【編者按】 在全面推進(jìn)健康中國(guó)建設(shè)的進(jìn)程中,慢性病的防治是關(guān)鍵?!丁敖】抵袊?guó)2030”規(guī)劃綱要》中,明確將慢性病管理上升到國(guó)家戰(zhàn)略,提出到2030年實(shí)現(xiàn)全人群、全生命周期的慢性病健康管理的目標(biāo)。然而,由于我國(guó)快速老齡化趨勢(shì)和居民生活行為方式的轉(zhuǎn)變,使得慢性病共病成為公眾健康一大挑戰(zhàn)。相比單一的慢性病,共病顯著影響患者軀體功能和心理健康,增加死亡等健康風(fēng)險(xiǎn)。同時(shí),共病治療和康復(fù)護(hù)理的復(fù)雜性,也對(duì)慢性病管理模式及衛(wèi)生服務(wù)體系提出了更高要求。因此,本期特組織有關(guān)慢性病共病的重點(diǎn)專題研究,分別從慢性病共病的流行趨勢(shì)、慢性病多病共存模式以及共病與失智和精神健康的關(guān)系方面進(jìn)行探究,以期為進(jìn)一步優(yōu)化慢性病共病管理并探索多學(xué)科整合型共病診療機(jī)制等提供啟示。
——本期專題客座編輯:趙洋(喬治全球健康研究院)
【摘要】 背景 慢性病共病患病率的估計(jì)以及高風(fēng)險(xiǎn)人群的識(shí)別,直接影響了相應(yīng)的公共衛(wèi)生資源的合理分配。目的 本研究采用Meta分析方法全面描述了1998—2019年中國(guó)大陸地區(qū)居民慢性病共病的患病趨勢(shì)和人群特點(diǎn)。方法 在Web of Science、PubMed、中國(guó)知網(wǎng)、萬方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)和維普網(wǎng)等數(shù)據(jù)庫(kù)從建庫(kù)截至2022-04-30收錄的有關(guān)我國(guó)大陸地區(qū)居民慢性病共病患病率的期刊文獻(xiàn),對(duì)文獻(xiàn)進(jìn)行數(shù)據(jù)提取和質(zhì)量評(píng)價(jià)。采用Stata 14.0軟件進(jìn)行Meta分析。運(yùn)用隨機(jī)效應(yīng)模型計(jì)算合并患病率,并按照調(diào)查時(shí)間(2004年以前、2004—2013年、2014年及以后)、性別、地區(qū)(城鎮(zhèn)、農(nóng)村)、地域(東、中、西、東北)、年齡(lt;40歲、40~lt;60歲、60~lt;80歲、≥80歲)、受教育水平(未受過教育、小學(xué)、中學(xué)及以上)、婚姻狀況(已婚、其他)、慢病類型(生理類、身心共患類、未區(qū)分)、研究質(zhì)量(低、中、高)對(duì)慢性病共病患病率進(jìn)行亞組分析。并進(jìn)一步通過元回歸模型分析慢性病共病患病率的時(shí)間變化趨勢(shì)。結(jié)果 共納入123篇文獻(xiàn),總樣本量7 714 313例。各研究間存在顯著異質(zhì)性(I2=100.0%,Plt;0.001),慢性病共病患病率為36.3%〔95%CI(32.8%,39.9%)〕。Meta線性回歸模型顯示1998—2019年中國(guó)大陸地區(qū)居民慢性病共病患病率呈非線性上升的趨勢(shì)〔β=0.013,95%CI(0.006,0.019)〕。亞組分析結(jié)果顯示,2014年及以后〔40.4%,95%CI(33.0%,47.8%)〕慢性病共病患病率高于2004年以前〔14.5%,95%CI(12.5%,16.5%)〕、2004—2013年〔35.2%,95%CI(32.2%,38.2%)〕(Plt;0.001);60~lt;80歲人群〔38.1%,95%CI(34.6%,41.5%)〕慢性病共病患病率高于≥80歲〔36.6%,95%CI(32.5%,40.8%)〕、40~lt;60歲〔27.7%,95%CI(24.4%,31.1%)〕、lt;40歲人群〔10.6%,95%CI(9.0%,12.3%)〕(Plt;0.001)。性別、受教育水平、婚姻狀況、地區(qū)、地域、慢病類型、研究質(zhì)量的亞組分析,組間慢性病共病患病率比較,差異均無統(tǒng)計(jì)學(xué)意義(Pgt;0.05)。結(jié)論 1998—2019年中國(guó)大陸地區(qū)居民慢性病共病患病率為36.3%,且慢性病共病患病率呈上升趨勢(shì),并具有顯著的年齡特征差異,需重視共病高危人群的早期篩查,采取積極有效的策略預(yù)防和控制。
【關(guān)鍵詞】 慢性病共?。还膊‖F(xiàn)象;患病率;Meta分析;中國(guó)
【中圖分類號(hào)】 R 36 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0217
【引用本文】 何莉,張逸凡,沈雪純,等. 中國(guó)大陸地區(qū)居民慢性病共病的流行趨勢(shì):一項(xiàng)Meta分析[J]. 中國(guó)全科醫(yī)學(xué),2023,26(29):3599-3607. DOI:10.12114/j.issn.1007-9572.2023.0217. [www.chinagp.net]
HE L,ZHANG Y F,SHEN X C,et al. Prevalence trends of multimorbidity among residents in mainland China:a meta-analysis[J]. Chinese General Practice,2023,26(29):3599-3607.
