【摘要】 腦卒中常導(dǎo)致持續(xù)性腦卒中后認(rèn)知障礙(PSCI),主要表現(xiàn)為學(xué)習(xí)、記憶等方面的障礙。目前,PSCI發(fā)病機(jī)制尚不完全清楚,但與線粒體功能障礙密切相關(guān),健康線粒體對(duì)神經(jīng)元存活至關(guān)重要。近年來研究表明,細(xì)胞間線粒體轉(zhuǎn)移可通過增加神經(jīng)元活力、增強(qiáng)線粒體代謝、調(diào)控神經(jīng)炎癥等過程與腦卒中聯(lián)系,從而改善認(rèn)知障礙。本文概述了線粒體轉(zhuǎn)移的機(jī)制以及細(xì)胞間線粒體轉(zhuǎn)移在PSCI中的關(guān)鍵作用,并探討了線粒體移植作為PSCI的新型治療干預(yù)措施的效果,為其臨床防治提供參考。
【關(guān)鍵詞】 卒中;認(rèn)知障礙;線粒體轉(zhuǎn)移;隧道納米管;細(xì)胞外囊泡;間隙連接;綜述
【中圖分類號(hào)】 R 743 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0162
【引用本文】 肖雨倩,白艷杰,王巖,等.線粒體轉(zhuǎn)移在腦卒中后認(rèn)知障礙中的研究進(jìn)展[J]. 中國全科醫(yī)學(xué),2023,26(30):3833-3840. DOI:10.12114/j.issn.1007-9572.2023.0162. [www.chinagp.net]
XIAO Y Q,BAI Y J,WANG Y,et al. Research progress of mitochondrial transfer in post-stroke cognitive impairment[J]. Chinese General Practice,2023,26(30):3833-3840.
Research Progress of Mitochondrial Transfer in Post-stroke Cognitive Impairment XIAO Yuqian1,BAI Yanjie2*,WANG Yan1,CHEN Shuying1,CHEN Limin1,SUN Kexin1,WAN Jun1
1.Henan University of Chinese Medicine,Zhengzhou 450046,China
2.The First Affiliated Hospital of Henan University of CM,Zhengzhou 450000,China
*Corresponding author:BAI Yanjie,Associate chief physician;E-mail:baiyj66@126.com
【Abstract】 Stroke often leads to persistent post-stroke cognitive impairment(PSCI),which mainly manifests as impairment in learning and memory. The pathogenesis remains unclear as present,but it is closely related to mitochondrial dysfunction,and healthy mitochondria are essential for neuronal survival. Recent studies have shown that intercellular mitochondrial transfer can be linked to stroke through increasing neuronal viability,enhancing mitochondrial metabolism,and modulating neuroinflammation,thereby improving cognitive impairment. This review overviews the mechanisms of mitochondrial transfer and the key role of intercellular mitochondrial transfer in PSCI,and discusses that mitochondrial transplantation may serve as a novel therapeutic intervention for PSCI,providing references for its clinical management.
【Key words】 Stroke;Cognition disorders;Mitochondrial transfer;Tunneling nanotubes;Extracellular vesicles;Gap junction;Review
腦卒中后認(rèn)知障礙(post-stroke cognitive impairment,PSCI)定義為卒中后發(fā)生任何類型的認(rèn)知惡化,范圍從認(rèn)知損傷到癡呆[1],主要表現(xiàn)為失語、記憶缺陷及視覺空間、注意力和執(zhí)行功能障礙,長期認(rèn)知功能障礙對(duì)患者日常生活造成嚴(yán)重危害。PSCI發(fā)病機(jī)制復(fù)雜,相關(guān)的神經(jīng)病理學(xué)基礎(chǔ)包括氧化應(yīng)激、炎癥和細(xì)胞死亡等[2]。目前,為了改善臨床結(jié)局,急性缺血性卒中患者的最佳治療方案包括靜脈注射組織纖溶酶原激活劑和血管內(nèi)血栓切除術(shù)。然而,由于缺血性卒中的治療時(shí)間窗口狹窄,只有少數(shù)患者接受溶栓或血管內(nèi)治療。為了解決目前卒中治療方法的短缺問題,確定新的潛在治療靶點(diǎn)十分重要[3]。
