(2): 22-25.
CHANG Jitao, YU Li. Research progress on calf diarrhea caused by bovine rotavirus [J]. China Dairy Cattle," 2016,(2): 22-25.
[27] Pinheiro F A, Decaris N, Parre?o V, et al. Efficacy of prepartum vaccination against neonatal calf diarrhea in Nelore Dams as a prevention measure[J]. BMC Veterinary Research, 2022, 18(1): 323.
[28] Meganck V, Hoflack G, Piepers S, et al. Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds[J]. Preventive Veterinary Medicine, 2015, 118(1): 64-70.
[29] Durel L, Rose C, Bainbridge T, et al. Immune response of mature cows subjected to annual booster vaccination against neonatal calf diarrhoea with two different commercial vaccines: a non-inferiority study[J]. Livestock Science, 2017, 204: 52-58.
[30] 王哲紅. 新疆集約化牛場肺炎克雷伯菌分子流行病學(xué)調(diào)查及耐藥特性研究[D]. 阿拉爾: 塔里木大學(xué), 2021.
WANG Zhehong. Molecular Epidemiological Investigation and Drug Resistance Characteristics on Klebsiella pneumoniae of Intensive Cattle Farms in Xinjiang[D]. Aral: Tarim University, 2021.
Etiological detection and identification of calf diarrhea
Abstract:【Objective】 This article aims to identify the main pathogens of calf diarrhea in a large-scale cattle farm in Xinjiang.
【Methods】" Virus detection was performed on 14 diarrhea calf feces using RT-PCR. Besides, bacteria were isolated from the liver tissues of four dead calves, cultured and identified, and mouse pathogenicity and drug sensitivity tests were conducted on these bacteria. Afterwards, the 16 S rDNA gene fragment of the isolated pathogenic bacteria was amplified and sequenced, and the sequencing results were searched for homologous sequences using BLAST in NCBI for genetic evolution analysis.
【Results】" The pathogens of diarrhea in the cattle farm were Bovine coronavirus (BCoV), Bovine rotavirus (BRV), Escherichia coli (E.coli), and Klebsiella pneumoniae (K.pneumoniae). Among the 14 feces, the detection rate of BCoV was 64.29%, and the detection rate of BRV was 50.00%; Among the four liver tissues, the detection rate of E. coli was 100.00%, and the detection rate of K.pneumoniae was 50.00%. The two isolated pathogenic bacteria E.coli and K. pneumoniae were sensitive to amikacin and resistant to all 16 other antibiotics.
【Conclusion】" The main pathogens causing calf diarrhea in this cattle farm are BCoV, BRV, E.coli, and K.pneumoniae, with mixed infection of viruses and bacteria. Amikacin can be used as the preferred drug for the prevention and treatment of E. coli and K. pneumoniae.
Key words:calf diarrhea; etiology; detection; identification