Prevalence Trends of Multimorbidity among Residents in Mainland China:a Meta-analysis HE Li1,ZHANG Yifan1,SHEN Xuechun1,SUN Yan1,ZHAO Yang2,3*
1.College of Physical Education and Sports,Beijing Normal University,Beijing 100875,China
2.The George Institute for Global Health,University of New South Wales,Sydney 2050,Australia
3.The George Institute for Global Health at Peking University Health Science Center,Beijing 100600,China
*Corresponding author:ZHAO Yang,Doctoral supervisor/Research fellow;E-mail:Wzhao@georgeinstitute.org.cn
【Abstract】 Background The estimation of the prevalence of multimorbidity and identification of high-risk populations can directly affect the corresponding rational allocation of public health resources. Objective To comprehensively describe the prevalence trends and population characteristics of multimorbidity among residents in mainland China from 1998-2019 through Meta-analysis. Methods The databases including Web of Science,PubMed,CNKI,Wanfang Data Knowledge Service Platform and VIP were searched for journal literature relevant to the prevalence of multimorbidity in mainland China from inception to 2022-04-30. Data extraction and quality evaluation were performed on the literature and meta-analysis was performed using Stata 14.0 software. The pooled prevalence of multimorbidity was calculated by using random effects model,and subgroup analysis of the prevalence of multimorbidity was conducted based on survey time(before 2004,2004-2013,since 2014),gender,region(urban,rural),geographical area(east,central,west,northeast),education level(uneducated,primary school,secondary school and above),marital status(married,others),and research quality(low,medium,high). Results A total of 123 papers were included into analysis with a total sample size of 7 714 313 cases. There was significant heterogeneity among studies(I2=100.0%,Plt;0.001),and the prevalence of multimorbidity was 36.3%〔95%CI(32.8%,39.9%)〕. Meta-linear regression model showed a non-linear increasing trend in the prevalence of multimorbidity from 1998 to 2019〔β=0.013,95%CI(0.006,0.019)〕. The results of the subgroup analysis showed that the prevalence of multimorbidity was higher since 2014〔40.4%,95%CI(33.0%,47.8%)〕 than before 2004〔14.5%,95%CI(12.5%,16.5%)〕 and 2004-2013〔35.2%,95%CI(32.2%,38.2%)〕(Plt;0.001);the prevalence of multimorbidity was higher among those aged 60-79 years〔38.1%,95%CI(34.6%,41.5%)〕 than those aged ≥80 years〔36.6%,95%CI(32.5%,40.8%)〕,40-59 years〔27.7%,95%CI(24.4%,31.1%)〕,and lt;40 years〔10.6%,95%CI(9.0%,12.3%)〕(Plt;0.001). There was no significant difference in the subgroup analysis of gender,education level,marital status,region,geographical area,type of chronic disease,quality of research,and the comparison of the prevalence of multimorbidity(Pgt;0.05). Conclusion The prevalence of multimorbidity among residents in mainland China was 36.3% from 1998 to 2019 with a rising trend and significant differences in age,therefore,attention should be paid to the early screening of high-risk population,active and effective strategies for prevention and control should be adopted.