線粒體通過氧化磷酸化和產(chǎn)生三磷酸腺苷(ATP)提供驅(qū)動(dòng)細(xì)胞生理功能的能量,其功能障礙包括一系列線粒體缺陷,例如生物能量損傷、產(chǎn)生大量活性氧(reactive oxygen species,ROS)、線粒體自噬功能障礙和線粒體動(dòng)力學(xué)改變等。因此在PSCI的發(fā)病機(jī)制中,健康的線粒體起著至關(guān)重要的作用[3-4]。最近,細(xì)胞間線粒體轉(zhuǎn)移被認(rèn)為是一種新型的細(xì)胞間信號(hào)傳導(dǎo)形式,該過程是通過細(xì)胞間隧道納米管(tunneling nanotubes,TNT)、細(xì)胞外囊泡(extracellular vesicles,EV)、間隙連接(gap junction,GJ)或其他途徑將整個(gè)線粒體轉(zhuǎn)移出供體細(xì)胞,隨后線粒體被受體細(xì)胞內(nèi)化納入或進(jìn)一步處理以進(jìn)行降解[5]。本綜述側(cè)重于線粒體轉(zhuǎn)移在PSCI中的具體作用,以期為臨床防治PSCI提供潛在靶點(diǎn)及理論依據(jù)。
本文文獻(xiàn)檢索策略:計(jì)算機(jī)檢索PubMed、Web of Science、中國知網(wǎng)(CNKI)、萬方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)等數(shù)據(jù)庫,檢索時(shí)間為建庫至2023年1月,中文檢索詞包括“腦卒中后認(rèn)知障礙”“線粒體轉(zhuǎn)移”“隧道納米管”“細(xì)胞外囊泡”“間隙連接”,英文檢索詞包括“mitochondrial transfer”“tunneling nanotubes”“extracellular vesicles”“gap junction”“post-stroke cognitive impairment”。文獻(xiàn)納入標(biāo)準(zhǔn):文獻(xiàn)內(nèi)容涉及線粒體轉(zhuǎn)移對(duì)PSCI的影響、線粒體轉(zhuǎn)移的神經(jīng)生物學(xué)機(jī)制。文獻(xiàn)排除標(biāo)準(zhǔn):與本文主題無關(guān)聯(lián)的文獻(xiàn)、質(zhì)量較差的文獻(xiàn)、無法獲取全文的文獻(xiàn)等。最終納入文獻(xiàn)71篇。
1 線粒體轉(zhuǎn)移的結(jié)構(gòu)機(jī)制
1.1 TNT TNT是直徑在50~150 nm的長距離管狀結(jié)構(gòu)或突起,依賴于細(xì)胞骨架纖維來源的肌動(dòng)蛋白和微管,是不同細(xì)胞成分的運(yùn)輸途徑[6]。值得注意的是,TNT介導(dǎo)的轉(zhuǎn)移可以是單向的,也可以是雙向的。誘導(dǎo)線粒體損傷的各種危險(xiǎn)因素可以促進(jìn)TNT的形成和線粒體的轉(zhuǎn)移,但很少有研究關(guān)注TNT的起始機(jī)制和調(diào)節(jié)。
TNT是開放式膜肌動(dòng)蛋白導(dǎo)管,膜和細(xì)胞骨架動(dòng)力學(xué)的調(diào)節(jié)可能在TNT的生物發(fā)生中起主要作用。有研究顯示,細(xì)胞骨架的主要調(diào)節(jié)因子——經(jīng)典的GTP酶Rho家族(Rac1、Cdc42和RhoA)與TNT形成有關(guān)[7]。Miro 1和Miro 2是一類新型Rho-GTP酶[8],將線粒體與KLF 5驅(qū)動(dòng)蛋白結(jié)合,共同形成一種運(yùn)動(dòng)適配器復(fù)合物,有助于線粒體運(yùn)輸并調(diào)節(jié)線粒體在微管上的運(yùn)動(dòng)[9]。此外,TSENG等[10]研究還表明,Miro 1是TNT形成和神經(jīng)元存活的必需物質(zhì)。間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)Miro1過表達(dá)后線粒體轉(zhuǎn)移的效率越高,其積極作用就越高。據(jù)報(bào)道,大多數(shù)腦細(xì)胞,包括星形膠質(zhì)細(xì)胞(astrocyte,AST)、神經(jīng)元和小膠質(zhì)細(xì)胞,通過TNT形成和線粒體轉(zhuǎn)移對(duì)各種損傷做出反應(yīng),例如AST和小膠質(zhì)細(xì)胞可以通過TNT相互影響,可能是清除大腦內(nèi)有害蛋白質(zhì)聚集體的重要機(jī)制[11]。WANG等[12]研究發(fā)現(xiàn),在AST-神經(jīng)元共培養(yǎng)中,暴露于應(yīng)激刺激的細(xì)胞與未受刺激細(xì)胞建立TNT聯(lián)系。同時(shí),在神經(jīng)元和AST之間形成的TNT的神經(jīng)元接觸位點(diǎn)觀察到連接蛋白43(connexin-43,Cx43)高表達(dá)[13]。Cx43在TNT的調(diào)節(jié)中起關(guān)鍵作用,降低Cx43的表達(dá)顯著影響了TNT的形成,并減少了線粒體轉(zhuǎn)移[14]。壓力條件同樣誘發(fā)TNT的形成,當(dāng)細(xì)胞暴露于與ROS水平升高相關(guān)的缺血損傷時(shí),線粒體以更有效的方式從MSC轉(zhuǎn)移到AST和PC12細(xì)胞。
此外,據(jù)報(bào)道,Wnt/Ca2+通過參與肌動(dòng)蛋白細(xì)胞骨架重塑的細(xì)胞內(nèi)級(jí)聯(lián)反應(yīng),在TNT形成和TNT介導(dǎo)的物質(zhì)轉(zhuǎn)移中發(fā)揮作用[15];核因子κB(nuclear factor-kappa B,NF-κB)輕鏈增強(qiáng)子信號(hào)通路的活化刺激了腫瘤壞死因子α誘導(dǎo)蛋白2(tumor necrosis factor α-induced protein 2,TNFαip2)的表達(dá),誘發(fā)F-肌動(dòng)蛋白聚合,促進(jìn)TNT的形成,抑制NF-κB途徑,減少TNT有益作用[16]。進(jìn)一步研究發(fā)現(xiàn),TNT介導(dǎo)的線粒體轉(zhuǎn)移主要表現(xiàn)為線粒體呼吸鏈的恢復(fù)、線粒體膜電位的增加以及ROS水平和細(xì)胞凋亡率的降低[17]。