【Key words】 Multiple chronic conditions;Comorbidity;Prevalence;Meta-analysis;China
慢性病共病定義為個(gè)體同時(shí)患有兩種或兩種以上的慢性疾病,簡(jiǎn)稱“共病”。相比單一的慢性病,共病不僅顯著增加患者身體功能局限、殘疾甚至死亡等風(fēng)險(xiǎn)[1-4],降低患者的勞動(dòng)生產(chǎn)效率[5]、生活質(zhì)量[6],還增加了診斷和治療的復(fù)雜性和難度,也使得醫(yī)療服務(wù)利用和家庭災(zāi)難性衛(wèi)生支出顯著增長(zhǎng)[7-9],對(duì)傳統(tǒng)單一疾病的預(yù)防、診斷、治療、康復(fù)護(hù)理、疾病管理模式及衛(wèi)生體系帶來了嚴(yán)峻挑戰(zhàn)[10]。
近年來,越來越多的流行病學(xué)調(diào)查關(guān)注了慢性病疾病負(fù)擔(dān)領(lǐng)域,探索了國(guó)內(nèi)部分地區(qū)和特殊人群的共病負(fù)擔(dān)、城鄉(xiāng)差異及影響因素等[11-14]。有學(xué)者綜述分析了我國(guó)中老年人群共病的患病狀況,但各研究報(bào)告的患病率存在較大差異,且對(duì)患病人群的人口學(xué)特征分析不足[15-16]。共病患病率的估計(jì)以及高風(fēng)險(xiǎn)人群的識(shí)別將直接影響相應(yīng)的公共衛(wèi)生資源的合理分配,但目前尚缺乏對(duì)中國(guó)全人群的慢性病共病負(fù)擔(dān)及特征比較的系統(tǒng)研究。在實(shí)現(xiàn)聯(lián)合國(guó)可持續(xù)發(fā)展目標(biāo)和“健康中國(guó)2030”戰(zhàn)略的過程中[17],考慮到共病人群分布及其長(zhǎng)期影響,對(duì)醫(yī)療資源重新定位的需求日益增加,這需要中國(guó)和其他中低收入及經(jīng)濟(jì)轉(zhuǎn)型國(guó)家給予更多關(guān)注。因此,本研究運(yùn)用系統(tǒng)文獻(xiàn)綜述和Meta分析的方法匯總估計(jì)中國(guó)大陸地區(qū)共病患病率及變化趨勢(shì),旨在為優(yōu)化慢性病共病患者的疾病管理,進(jìn)一步改善公共衛(wèi)生服務(wù)效果和優(yōu)化資源配置效率提供研究證據(jù)。
1 資料與方法
1.1 文獻(xiàn)檢索方法 該系統(tǒng)綜述依據(jù)PRISMA指南設(shè)計(jì)[18]。在Web of Science、PubMed、中國(guó)知網(wǎng)、萬方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)和維普網(wǎng)利用“Multimorbidity、Comorbidity、Multiple chronic disease、Multiple chronic condition、Multiple non-communicable diseases、China、共病、慢病共患、慢病共存、多病共患、多重慢病、中國(guó)”等檢索詞進(jìn)行組合檢索。檢索各數(shù)據(jù)庫(kù)從建庫(kù)至2022年4月發(fā)表的有關(guān)中國(guó)居民慢性病共病患病率的研究。此外,檢索相關(guān)綜述的參考文獻(xiàn),并采用輔助文獻(xiàn)追溯法,盡可能全面納入相關(guān)文獻(xiàn)。
1.2 文獻(xiàn)篩選 使用EndNote X9對(duì)檢索文獻(xiàn)進(jìn)行管理。剔除重復(fù)文獻(xiàn)后,研究者根據(jù)文獻(xiàn)篩選標(biāo)準(zhǔn)對(duì)檢索記錄進(jìn)行嚴(yán)格的標(biāo)題、摘要和全文閱讀。2名研究者意見不一致的文獻(xiàn),經(jīng)過與通信作者討論后決定納入或排除。
1.2.1 納入標(biāo)準(zhǔn) (1)研究設(shè)計(jì):橫斷面、縱向的定量觀察研究;針對(duì)縱向研究,如果沒有追蹤時(shí)期的樣本特征數(shù)據(jù),僅納入基線調(diào)查的患病率;如果有追蹤時(shí)期的樣本特征數(shù)據(jù)及患病人數(shù)(率),各時(shí)期均納入。(2)研究對(duì)象:僅限居住在中國(guó)大陸地區(qū)的居民;樣本來自國(guó)家、省市和社區(qū)人口。(3)研究變量:描述中國(guó)大陸地區(qū)居民慢性病共病的患病率或患病人數(shù);采用國(guó)際疾病分類第10版(ICD-10)標(biāo)準(zhǔn)診斷為慢性病。(4)公開發(fā)表的同行評(píng)審的中、英文期刊文獻(xiàn),可獲得全文。
1.2.2 排除標(biāo)準(zhǔn) (1)研究設(shè)計(jì):定性研究、病例對(duì)照研究和干預(yù)研究(如隨機(jī)對(duì)照試驗(yàn));(2)研究對(duì)象:香港、臺(tái)灣、澳門地區(qū)居民或者華裔人群,某疾病患病人群、門診或住院患者等不是針對(duì)一般人群的研究;(3)研究變量:未提供(客觀與自我報(bào)告測(cè)量)共病患病率或患病人數(shù),或無法通過計(jì)算獲得共病患病率/患病人數(shù)的研究,或患病率數(shù)據(jù)不完整,且無法聯(lián)系作者獲得進(jìn)一步數(shù)據(jù)的研究;(4)與先行研究共病定義保持一致,排除并發(fā)癥(指一種疾病在發(fā)展過程中引起另一種疾病或癥狀的發(fā)生)的研究[15-16],如糖尿病引起的腎病、眼病研究;(5)摘要、會(huì)議論文、信件、評(píng)論、綜述等非原始研究。
1.3 數(shù)據(jù)提取 提取數(shù)據(jù)如下(1)文獻(xiàn)特征:第一作者及發(fā)表年份、調(diào)查時(shí)間、調(diào)查地點(diǎn)、研究設(shè)計(jì);(2)樣本特征:年齡、性別、樣本來源、抽樣方法、樣本量;(3)共病數(shù)據(jù):共病定義、疾病數(shù)量、疾病內(nèi)容、嚴(yán)重程度、測(cè)量方法、共病計(jì)算方法、共病患病率、共病患病人數(shù)、慢病類型(生理類、身心共患類、未區(qū)分);(4)其他:混淆變量、研究質(zhì)量。
1.4 質(zhì)量評(píng)價(jià) 參考STROBE和NIH觀察性流行病學(xué)研究報(bào)告規(guī)范聲明中的評(píng)價(jià)標(biāo)準(zhǔn)對(duì)納入文獻(xiàn)進(jìn)行質(zhì)量評(píng)價(jià)[19-21]。評(píng)估內(nèi)容共7項(xiàng),用于分析各研究的目的、樣本代表性、應(yīng)答率、測(cè)量方法的信效度(附錄A,掃描正文首頁(yè)二維碼查看)??偡?4分,≥12分為高質(zhì)量文獻(xiàn),9~11分為中等質(zhì)量文獻(xiàn),≤8分為低質(zhì)量文獻(xiàn)。研究者間的質(zhì)量評(píng)價(jià)一致性通過Cohen's Kappa系數(shù)(K=0.932)進(jìn)行評(píng)價(jià)。評(píng)分不一致的文獻(xiàn),經(jīng)過與通信作者討論后決定。