1.2 EV EV由CHARGAFF和WEST在1940年發(fā)現(xiàn),是細(xì)胞分泌的微小囊泡顆粒,其有兩種主要類型:外泌體和微囊泡(microvesicle,MV)。與其他形式的細(xì)胞間通訊,如激素、生長因子、細(xì)胞因子等直接相互作用不同,EV的獨(dú)特之處在于其能包裝活性物質(zhì),例如較小的囊泡可能含有線粒體片段,包括線粒體蛋白和線粒體DNA(mitochondrial DNA,mtDNA),而較大的顆??赡芎姓麄€(gè)功能性線粒體,并將其遞送到另一個(gè)相鄰或遙遠(yuǎn)的細(xì)胞,從而改變受體細(xì)胞的功能[18]。
神經(jīng)干細(xì)胞(neural stem cells,NSCs)通過EV運(yùn)輸功能性線粒體,誘導(dǎo)中樞神經(jīng)系統(tǒng)疾病動(dòng)物模型的恢復(fù)[19];AST通過EV調(diào)節(jié)神經(jīng)元功能,促進(jìn)突觸形成并維持其正常功能[20];由MSC衍生的EV中,平均大小為250 nm的含有功能齊全的線粒體[21],轉(zhuǎn)移到肝內(nèi)中性粒細(xì)胞之后,對(duì)肝缺血/再灌注(ischemia/reperfusion,I/R)損傷具有治療作用[22]。除此之外,MSC-EVs可以釋放micro-RNA(miR)-133b、miR-184、miR-210或miR-17-92,以促進(jìn)神經(jīng)發(fā)生和血管生成,改善軸突或樹突形成和神經(jīng)突觸重塑,并抑制腦缺血性大鼠神經(jīng)元的凋亡[23]。EV是一類新興的藥物遞送天然載體,在卒中模型小鼠中注射負(fù)荷線粒體的EV,可通過提高腦內(nèi)皮細(xì)胞存活率保護(hù)血腦屏障(blood brain barrier,BBB),并減少大腦梗死面積[24]。小鼠短暫性局灶性腦缺血時(shí),EV在AST和神經(jīng)元之間的線粒體跨細(xì)胞轉(zhuǎn)移也被證明依賴于NAD+/CD38/環(huán)腺苷二磷酸核糖(cADPR)/Ca2+,CD38是一種Ⅱ型跨膜糖蛋白,可催化cADPR的合成與降解,其傳導(dǎo)的激活強(qiáng)烈地誘導(dǎo)了線粒體蛋白質(zhì)的O-GlcNA糖基化修飾,支持AST釋放的線粒體的功能,小干擾RNA(small interfering RNA,siRNA)抑制CD38表達(dá)后,EV的量顯著減少,并加劇了神經(jīng)系統(tǒng)的損害[25]。
線粒體除了在EV中被排出外,還具有產(chǎn)生自己的囊泡的能力,稱為線粒體衍生囊泡(mitochondria-derived vesicle,MDV),以便將線粒體蛋白和脂質(zhì)運(yùn)輸?shù)郊?xì)胞內(nèi)的其他細(xì)胞器[26]。MDV是除了線粒體蛋白酶、泛素介導(dǎo)的蛋白酶體降解和線粒體自噬作用之外的新型線粒體質(zhì)量控制手段。
1.3 GJ GJ是連接蛋白的跨膜復(fù)合物,允許細(xì)胞間通訊,其中離子和小信號(hào)分子可以在相鄰細(xì)胞之間轉(zhuǎn)移[9]。線粒體通過GJ內(nèi)化在細(xì)胞之間轉(zhuǎn)移,這個(gè)過程中,兩個(gè)相連細(xì)胞中的一個(gè)細(xì)胞會(huì)吞噬GJ,然后占據(jù)相鄰細(xì)胞的細(xì)胞膜和細(xì)胞質(zhì),最終形成雙膜囊泡,通常稱該囊泡為連接小體或環(huán)狀間隙連接[27]。
Cx43是線粒體通過GJ轉(zhuǎn)移所必需的,已被證明在某些情況下可以保護(hù)腦組織免受I/R損傷。線粒體從MSCs到受傷運(yùn)動(dòng)神經(jīng)元的轉(zhuǎn)移是通過GJ發(fā)生的,減少了氧糖剝奪(OGD)誘導(dǎo)的細(xì)胞凋亡,促進(jìn)神經(jīng)元存活并改變脊髓前角運(yùn)動(dòng)神經(jīng)元中細(xì)胞凋亡相關(guān)蛋白的表達(dá)。此外,研究顯示,MSCs和神經(jīng)元之間可能形成Cx43和Cx32的異型間隙連接,其中Cx43在MSC中表達(dá),但不在運(yùn)動(dòng)神經(jīng)元中表達(dá);同時(shí),Cx32在運(yùn)動(dòng)神經(jīng)元中表達(dá),但不在MSC中表達(dá)[28]。
另有研究認(rèn)為,編碼Cx43的基因GJA1,還可以在內(nèi)部翻譯以產(chǎn)生長度為20 kD的肽,稱為間隙連接蛋白α1截短單體-20k(gap junction protein alpha 1 truncated monomer-20k,GJA1-20k)[29],GJA1-20k促進(jìn)微管依賴性線粒體轉(zhuǎn)運(yùn)并在細(xì)胞應(yīng)激期間保持線粒體網(wǎng)絡(luò)的完整性[30]。且GJA1-20k上調(diào)AST中功能性Cx43表達(dá),促進(jìn)線粒體從AST向神經(jīng)元的傳遞[31],缺乏GJA1-20k會(huì)加速Cx43蛋白降解,抑制線粒體的轉(zhuǎn)移[32]。鑒于GJA1-20k在心臟I/R損傷情況下的保護(hù)作用,GJA1-20k可能在大腦I/R損傷中也具有治療潛力。
1.4 通過其他途徑進(jìn)行線粒體轉(zhuǎn)移:細(xì)胞融合和線粒體擠出 如上所述,線粒體從供體細(xì)胞轉(zhuǎn)移到受體細(xì)胞在大多數(shù)情況下依賴于TNT、EV和GJ。然而,一些研究也報(bào)道,通過細(xì)胞融合和線粒體擠出也可進(jìn)行線粒體轉(zhuǎn)移。細(xì)胞融合可導(dǎo)致兩個(gè)細(xì)胞之間共享胞質(zhì)內(nèi)容物和細(xì)胞器,但細(xì)胞核保持完整?;谝环N仙臺(tái)病毒包膜的方法,WADA等[33]證明可以讓兩個(gè)分離的細(xì)胞通過狹窄的細(xì)胞質(zhì)連接融合,隨后,其可以調(diào)控細(xì)胞質(zhì)連接的距離,以實(shí)現(xiàn)單個(gè)線粒體轉(zhuǎn)移速率的定量控制。通過部分細(xì)胞融合和線粒體轉(zhuǎn)移,MSCs可以將成年小鼠心肌細(xì)胞重新編程為恢復(fù)活力的祖細(xì)胞樣狀態(tài)[34]。來自骨髓和淋巴譜系的細(xì)胞可以低速率與不同的組織融合,以響應(yīng)損傷或炎癥[35]。細(xì)胞融合可以改變所涉及的細(xì)胞的潛力,對(duì)再生和癌癥具有重要意義。
線粒體擠出是細(xì)胞之間線粒體轉(zhuǎn)移的另一種可能機(jī)制,主要作為線粒體質(zhì)量控制的一種發(fā)生手段或危險(xiǎn)信號(hào)轉(zhuǎn)導(dǎo)。在腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)誘導(dǎo)的壞死性凋亡細(xì)胞中,細(xì)胞質(zhì)液泡包圍線粒體,與質(zhì)膜融合,將游離線粒體釋放到細(xì)胞外培養(yǎng)基。因?yàn)榧?dòng)蛋白或微管蛋白的不穩(wěn)定抑制了細(xì)胞質(zhì)液泡的形成,所以完整的肌動(dòng)蛋白和微管蛋白細(xì)胞骨架也是膜起泡和線粒體擠出所必需的。研究發(fā)現(xiàn),從應(yīng)激細(xì)胞擠出的游離線粒體是引發(fā)炎癥反應(yīng)的特殊危險(xiǎn)信號(hào)之一[36]。BOUDREAU等[37]揭示了活化的血小板可以釋放功能性線粒體,將功能性線粒體由靜脈注射到小鼠體內(nèi)可促使中性粒細(xì)胞黏附在血管壁上,導(dǎo)致中性粒細(xì)胞的激活和炎癥反應(yīng)。
神經(jīng)元和AST之間的線粒體轉(zhuǎn)移主要機(jī)制如圖1。
2 線粒體轉(zhuǎn)移在PSCI中的作用
2.1 增加神經(jīng)元活力 缺血誘導(dǎo)的糖氧剝奪在受影響區(qū)域?qū)е翧TP產(chǎn)生降低,線粒體ROS過度釋放,線粒體膜上的離子不平衡,最終導(dǎo)致程序性細(xì)胞死亡[3],從而導(dǎo)致海馬神經(jīng)元在腦I/R后嚴(yán)重受損,認(rèn)知受到影響。線粒體從AST轉(zhuǎn)移到神經(jīng)元已被證明可以增加神經(jīng)元存活率,恢復(fù)神經(jīng)元線粒體膜電位,提高ATP水平,使神經(jīng)元鈣動(dòng)力學(xué)正?;?,并增加體外樹突長度[38]。
在壓力條件下,神經(jīng)元的線粒體釋放也被認(rèn)為是“求救”信號(hào),有缺陷的線粒體被吸收后,導(dǎo)致AST的線粒體Miro 1表達(dá)增加,有助于健康線粒體從AST轉(zhuǎn)移到神經(jīng)元[38]。此過程涉及CD38,位于內(nèi)質(zhì)網(wǎng)上的Sigma-1受體分子伴侶(sigma-1 receptor chaperone,Sig-1R)通過激活細(xì)胞外調(diào)節(jié)蛋白激酶1/2(sxtracellular signal regulated kinase1/2,ERK1/2)增強(qiáng)CD38的表達(dá),從而促進(jìn)AST線粒體轉(zhuǎn)移[39]。另外,線粒體融合蛋白2(mitofusin 2,Mfn2)與線粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜(mitochondria associated endoplasmic reticulum membrane,MAM)形成有關(guān),介導(dǎo)了骨細(xì)胞之間的線粒體轉(zhuǎn)移,且MAM在這方面可能具有未知的功能[40]。HAYAKAWA等[41]也證明了CD38信號(hào)傳導(dǎo)介導(dǎo)了活化的AST中功能性線粒體的釋放,恢復(fù)ATP水平和神經(jīng)元活力。用局灶性腦缺血小鼠模型中培養(yǎng)的AST釋放的含有細(xì)胞外線粒體的顆粒進(jìn)行治療,可對(duì)腦卒中小鼠提供神經(jīng)保護(hù)。在體外,功能性線粒體可以通過TNT由MSC轉(zhuǎn)移到受損的內(nèi)皮細(xì)胞,從而拯救線粒體有氧呼吸并保護(hù)內(nèi)皮細(xì)胞免于凋亡,顯著提高受損微血管細(xì)胞的線粒體活性,減少梗死面積,利于血管再生,促進(jìn)功能恢復(fù)[42]。
以上研究表明,體外MSC到神經(jīng)元線粒體遞送和體內(nèi)AST衍生線粒體轉(zhuǎn)移均可促進(jìn)神經(jīng)元存活,適當(dāng)增強(qiáng)腦卒中后線粒體轉(zhuǎn)移有可能增強(qiáng)缺血區(qū)神經(jīng)元活力并改善PSCI。
2.2 增強(qiáng)線粒體代謝 神經(jīng)元能夠釋放受損的線粒體并轉(zhuǎn)移到AST中進(jìn)行降解和接收,這種能力首先在小鼠視網(wǎng)膜神經(jīng)節(jié)細(xì)胞軸突中觀察到,其通過在與相鄰AST直接接觸時(shí)產(chǎn)生突起來擠出受損的線粒體,轉(zhuǎn)移到AST后,線粒體通過傳遞自噬的過程中降解[43]。線粒體對(duì)于突觸功能和神經(jīng)遞質(zhì)的合成、釋放和攝取至關(guān)重要[44]。損傷線粒體的累積可能導(dǎo)致神經(jīng)損傷和突觸功能障礙,突觸缺失與認(rèn)知缺陷和運(yùn)動(dòng)功能障礙密切相關(guān)[45-46]。
神經(jīng)元和AST之間形成了TNT樣結(jié)構(gòu),并首次發(fā)現(xiàn)人類AST對(duì)神經(jīng)元線粒體的內(nèi)化和降解增加,且S100鈣結(jié)合蛋白A4(s100 calcium binding protein A4,S100A4)可能參與此過程的線粒體轉(zhuǎn)移[47]。Rhes蛋白是大腦線粒體自噬的關(guān)鍵調(diào)節(jié)因子,已被證明通過TNT在紋狀體神經(jīng)元之間轉(zhuǎn)移,并與受體細(xì)胞中受損的線粒體結(jié)合,這表明神經(jīng)元也可能轉(zhuǎn)移線粒體自噬增強(qiáng)蛋白以幫助傳遞自噬過程[48]。在短暫的大腦中動(dòng)脈缺血(middle cerebral artery occlusion,MCAO)大鼠中給予自噬誘導(dǎo)劑西羅莫司可激活線粒體自噬,從而減輕線粒體功能障礙并改善神經(jīng)系統(tǒng)結(jié)局。有趣的是,線粒體自噬在卒中的情況下也可能產(chǎn)生負(fù)面影響,其可能會(huì)引起線粒體不受控制的降解,從而導(dǎo)致細(xì)胞死亡[49]。反之抑制線粒體鈣離子單向轉(zhuǎn)運(yùn)蛋白(mitochondrial calcium uniporter,MCU)可有效遏制過度線粒體自噬,保護(hù)神經(jīng)元免受I/R損傷[50]。