1.5 統(tǒng)計(jì)學(xué)方法 采用Stata 14.0軟件進(jìn)行Meta分析,以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義,并報(bào)告95%CI。采用I2值和Q檢驗(yàn)評(píng)估納入研究間的異質(zhì)性。若無異質(zhì)性(I2lt;50%,Pgt;0.05),采用固定效應(yīng)模型分析合并患病率;若存在異質(zhì)性(I2≥50%,Plt;0.05),采用隨機(jī)效應(yīng)模型進(jìn)行分析。并按照調(diào)查時(shí)間(2004年以前、2004—2013年、2014年及以后)、性別、地區(qū)(城鎮(zhèn)、農(nóng)村)、地域(東、中、西、東北)、年齡(lt;40歲、40~lt;60歲、60~lt;80歲、≥80歲)、受教育水平(未受過教育、小學(xué)、中學(xué)及以上)、婚姻狀況(已婚、其他)、慢病類型(生理類、身心共患類、未區(qū)分)、研究質(zhì)量(低、中、高)對(duì)慢性病共病患病率進(jìn)行亞組分析。并進(jìn)一步通過Meta線性回歸模型分析慢性病共病患病率的時(shí)間變化趨勢(shì)。采用Egger's檢驗(yàn)和繪制漏斗圖進(jìn)行文獻(xiàn)發(fā)表偏倚分析。
2 結(jié)果
2.1 文獻(xiàn)檢索與篩選 檢索數(shù)據(jù)庫(kù)共獲得文獻(xiàn)10 714篇,檢索相關(guān)綜述參考文獻(xiàn)共獲得70篇,排除重復(fù)文獻(xiàn)后,共計(jì)7 742篇進(jìn)入標(biāo)題摘要篩選。根據(jù)納入與排除標(biāo)準(zhǔn),對(duì)195篇文獻(xiàn)進(jìn)行全文精讀后,納入符合標(biāo)準(zhǔn)的文獻(xiàn)123篇,包括中文45篇,英文78篇。篩選流程見圖1。
2.2 納入文獻(xiàn)基本特征與質(zhì)量評(píng)價(jià) 各研究中,樣本量最多為2 097 150例,最少為411例;慢性病共病患病率最低為2.41%,最高達(dá)90.47%;最早的調(diào)查時(shí)間在1992年[22];分別有8、26、40篇和32篇文獻(xiàn)報(bào)道了lt;40歲、40~lt;60歲、60~lt;80歲和≥80歲人群的慢性病共病患病率;性別(n=72)、婚姻狀況(n=25)、城鎮(zhèn)(n=56)和鄉(xiāng)村(n=43)的調(diào)查數(shù)量不一致;分析未受過教育、小學(xué)、中學(xué)及以上人群慢性病共病患病率的文獻(xiàn)分別有22、20篇和30篇;東部地區(qū)的文獻(xiàn)數(shù)量最多(n=41),中部、西部和東北地區(qū)的文獻(xiàn)數(shù)量一致(n=9);觀測(cè)的慢病數(shù)量最少為3種[23-25],最多達(dá)40種[26];慢性病測(cè)量的方法有自報(bào)(n=61)、客觀(血檢n=4)、自報(bào)和客觀混合(n=46)以及醫(yī)保記錄(病歷或健康檔案,n=7);有5篇文獻(xiàn)的測(cè)量方法不清楚;全國(guó)代表性樣本的概率抽樣調(diào)查分別來自中國(guó)健康與養(yǎng)老追蹤調(diào)查(China Health and Retirement Longitudinal Study,CHARLS)(n=45)、SAGE(Study on Global Ageing and Adult Health)(n=11)、中國(guó)慢性病前瞻性研究(China Kadoorie Biobank,CKB)(n=5)、中國(guó)老年健康影響因素跟蹤調(diào)查(Chinese Longitudinal Healthy Longevity Study,CLHLS)(n=3)、中國(guó)老年社會(huì)追蹤調(diào)查(China Longitudinal Aging Social Survey,CLASS)(n=1)、中國(guó)營(yíng)養(yǎng)與健康調(diào)查(China Health and Nutrition Survey,CHNS)(n=1)和WHS(World Health Suevey)(n=1),另有兩份全國(guó)樣本分別來自方便抽樣調(diào)查和監(jiān)測(cè)數(shù)據(jù),其他均為地方樣本。
76篇文獻(xiàn)質(zhì)量評(píng)分為9~11分,23篇文獻(xiàn)質(zhì)量評(píng)分≤8分,24篇文獻(xiàn)質(zhì)量≥12分[12,23,26-47]。24篇高質(zhì)量文獻(xiàn)的基本特征見表1,所有納入文獻(xiàn)的具體特征見附錄B(掃描正文首頁(yè)二維碼查看)。
2.3 中國(guó)大陸地區(qū)居民慢性病共病合并患病率 對(duì)123篇文獻(xiàn)的慢性病共病合并患病率進(jìn)行Meta分析,各研究間存在顯著異質(zhì)性(I2=100.0%,Plt;0.001),采用隨機(jī)效應(yīng)模型進(jìn)行分析,結(jié)果顯示中國(guó)大陸地區(qū)居民慢性病共病患病率為36.3%〔95%CI(32.8%,39.9%)〕。24篇高質(zhì)量文獻(xiàn)的慢性病共病合并患病率見圖2。
亞組分析顯示,2014年及以后慢性病共病患病率高于2004年以前、2004—2013年(Plt;0.001);60~lt;80歲人群慢性病共病患病率高于≥80歲、40~lt;60歲、lt;40歲人群(Plt;0.001)。性別、受教育水平、婚姻狀況、地區(qū)、地域、慢病類型、研究質(zhì)量的亞組分析,組間慢性病共病患病率比較,差異均無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),見表2。
2.4 1998—2019年中國(guó)大陸地區(qū)居民慢性病共病患病率趨勢(shì) Meta線性回歸模型顯示,1998—2019年中國(guó)大陸地區(qū)居民慢性病共病患病率呈非線性上升的趨勢(shì)〔β=0.013,95%CI(0.006,0.019)〕(圖3)。
2.5 敏感性分析與發(fā)表偏倚分析 對(duì)不同質(zhì)量類別的文獻(xiàn)進(jìn)行亞組分析后,進(jìn)一步采用逐一剔除文獻(xiàn)的方法進(jìn)行敏感性分析。結(jié)果顯示,剔除文獻(xiàn)前后,研究結(jié)果均未發(fā)生明顯的改變,提示本研究結(jié)果較穩(wěn)定。與此同時(shí),對(duì)所有納入文獻(xiàn)進(jìn)行發(fā)表偏倚分析,得到Egger's檢驗(yàn)的結(jié)果Plt;0.001,提示有顯著發(fā)表偏倚。漏斗圖結(jié)果顯示對(duì)稱性不佳,也提示存在一定的發(fā)表偏倚(圖4)。
3 討論