線粒體轉(zhuǎn)移也被認(rèn)為能夠幫助細(xì)胞清除致病物質(zhì)。例如,暴露于α-突觸核蛋白(α-synuclein,α-syn)的小膠質(zhì)細(xì)胞,已被證明可以通過TNT將線粒體和α-syn轉(zhuǎn)移到鄰近的健康小膠質(zhì)細(xì)胞,其中α-syn被有效降解[51]。受損細(xì)胞將損傷線粒體轉(zhuǎn)移到健康細(xì)胞中進(jìn)行內(nèi)吞和降解,從而實(shí)現(xiàn)線粒體的循環(huán)[52]。綜上所述,這些發(fā)現(xiàn)強(qiáng)調(diào)了細(xì)胞間線粒體轉(zhuǎn)移可以通過降解受損線粒體,確保海馬神經(jīng)元和突觸的線粒體完整性,從而為治療PSCI提供新的治療靶點(diǎn)。
2.3 調(diào)控神經(jīng)炎癥 缺血性神經(jīng)炎癥是影響缺血性卒中發(fā)展和預(yù)后的重要病理標(biāo)志[53]。一旦啟動(dòng)炎癥級(jí)聯(lián)反應(yīng),就會(huì)加重神經(jīng)元功能障礙,誘導(dǎo)BBB破裂,產(chǎn)生腦水腫,最終導(dǎo)致神經(jīng)元死亡[54]。外源性線粒體移植可以有效地驅(qū)動(dòng)小膠質(zhì)細(xì)胞表型轉(zhuǎn)化,進(jìn)而改善炎癥反應(yīng),進(jìn)一步改善認(rèn)知障礙[51,55]。
神經(jīng)炎癥過程的啟動(dòng)主要發(fā)生在半影區(qū)域,可歸因于缺血核心壞死細(xì)胞釋放細(xì)胞內(nèi)容物和促炎分子。這些炎癥觸發(fā)因素引起線粒體鈣離子攝取增加、線粒體膜通透性轉(zhuǎn)換孔(mitochondrial permeability transition pore,mPTP)開放和線粒體ROS過度產(chǎn)生,特別是在腦缺血時(shí),線粒體mPTP的開放釋放損傷相關(guān)的分子模式(damage associated molecular patterns,DAMPs),如ATP、ROS、心磷脂和mtDNA,參與NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermoprotein domain 3,NLRP3)的啟動(dòng)和激活,導(dǎo)致神經(jīng)炎癥和細(xì)胞焦亡[56]。整個(gè)線粒體也可以從受損細(xì)胞中釋放出來,并充當(dāng)特殊的DAMPs,通過血紅素氧化酶1(heme oxygenase-1,HO-1)信號(hào)通路被MSC吞噬和降解,隨后刺激MSC中的線粒體生物發(fā)生[57]。通過HO-1通路維持BBB的完整性,線粒體生物發(fā)生為細(xì)胞供給許多再生線粒體,均可緩解PSCI。由于受損的線粒體在促炎信號(hào)傳導(dǎo)中起關(guān)鍵作用,因此通過MSC療法修復(fù)線粒體功能可以隔離炎癥并促進(jìn)中樞神經(jīng)系統(tǒng)穩(wěn)態(tài)。MSC在卒中的假定治療作用可能涉及通過健康線粒體轉(zhuǎn)移到缺血大腦受損細(xì)胞中進(jìn)行功能修復(fù),從而減少有害炎癥遞質(zhì)的釋放,抑制繼發(fā)性細(xì)胞死亡,維持腦血管正常功能[58]。WEBB等[59]證明,在小鼠卒中模型中用NSC-EVs治療可顯著減少神經(jīng)損傷,對(duì)運(yùn)動(dòng)功能、記憶形成和慢性炎癥也有積極影響。
體外研究發(fā)現(xiàn),AST釋放的線粒體似乎對(duì)小膠質(zhì)細(xì)胞發(fā)揮抗炎作用,因?yàn)樾∧z質(zhì)細(xì)胞通過攝取其釋放線粒體增加了人蛋白(humanin,HN)水平,這與過氧化物酶體增殖物激活的受體γ(peroxisome proliferator activated receptor γ,PPARγ)及含錳超氧化物歧化酶(manganese superoxide dismutase,Mn-SOD)水平升高有關(guān),這兩者均可促進(jìn)小膠質(zhì)細(xì)胞向抗炎修復(fù)性表型轉(zhuǎn)化[60]。然而,與AST線粒體轉(zhuǎn)移不同,活化小膠質(zhì)細(xì)胞通過功能失調(diào)的線粒體轉(zhuǎn)移將炎癥信號(hào)傳播到AST,從而觸發(fā)受體AST的促炎A1激活狀態(tài)。這些小膠質(zhì)細(xì)胞激活的AST反過來將碎片化的線粒體釋放到細(xì)胞外空間,通過抑制ATP產(chǎn)生和線粒體膜電位來觸發(fā)神經(jīng)元損傷[61]。以上研究表明線粒體轉(zhuǎn)移可以減輕神經(jīng)炎癥,因此可能減輕腦血管疾病引起的認(rèn)知障礙。
3 靶向線粒體移植治療PSCI
缺血性腦卒中后,缺乏葡萄糖和氧氣供應(yīng)會(huì)干擾線粒體中的ATP合成,導(dǎo)致能量失衡,細(xì)胞穩(wěn)態(tài)失調(diào),最終導(dǎo)致海馬神經(jīng)元大量死亡,進(jìn)而引起認(rèn)知功能障礙。因此,靶向線粒體是一種有前途的腦卒中后神經(jīng)保護(hù)
方法。
然而這種內(nèi)源性機(jī)制在很大程度不能限制腦缺血后神經(jīng)元的退化,需要外源性線粒體移植治療進(jìn)行干預(yù)(表1)。線粒體移植已被證明在一系列條件下發(fā)揮神經(jīng)保護(hù)作用并改善疾病嚴(yán)重程度。鼻內(nèi)給予線粒體可緩解小鼠內(nèi)側(cè)前額葉皮質(zhì)腦卒中光血栓模型中的認(rèn)知障礙和線粒體功能障礙[62]。一項(xiàng)腦缺血模型(MCAO)大鼠模型的隨訪研究表明,受損腦微血管系統(tǒng)接受了從移植MSC轉(zhuǎn)移的線粒體之后,其線粒體活性明顯提高,血管生成增強(qiáng),腦梗死體積減小,并且神經(jīng)功能也得到了改善[42]。研究表明,AST線粒體移植能夠調(diào)節(jié)腦出血后神經(jīng)元抗氧化防御和神經(jīng)可塑性,促進(jìn)神經(jīng)元的功能恢復(fù)[63]。除此之外,AST在外源性線粒體的作用下可增強(qiáng)腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)的表達(dá),PSCI與海馬體中的BDNF密切相關(guān),BDNF有利于增強(qiáng)海馬突觸可塑性、神經(jīng)發(fā)生和神經(jīng)元存活[64]。同時(shí),自體線粒體移植已被證明可以減少細(xì)胞氧化應(yīng)激和細(xì)胞凋亡,并改善缺血性腦卒中后的神經(jīng)發(fā)生[65]。其他腦疾病,例如在精神分裂癥的動(dòng)物模型中發(fā)現(xiàn),在大鼠前額葉皮質(zhì)內(nèi)注射分離的正常線粒體可防止其注意力降低[66]。
不同細(xì)胞來源的線粒體均可產(chǎn)生治療作用。事實(shí)上,AST或MSC可能作為線粒體分離的供體細(xì)胞。分離的異源線粒體移植已被證明可以減小缺血性卒中大鼠模型中的梗死面積并改善行為結(jié)果[67]。且正如大量動(dòng)物和臨床研究顯示,MSC移植正在成為緩解神經(jīng)功能障礙的一種有前途的治療方法。此外,源自MSC的EV也促進(jìn)了卒中后恢復(fù),其具有調(diào)節(jié)受體細(xì)胞基因表達(dá)的能力,改變?nèi)毖宰渲兴婕暗募?xì)胞特性,并促進(jìn)各種分子轉(zhuǎn)移。通過抑制EV的釋放,其產(chǎn)生的有益效果也被抑制[68-69]。在MSC與人外周血單個(gè)核細(xì)胞(PBMC)的共培養(yǎng)實(shí)驗(yàn)中,當(dāng)以增加的MSC∶PBMC比率培養(yǎng)供體MSC時(shí),觀察到線粒體轉(zhuǎn)移呈劑量依賴性曲線[70]。進(jìn)一步體內(nèi)研究,通過用新鮮的人分離線粒體靜脈內(nèi)治療阿爾茨海默?。ˋD)小鼠,有利于治療AD缺陷,線粒體移植后14 d,接受外源性線粒體治療的AD小鼠的認(rèn)知能力顯著提高,改善了腦病理學(xué)和線粒體缺陷[71]。線粒體的其他來源可能是內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPC),EPC衍生的細(xì)胞外線粒體可以轉(zhuǎn)移到腦內(nèi)皮細(xì)胞,并恢復(fù)線粒體功能,修復(fù)破壞的BBB。增強(qiáng)細(xì)胞間線粒體轉(zhuǎn)移或許是改善神經(jīng)系統(tǒng)疾病線粒體功能障礙的有效措施。
最后,目前調(diào)查人工線粒體移植在大腦中的治療效果的研究僅限于臨床試驗(yàn)前的動(dòng)物研究,因此需要更多深層次的研究來證明該方法對(duì)人類患者的安全性和有效性。但以上研究結(jié)果可以表明,線粒體轉(zhuǎn)移到缺血性神經(jīng)元有助于腦卒中的治療,線粒體移植可能是改善PSCI的潛在治療策略。
4 小結(jié)與展望
人工線粒體移植已被證明在腦損傷、神經(jīng)退行性疾病和神經(jīng)發(fā)育障礙的臨床前動(dòng)物模型中具有神經(jīng)保護(hù)作用。如前所述,神經(jīng)膠質(zhì)細(xì)胞和大腦神經(jīng)元間的線粒體轉(zhuǎn)移可以增強(qiáng)神經(jīng)元活力、幫助功能障礙的線粒體降解和調(diào)控神經(jīng)炎癥等。然而,線粒體轉(zhuǎn)移/移植是否影響受體細(xì)胞的線粒體穩(wěn)態(tài)尚未在文獻(xiàn)中明確描述,應(yīng)更加關(guān)注線粒體的數(shù)量和質(zhì)量及其對(duì)移植過程中線粒體穩(wěn)態(tài)的影響。
線粒體功能障礙是腦缺血發(fā)病機(jī)制的早期重要因素之一,恢復(fù)線粒體的功能和拯救受損線粒體,對(duì)于治療缺血性腦損傷具有至關(guān)重要的作用,細(xì)胞間線粒體轉(zhuǎn)移可能是治療PSCI的有效靶標(biāo)。通過加速神經(jīng)元釋放或AST吞噬來促進(jìn)細(xì)胞間線粒體轉(zhuǎn)移,可作為未來治療缺血性腦卒中的潛在治療策略。然而很少有研究將線粒體轉(zhuǎn)移與PSCI直接聯(lián)系,需要進(jìn)一步的研究來闡述這一過程在腦卒中患者中的安全性、有效性。在未來幾年,研究人員應(yīng)專注于線粒體轉(zhuǎn)移治療PSCI的潛在治療應(yīng)用,并探索基于線粒體的療法,以發(fā)揮其最大潛力。
作者貢獻(xiàn):肖雨倩進(jìn)行文章的構(gòu)思與撰寫,文章的可行性分析;王巖進(jìn)行文獻(xiàn)的檢索與收集;陳淑穎、陳麗敏進(jìn)行文獻(xiàn)的分析與整理;孫可心、萬俊進(jìn)行論文修訂;白艷杰負(fù)責(zé)文章的質(zhì)量控制及審校、監(jiān)督管理,并對(duì)文章整體負(fù)責(zé)。
本文無利益沖突。
參考文獻(xiàn)
LIM J S,LEE J J,WOO C W. Post-stroke cognitive impairment:pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques[J]. J Stroke,2021,23(3):297-311. DOI:10.5853/jos.2021.02376.
ROST N S,BRODTMANN A,PASE M P,et al. Post-stroke cognitive impairment and dementia[J]. Circ Res,2022,130(8):1252-1271. DOI:10.1161/circresaha.122.319951.
YANG J L,MUKDA S,CHEN S D. Diverse roles of mitochondria in ischemic stroke[J]. Redox Biol,2018,16:263-275. DOI:10.1016/j.redox.2018.03.002.
NORAT P,SOLDOZY S,SOKOLOWSKI J D,et al. Mitochondrial dysfunction in neurological disorders:exploring mitochondrial transplantation[J]. NPJ Regen Med,2020,5(1):22. DOI:10.1038/s41536-020-00107-x.