本研究通過Meta分析全面描述了我國(guó)大陸地區(qū)1998—2019年慢性病共病的患病情況及變化趨勢(shì)。結(jié)果顯示,我國(guó)大陸地區(qū)居民慢性病共病患病率為36.3%。這與既往綜述報(bào)告的中低收入國(guó)家的慢性病共病流行情況(36%)相近,患病率低于高收入國(guó)家[48-50]。高收入國(guó)家成年人慢性病共病患病率為44.3%[51],2007—2017年65歲以上人群的慢性病共病患病率達(dá)到66.1%[52]。
本研究結(jié)果顯示,我國(guó)60~lt;80歲年齡組的慢性病共病患病率最高,為38.1%(9.4%~76.5%);其次分別為≥80歲(36.6%)、40~lt;60歲(27.7%)以及l(fā)t;40歲(10.6%)人群,該結(jié)果首次展示了我國(guó)共病流行的年齡特征。既往對(duì)9項(xiàng)橫斷面研究的綜述顯示,2002—2011年我國(guó)60歲以上人群慢性病共病患病率為6.4%~76.5%[15]。另一篇納入25個(gè)橫斷面研究的Meta分析則顯示2010—2019年我國(guó)173 085例45歲以上人群的慢性病共病患病率為41%[16]。這兩項(xiàng)研究均未考慮40歲以下人群的慢性病共病流行特征,未分析不同年齡群體的患病率差異。盡管大多數(shù)國(guó)家發(fā)現(xiàn)慢性病共病患病率隨年齡增長(zhǎng)而增加,但也有研究發(fā)現(xiàn)80歲以上人群慢性病共病患病率呈下降趨勢(shì),關(guān)于慢性病共病在超高齡人群的患病特點(diǎn)還需更多研究與分析[48,53]。
與此同時(shí),相較以往研究,本研究更加全面地描述了慢性病共病患病率的時(shí)間變化趨勢(shì)。既往Meta分析顯示2016—2019年我國(guó)中老年人慢性病共病患病率高于2010—2015年[16]。本研究進(jìn)一步發(fā)現(xiàn),我國(guó)慢性病共病患病率自1998年以來整體呈非線性的增長(zhǎng)趨勢(shì),2004年以前慢性病共病患病率僅為14.5%,2004—2013年增長(zhǎng)到35.2%,2014年及以后加速增長(zhǎng)到40.4%,且組間比較有差異。所納入研究對(duì)象的年齡、數(shù)據(jù)收集的時(shí)間、樣本量等不同,這可能解釋既往綜述關(guān)于中國(guó)人群慢性病共病流行特征的結(jié)果相近卻仍存在差異[54]。但考慮到我國(guó)不斷加速的人口老齡化趨勢(shì),未來我國(guó)慢性病共病問題帶來的挑戰(zhàn)不容小覷。
關(guān)于慢性病共病患病率在不同人群間的差異,本研究分析了性別、受教育水平、婚姻狀況、地區(qū)、地域、慢病類型、研究質(zhì)量等亞組結(jié)果,補(bǔ)充了我國(guó)此領(lǐng)域研究的不足。一項(xiàng)納入來自加拿大、南非、科索沃、巴西、澳大利亞、美國(guó)、瑞典、德國(guó)、荷蘭9個(gè)國(guó)家
122 858人的元分析指出,低教育水平可能增加這些國(guó)家人群64%的共病風(fēng)險(xiǎn)[55];另外,在中低收入國(guó)家,城市地區(qū)人群共病風(fēng)險(xiǎn)比農(nóng)村地區(qū)要高35%[48]。以上共病的人口學(xué)特征差異可能歸結(jié)于這類風(fēng)險(xiǎn)人群更多得暴露于與慢病相關(guān)的不健康生活方式(身體活動(dòng)和睡眠不足、吸煙或飲酒等)[12,56-57],比如東北地區(qū)水果和蔬菜攝入量低或紅肉攝入量較高[58],但仍需要進(jìn)一步高質(zhì)量的研究確認(rèn)。但是,提高這類高風(fēng)險(xiǎn)人群的健康管理意識(shí),加強(qiáng)慢性病及共病的篩查,對(duì)于防范共病的發(fā)生具有重要的意義。同時(shí),考慮到目前通過行為干預(yù)來改善慢性病共病患者健康結(jié)局的研究較少、質(zhì)量較低以及效果評(píng)價(jià)結(jié)論不一,迫切需要更多高質(zhì)量隨機(jī)對(duì)照試驗(yàn)檢驗(yàn)行為干預(yù)策略的成本效果[59-61]。最后,鑒于身心共病的研究?jī)H有2篇文獻(xiàn)[32,40],對(duì)多種疾病組合的共病研究也很有限,建議未來可以開展更多關(guān)于共病的不同組合及其影響因素的分析。
相較于既往研究,雖然本研究的納入樣本和亞組分析更為全面,但也存在一些不足。首先,作為關(guān)注慢性病共病患病率及其趨勢(shì)的綜述類研究,由于納入的原始研究數(shù)據(jù)來源差異較大等因素,Meta分析顯示了較高的異質(zhì)性,因此對(duì)待相關(guān)結(jié)果需謹(jǐn)慎對(duì)比和解釋。本研究異質(zhì)性較高的原因可能包括納入研究的調(diào)查時(shí)間跨度大,各研究之間的抽樣方法、年齡范圍、樣本量、慢病診斷的方法以及數(shù)量存在較大差異[54]。但考慮到異質(zhì)性評(píng)估中I2值受樣本量的影響,大樣本患病率的觀察性研究的異質(zhì)性可能很大[62]。其次,針對(duì)使用同一數(shù)據(jù)庫(kù)的不同調(diào)查年份的樣本,本研究采用了合并納入的方式,也可能導(dǎo)致異質(zhì)性增大。再次,少量納入文獻(xiàn)的標(biāo)準(zhǔn)化患病率估計(jì)值可能低估了我國(guó)大陸地區(qū)原始的慢性病共病患病估計(jì)值。
綜上,我國(guó)大陸地區(qū)慢性病共病的患病率較高,尤其在老年、女性、城市、東北地區(qū)、未婚和受教育水平較低的人群中更高。加大這類高危人群共病的篩查和預(yù)防,使其培養(yǎng)和改善健康的生活方式和行為,有助于控制人群共病患病率的持續(xù)增長(zhǎng),減輕共病對(duì)個(gè)體、家庭、醫(yī)療服務(wù)體系和社會(huì)的疾病及經(jīng)濟(jì)負(fù)擔(dān)。未來仍需要更多高質(zhì)量研究關(guān)注不同疾病人群的共病組合,以便提出更有針對(duì)性的行為和醫(yī)療衛(wèi)生服務(wù)干預(yù)策略。
致謝:感謝宋璇宇、邱云中提供的圖片編輯技術(shù)
幫助。
作者貢獻(xiàn):趙洋和何莉負(fù)責(zé)文章的構(gòu)思與設(shè)計(jì),數(shù)據(jù)分析,論文撰寫和修訂;張逸凡負(fù)責(zé)研究資料的收集與整理、圖表的編輯和整理;沈雪純、孫燕負(fù)責(zé)研究資料的收集與整理;趙洋負(fù)責(zé)文章的質(zhì)量控制和審校、對(duì)文章整體負(fù)責(zé)。
本文無利益沖突。
參考文獻(xiàn)
VETRANO D L,PALMER K,MARENGONI A,et al. Frailty and multimorbidity:a systematic review and meta-analysis[J]. J Gerontol A Biol Sci Med Sci,2019,74(5):659-666. DOI:10.1093/gerona/gly110.
NUNES B P,F(xiàn)LORES T R,MIELKE G I,et al. Multimorbidity and mortality in older adults:a systematic review and meta-analysis[J]. Arch Gerontol Geriatr,2016,67:130-138. DOI:10.1016/j.archger.2016.07.008.
XIONG F Y,WANG L,SHEN L L,et al. The relationship between multimorbidity and suicidal ideation:a meta-analysis[J]. J Psychosom Res,2020,138:110257. DOI:10.1016/j.jpsychores.2020.110257.
ZHAO Y W,HAREGU T N,HE L,et al. The effect of multimorbidity on functional limitations and depression amongst middle-aged and older population in China:a nationwide longitudinal study[J]. Age Ageing,2021,50(1):190-197. DOI:10.1093/ageing/afaa117.
CABRAL G G,DANTAS DE SOUZA A C,BARBOSA I R,et al. Multimorbidity and its impact on workers:a review of longitudinal studies[J]. Saf Health Work,2019,10(4):393-399. DOI:10.1016/j.shaw.2019.08.004.
MAKOVSKI T T,SCHMITZ S,ZEEGERS M P,et al. Multimorbidity and quality of life:systematic literature review and meta-analysis[J]. Ageing Res Rev,2019,53:100903. DOI:10.1016/j.arr.2019.04.005.
RODRIGUES L P,DE OLIVEIRA REZENDE A T,DELPINO F M,et al. Association between multimorbidity and hospitalization in older adults:systematic review and meta-analysis[J]. Age Ageing,2022,51(7):afac155. DOI:10.1093/ageing/afac155.
SUM G,HONE T,ATUN R,et al. Multimorbidity and out-of-pocket expenditure on medicines:a systematic review[J]. BMJ Glob Health,2018,3(1):e000505. DOI:10.1136/bmjgh-2017-000505.
TRAN P B,KAZIBWE J,NIKOLAIDIS G F,et al. Costs of multimorbidity:a systematic review and meta-analyses[J]. BMC Med,2022,20(1):234. DOI:10.1186/s12916-022-02427-9.
GUTHRIE B,PAYNE K,ALDERSON P,et al. Adapting clinical guidelines to take account of multimorbidity[J]. BMJ,2012,345(oct04 1):e6341. DOI:10.1136/bmj.e6341.
CHEN H,CHENG M L,ZHUANG Y,et al. Multimorbidity among middle-aged and older persons in urban China:prevalence,characteristics and health service utilization[J]. Geriatr Gerontol Int,2018,18(10):1447-1452. DOI:10.1111/ggi.13510.
HE L,BIDDLE S J H,LEE J T,et al. The prevalence of multimorbidity and its association with physical activity and sleep duration in middle aged and elderly adults:a longitudinal analysis from China[J]. Int J Behav Nutr Phys Act,2021,18(1):77. DOI:10.1186/s12966-021-01150-7.
ZHAO Y,ATUN R,OLDENBURG B,et al. Physical multimorbidity,health service use,and catastrophic health expenditure by socioeconomic groups in China:an analysis of population-based panel data[J]. Lancet Glob Health,2020,
8(6):e840-849. DOI:10.1016/S2214-109X(20)30127-3.
ZHAO Y,HE L,HAN C L,et al. Urban-rural differences in the impacts of multiple chronic disease on functional limitations and work productivity among Chinese adults[J]. Glob Health Action,2021,14(1):1975921. DOI:10.1080/16549716.2021.1975921.
HU X L,HUANG J,LV Y Q,et al. Status of prevalence study on multimorbidity of chronic disease in China:systematic review[J]. Geriatr Gerontol Int,2015,15(1):1-10. DOI:10.1111/ggi.12340.
王梅杰,周翔,李亞杰,等. 2010—2019年中國(guó)中老年人慢性病共病患病率的Meta分析[J]. 中國(guó)全科醫(yī)學(xué),2021,24(16):2085-2091. DOI:10.12114/j.issn.1007-9572.2020.00.477.
TAN X D,LIU X X,SHAO H Y. Healthy China 2030:a vision for health care[J]. Value Health Reg Issues,2017,12:112-114. DOI:10.1016/j.vhri.2017.04.001.
PAGE M J,MCKENZIE J E,BOSSUYT P M,et al. The PRISMA 2020 statement:an updated guideline for reporting systematic reviews[J]. J Clin Epidemiol,2021,134:178-189. DOI:10.1016/j.jclinepi.2021.03.001.