LIGHTOWLERS R N,CHRZANOWSKA-LIGHTOWLERS Z M,RUSSELL O M. Mitochondrial transplantation-a possible therapeutic for mitochondrial dysfunction? Mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking[J]. EMBO Rep,2020,21(9):e50964. DOI:10.15252/embr.202050964.
VIGNAIS M L,CAICEDO A,BRONDELLO J M,et al. Cell connections by tunneling nanotubes:effects of mitochondrial trafficking on target cell metabolism,homeostasis,and response to therapy[J]. Stem Cells Int,2017,2017:6917941. DOI:10.1155/2017/6917941.
ZHANG S L,KAZANIETZ M G,COOKE M. Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease[J]. Am J Physiol Cell Physiol,2020,319(5):C877-884. DOI:10.1152/ajpcell.00351.2020.
NAHACKA Z,ZOBALOVA R,DUBISOVA M,et al. Miro proteins connect mitochondrial function and intercellular transport[J]. Crit Rev Biochem Mol Biol,2021,56(4):401-425. DOI:10.1080/10409238.2021.1925216.
PALIWAL S,CHAUDHURI R,AGRAWAL A,et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J]. J Biomed Sci,2018,25(1):31. DOI:10.1186/s12929-018-0429-1.
TSENG N,LAMBIE S C,HUYNH C Q,et al. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro:the role of Miro1[J]. J Cereb Blood Flow Metab,2021,41(4):761-770. DOI:10.1177/0271678X20928147.
ROSTAMI J,MOTHES T,KOLAHDOUZAN M,et al. Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates[J]. J Neuroinflammation,2021,18(1):124. DOI:10.1186/s12974-021-02158-3.
WANG Y,CUI J,SUN X,et al. Tunneling-nanotube development in astrocytes depends on p53 activation[J]. Cell Death Differ,2011,18(4):732-742. DOI:10.1038/cdd.2010.147.
WANG X,BUKORESHTLIEV N V,GERDES H H. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes[J]. PLoS One,2012,7(10):e47429. DOI:10.1371/journal.pone.0047429.
YAO Y,F(xiàn)AN X L,JIANG D,et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation[J]. Stem Cell Reports,2018,11(5):1120-1135. DOI:10.1016/j.stemcr.2018.09.012.
VARGAS J Y,LORIA F,WU Y J,et al. The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes[J]. EMBO J,2019,38(23):e101230. DOI:10.15252/embj.2018101230.
FENG Y H,ZHU R J,SHEN J,et al. Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes[J]. Stem Cells Dev,2019,28(10):674-682. DOI:10.1089/scd.2018.0248.
TISHCHENKO A,AZORíN D D,VIDAL-BRIME L,et al. Cx43 and associated cell signaling pathways regulate tunneling nanotubes in breast cancer cells[J]. Cancers (Basel),2020,12(10):2798. DOI:10.3390/cancers12102798.
ZABOROWSKI M P,BALAJ L,BREAKEFIELD X O,et al. Extracellular vesicles:composition,biological relevance,and methods of study[J]. Bioscience,2015,65(8):783-797. DOI:10.1093/biosci/biv084.
PERUZZOTTI-JAMETTI L,BERNSTOCK J D,WILLIS C M,et al. Neural stem cells traffic functional mitochondria via extracellular vesicles[J]. PLoS Biol,2021,19(4):e3001166. DOI:10.1371/journal.pbio.3001166.
VARCIANNA A,MYSZCZYNSKA M A,CASTELLI L M,et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS[J]. EBioMedicine,2019,40:626-635. DOI:10.1016/j.ebiom.2018.11.067.
D'ACUNZO P,PéREZ-GONZáLEZ R,KIM Y,et al. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome[J]. Sci Adv,2021,7(7):eabe5085. DOI:10.1126/sciadv.abe5085.
LU T Y,ZHANG J B,CAI J Y,et al. Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia-reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps[J]. Biomaterials,2022,284:121486. DOI:10.1016/j.biomaterials.2022.121486.
MOON G J,SUNG J H,KIM D H,et al. Application of mesenchymal stem cell-derived extracellular vesicles for stroke:biodistribution and microRNA study[J]. Transl Stroke Res,2019,10(5):509-521. DOI:10.1007/s12975-018-0668-1.
DAVE K M,STOLZ D B,VENNA V R,et al. Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures[J]. J Control Release,2023,354:368-393. DOI:10.1016/j.jconrel.2023.01.025.
PARK J H,NAKAMURA Y,LI W L,et al. Effects of O-GlcNAcylation on functional mitochondrial transfer from astrocytes[J]. J Cereb Blood Flow Metab,2021,41(7):1523-1535. DOI:10.1177/0271678X20969588.
ZOROVA L D,KOVALCHUK S I,POPKOV V A,et al. Do extracellular vesicles derived from mesenchymal stem cells contain functional mitochondria?[J]. Int J Mol Sci,2022,23(13):7408. DOI:10.3390/ijms23137408.
BELL C L,SHAKESPEARE T I,SMITH A R,et al. Visualization of annular gap junction vesicle processing:the interplay between annular gap junctions and mitochondria[J]. Int J Mol Sci,2018,20(1):44. DOI:10.3390/ijms20010044.
LI H,WANG C,HE T,et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction[J]. Theranostics,2019,9(7):2017-2035. DOI:10.7150/thno.29400.
WHISENANT C C,SHAW R M. Internal translation of Gja1 (Connexin43) to produce GJA1-20k:implications for arrhythmia and ischemic-preconditioning[J]. Front Physiol,2022,13:1058954. DOI:10.3389/fphys.2022.1058954.
FU Y,ZHANG S S,XIAO S H,et al. Cx43 isoform GJA1-20k promotes microtubule dependent mitochondrial transport[J]. Front Physiol,2017,8:905. DOI:10.3389/fphys.2017.00905.
REN D B,ZHENG P,ZOU S F,et al. GJA1-20K enhances mitochondria transfer from astrocytes to neurons via Cx43-TnTs after traumatic brain injury[J]. Cell Mol Neurobiol,2022,42(6):1887-1895. DOI:10.1007/s10571-021-01070-x.