National Heart,Lung,and Blood institue:Study Quality Assessment Tools[DB/OL].[2023-01-20]. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.
Strengthening the reporting of observational studies in epidemiology (STROBE) [DB/OL]. [2023-01-20]. https://www.strobe-statement.org/.
SANDERSON S,TATT I D,HIGGINS J P. Tools for assessing quality and susceptibility to bias in observational studies in epidemiology:a systematic review and annotated bibliography[J]. Int J Epidemiol,2007,36(3):666-676. DOI:10.1093/ije/dym018.
TANG Z,WANG C X,SONG X W,et al. Co-occurrence of cardiometabolic diseases and frailty in older Chinese adults in the Beijing Longitudinal Study of Ageing[J]. Age Ageing,2013,42(3):346-351. DOI:10.1093/ageing/aft004.
HAN Y T,HU Y Z,YU C Q,et al. Lifestyle,cardiometabolic disease,and multimorbidity in a prospective Chinese study[J]. Eur Heart J,2021,42(34):3374-3384. DOI:10.1093/eurheartj/ehab413.
ZHANG D D,TANG X,SHEN P,et al. Multimorbidity of cardiometabolic diseases:prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study[J]. BMJ Open,2019,9(3):e024476. DOI:10.1136/bmjopen-2018-024476.
黃紫婷,羅顏,蘇鶴軒,等. 中國(guó)老年心血管代謝性共病與抑郁癥狀的關(guān)系[J]. 中國(guó)慢性病預(yù)防與控制,2021,29(9):644-648. DOI:10.16386/j.cjpccd.issn.1004-6194.2021.09.002.
WANG H H,WANG J J,WONG S Y,et al. Epidemiology of multimorbidity in China and implications for the healthcare system:cross-sectional survey among 162,464 community household residents in Southern China[J]. BMC Med,2014,12:188. DOI:10.1186/s12916-014-0188-0.
AGRAWAL S,AGRAWAL P K. Association between body mass index and prevalence of multimorbidity in low-and middle-income countries:a cross-sectional study[J]. Int J Med Public Health,2016,6(2):73-83. DOI:10.5530/ijmedph.2016.2.5.
CHEN H,CHEN Y,CUI B. The association of multimorbidity with healthcare expenditure among the elderly patients in Beijing,China[J]. Arch Gerontol Geriatr,2018,79:32-38. DOI:10.1016/j.archger.2018.07.008.
FAN Z Y,YANG Y,ZHANG C H,et al. Prevalence and patterns of comorbidity among middle-aged and elderly people in China:a cross-sectional study based on CHARLS data[J]. Int J Gen Med,2021,14:1449-1455. DOI:10.2147/IJGM.S309783.
HUANG Z T,LUO Y,HAN L,et al. Patterns of cardiometabolic multimorbidity and the risk of depressive symptoms in a longitudinal cohort of middle-aged and older Chinese[J]. J Affect Disord,2022,301:1-7. DOI:10.1016/j.jad.2022.01.030.
JIANG C H,ZHU F,QIN T T. Relationships between chronic diseases and depression among middle-aged and elderly people in China:a prospective study from CHARLS[J].Curr Med Sci,2020,40(5):858-870. DOI:10.1007/s11596-020-2270-5.
LI H B,WANG A X,GAO Q,et al. Prevalence of somatic-mental multimorbidity and its prospective association with disability among older adults in China[J]. Aging (Albany NY),2020,12(8):7218-7231. DOI:10.18632/aging.103070.
LIN L,WANG H H,LU C Y,et al. Adverse childhood experiences and subsequent chronic diseases among middle-aged or older adults in China and associations with demographic and socioeconomic characteristics[J]. JAMA Netw Open,2021,
4(10):e2130143. DOI:10.1001/jamanetworkopen.2021.30143.
RUEL G,SHI Z M,ZHEN S Q,et al. Association between nutrition and the evolution of multimorbidity:the importance of fruits and vegetables and whole grain products[J]. Clin Nutr,2014,33(3):513-520. DOI:10.1016/j.clnu.2013.07.009.
SUM G,SALISBURY C,KOH G C,et al. Implications of multimorbidity patterns on health care utilisation and quality of life in middle-income countries:cross-sectional analysis[J]. J Glob Health,2019,9(2):020413. DOI:10.7189/jogh.09.020413.
YAO S S,MENG X F,CAO G Y,et al. Associations between multimorbidity and physical performance in older Chinese adults[J]. Int J Environ Res Public Health,2020,17(12):4546. DOI:10.3390/ijerph17124546.
ZHANG D D,TANG X,SHEN P,et al. Multimorbidity of cardiometabolic diseases:prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study[J]. BMJ Open,2019,9(3):e024476. DOI:10.1136/bmjopen-2018-024476.
ZOU S Y,WANG Z C,BHURA M,et al. Prevalence and associated socioeconomic factors of multimorbidity in 10 regions of China:an analysis of 0.5 million adults[J]. J Public Health (Oxf),2022,44(1):36-50. DOI:10.1093/pubmed/fdaa204.
ZHAO Y,ATUN R,ANINDYA K,et al. Medical costs and out-of-pocket expenditures associated with multimorbidity in China:quantile regression analysis[J]. BMJ Glob Health,2021,6(2):e004042. DOI:10.1136/bmjgh-2020-004042.
ZHAO Y,ZHANG P H,OLDENBURG B,et al. The impact of mental and physical multimorbidity on healthcare utilization and health spending in China:a nationwide longitudinal population-based study[J]. Int J Geriatr Psychiatry,2021,36(4):500-510. DOI:10.1002/gps.5445.
ZHAO Y,ZHAO S Q,ZHANG L,et al. Impacts of multimorbidity on medication treatment,primary healthcare and hospitalization among middle-aged and older adults in China:evidence from a nationwide longitudinal study[J]. BMC Public Health,2021,21(1):1380. DOI:10.1186/s12889-021-11456-7.
ZOU S,WANG Z,BHURA M,et al. Association of multimorbidity of non-communicable diseases with mortality:a 10-year prospective study of 0.5 million Chinese adults[J]. Public Health,2022,205:63-71. DOI:10.1016/j.puhe.2022.01.021.
陳子爍,羅顏,徐慧雯,等. 中國(guó)老年人不同體重狀態(tài)下多病共存現(xiàn)狀研究[J]. 現(xiàn)代預(yù)防醫(yī)學(xué),2021,48(10):1843-1848. DOI:10.3760/cma.j.issn.0254-6450.2020.01.001.
高楊,平智廣,裴曉婷,等. 2009年中國(guó)中老年人群慢性病共病現(xiàn)狀及相關(guān)因素的多重對(duì)應(yīng)分析[J]. 衛(wèi)生研究,2020,
49(5):844-849. DOI:10.19813/j.cnki.weishengyanjiu.2020.05.026.
孫至佳,樊俊寧,余燦清,等. 中國(guó)10個(gè)地區(qū)成年人共病流行特征分析[J]. 中華流行病學(xué)雜志,2021,42(5):755-762. DOI:10.3760/cma.j.cn112338-20200305-00259.
張晗,齊士格,李志新,等. 2015年六省市社區(qū)老年人常見慢性病共病現(xiàn)狀[J]. 首都公共衛(wèi)生,2019,13(3):122-125. DOI:10.3969/j.issn.1007-9572.2017.06.y54.
鐘城垚,周定群,毛進(jìn),等. 遵義市9476例社區(qū)老年人門診特殊慢性病的流行病學(xué)特征分析[J]. 現(xiàn)代預(yù)防醫(yī)學(xué),2018,45(20):3676-3680. DOI:10.3969/j.issn.1672-3422.2008.05.071.
ASOGWA O A,BOATENG D,MARZà-FLORENSA A,et al.
Multimorbidity of non-communicable diseases in low-income and middle-income countries:a systematic review and meta-analysis[J]. BMJ Open,2022,12(1):e049133. DOI:10.1136/bmjopen-2021-049133.
XU X L,MISHRA G D,JONES M. Evidence on multimorbidity from definition to intervention:an overview of systematic reviews[J]. Ageing Res Rev,2017,37:53-68. DOI:10.1016/j.arr.2017.05.003.
NGUYEN H,MANOLOVA G,DASKALOPOULOU C,et al. Prevalence of multimorbidity in community settings:a systematic review and meta-analysis of observational studies[J]. J Comorb,2019,9:2235042X19870934. DOI:10.1177/2235042X19870934.
HO I S,AZCOAGA-LORENZO A,AKBARI A,et al. Variation in the estimated prevalence of multimorbidity:systematic review and meta-analysis of 193 international studies[J]. BMJ Open,2022,12(4):e057017. DOI:10.1136/bmjopen-2021-057017.
OFORI-ASENSO R,CHIN K L,CURTIS A J,et al. Recent patterns of multimorbidity among older adults in high-income countries[J]. Popul Health Manag,2019,22(2):127-137. DOI:10.1089/pop.2018.0069.
ROOMANEY R A,VAN WYK B,TURAWA E B,et al. Multimorbidity in South Africa:a systematic review of prevalence studies[J]. BMJ Open,2021,11(10):e048676. DOI:10.1136/bmjopen-2021-048676.
HO I S,AZCOAGA-LORENZO A,AKBARI A,et al. Examining variation in the measurement of multimorbidity in research:a systematic review of 566 studies[J]. Lancet Public Health,2021,6(8):e587-597. DOI:10.1016/S2468-2667(21)
00107-9.
PATHIRANA T I,JACKSON C A. Socioeconomic status and multimorbidity:a systematic review and meta-analysis[J]. Aust N Z J Public Health,2018,42(2):186-194. DOI:10.1111/1753-6405.12762.
FLEITAS ALFONZO L,KING T,YOU E,et al. Theoretical explanations for socioeconomic inequalities in multimorbidity:a scoping review[J]. BMJ Open,2022,12(2):e055264. DOI:10.1136/bmjopen-2021-055264.
SABIA S,DUGRAVOT A,LéGER D,et al. Association of sleep duration at age 50,60,and 70 years with risk of multimorbidity in the UK:25-year follow-up of the Whitehall II cohort study[J]. PLoS Med,2022,19(10):e1004109. DOI:10.1371/journal.pmed.1004109.
LI X,WU C Q,LU J P,et al. Cardiovascular risk factors in China:a nationwide population-based cohort study[J]. Lancet Public Health,2020,5(12):e672-681. DOI:10.1016/S2468-2667(20)30191-2.
BRICCA A,HARRIS L K,J?GER M,et al. Benefits and harms of exercise therapy in people with multimorbidity:a systematic review and meta-analysis of randomised controlled trials[J]. Ageing Res Rev,2020,63:101166. DOI:10.1016/j.arr.2020.101166.
SMITH S M,WALLACE E,O'DOWD T,et al. Interventions for improving outcomes in patients with multimorbidity in primary care and community settings[J]. Cochrane Database Syst Rev,2021,1(1):CD006560. DOI:10.1002/14651858.CD006560.pub4.
STOLL C R T,IZADI S,F(xiàn)OWLER S,et al. Multimorbidity in randomized controlled trials of behavioral interventions:a systematic review[J]. Health Psychol,2019,38(9):831-839. DOI:10.1037/hea0000726.
張杜丹,唐迅,靳丹瑤,等. 中國(guó)成年人糖尿病患病率Meta分析[J]. 中華流行病學(xué)雜志,2018,39(6):852-857. DOI:10.3760/cma.j.issn.0254-6450.2018.06.030.
(收稿日期:2023-03-23;修回日期:2023-05-14)
(本文編輯:賈萌萌)