XIAO S H,SHIMURA D,BAUM R,et al. Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias[J]. J Clin Invest,2020,130(9):4858-4870. DOI:10.1172/JCI134682.
WADA K I,HOSOKAWA K,ITO Y,et al. Quantitative control of mitochondria transfer between live single cells using a microfluidic device[J]. Biol Open,2017,6(12):1960-1965. DOI:10.1242/bio.024869.
MOHAMMADALIPOUR A,DUMBALI S P,WENZEL P L. Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy[J]. Front Cell Dev Biol,2020,
8:603292. DOI:10.3389/fcell.2020.603292.
NYGREN J M,LIUBA K,BREITBACH M,et al. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion[J]. Nat Cell Biol,2008,10(5):584-592. DOI:10.1038/ncb1721.
MAEDA A,F(xiàn)ADEEL B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals[J]. Cell Death Dis,2014,5(7):e1312. DOI:10.1038/cddis.2014.277.
BOUDREAU L H,DUCHEZ A C,CLOUTIER N,et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation[J]. Blood,2014,124(14):2173-2183. DOI:10.1182/blood-2014-05-573543.
ENGLISH K,SHEPHERD A,UZOR N E,et al. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer[J]. Acta Neuropathol Commun,2020,8(1):36. DOI:10.1186/s40478-020-00897-7.
LIU Z H,SUN Y,QI Z T,et al. Mitochondrial transfer/transplantation:an emerging therapeutic approach for multiple diseases[J]. Cell Biosci,2022,12(1):66. DOI:10.1186/s13578-022-00805-7.
GAO J J,QIN A,LIU D L,et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network[J]. Sci Adv,2019,5(11):eaaw7215. DOI:10.1126/sciadv.aaw7215.
HAYAKAWA K,ESPOSITO E,WANG X H,et al. Transfer of mitochondria from astrocytes to neurons after stroke[J]. Nature,2016,535(7613):551-555. DOI:10.1038/nature18928.
LIU K M,GUO L,ZHOU Z J,et al. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke[J]. Microvasc Res,2019,123:74-80. DOI:10.1016/j.mvr.2019.01.001.
DAVIS C H,KIM K Y,BUSHONG E A,et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci USA,2014,111(26):9633-9638. DOI:10.1073/pnas.1404651111.
HAN S,JEONG Y Y,SHESHADRI P,et al. Mitophagy regulates integrity of mitochondria at synapses and is critical for synaptic maintenance[J]. EMBO Rep,2020,21(9):e49801. DOI:10.15252/embr.201949801.
ROBINSON J L,MOLINA-PORCEL L,CORRADA M M,et al. Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old[J]. Brain,2014,137(Pt 9):2578-2587. DOI:10.1093/brain/awu190.
KASHYAP G,BAPAT D,DAS D,et al. Synapse loss and progress of Alzheimer's disease-a network model[J]. Sci Rep,2019,9(1):6555. DOI:10.1038/s41598-019-43076-y.
LAMPINEN R,BELAYA I,SAVELEVA L,et al. Neuron-astrocyte transmitophagy is altered in Alzheimer's disease[J]. Neurobiol Dis,2022,170:105753. DOI:10.1016/j.nbd.2022.105753.
SHARMA M,RAMíREZ JARQUíN U N,RIVERA O,et al. Rhes,a striatal-enriched protein,promotes mitophagy via nix[J]. Proc Natl Acad Sci USA,2019,116(47):23760-23771. DOI:10.1073/pnas.1912868116.
LI Q,ZHANG T,WANG J X,et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke[J]. Biochem Biophys Res Commun,2014,
444(2):182-188. DOI:10.1016/j.bbrc.2014.01.032.
YU S S,ZHENG S F,LENG J,et al. Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy[J]. Neurosci Lett,2016,628:24-29. DOI:10.1016/j.neulet.2016.06.012.
SCHEIBLICH H,DANSOKHO C,MERCAN D,et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes[J]. Cell,2021,184(20):5089-5106.e21. DOI:10.1016/j.cell.2021.09.007.
HASAN-OLIVE M M,ENGER,HANSSON H A,et al. Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients[J]. Fluids Barriers CNS,2019,16(1):39. DOI:10.1186/s12987-019-0160-7.
MO Y,SUN Y Y,LIU K Y. Autophagy and inflammation in ischemic stroke[J]. Neural Regen Res,2020,15(8):1388-1396. DOI:10.4103/1673-5374.274331.
JAYARAJ R L,AZIMULLAH S,BEIRAM R,et al. Neuroinflammation:friend and foe for ischemic stroke[J]. J Neuroinflammation,2019,16(1):142. DOI:10.1186/s12974-019-1516-2.
YAN C Y,MA Z,MA H L,et al. Mitochondrial transplantation attenuates brain dysfunction in Sepsis by driving microglial M2 polarization[J]. Mol Neurobiol,2020,57(9):3875-3890. DOI:10.1007/s12035-020-01994-3.
HE Z,NING N Y,ZHOU Q X,et al. Mitochondria as a therapeutic target for ischemic stroke[J]. Free Radic Biol Med,2020,146:45-58. DOI:10.1016/j.freeradbiomed.2019.11.005.
MAHROUF-YORGOV M,AUGEUL L,DA SILVA C C,et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ,2017,24(7):1224-1238. DOI:10.1038/cdd.2017.51.
GUO S Z,DENG W J,XING C H,et al. Effects of aging,hypertension and diabetes on the mouse brain and heart vasculomes[J]. Neurobiol Dis,2019,126:117-123. DOI:10.1016/j.nbd.2018.07.021.
WEBB R L,KAISER E E,SCOVILLE S L,et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model[J]. Transl Stroke Res,2018,9(5):530-539. DOI:10.1007/s12975-017-0599-2.
JUNG J E,SUN G,BAUTISTA GARRIDO J,et al. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage:implication of mitochondria transfer and microglia phenotype change[J]. J Neurosci,2020,40(10):2154-2165. DOI:10.1523/jneurosci.2212-19.2020.
JOSHI A U,MINHAS P S,LIDDELOW S A,et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration[J]. Nat Neurosci,2019,22(10):1635-1648. DOI:10.1038/s41593-019-0486-0.
HOSSEINI L,KARIMIPOUR M,SEYEDAGHAMIRI F,et al. Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice[J]. J Stroke Cerebrovasc Dis,2022,31(12):106801. DOI:10.1016/j.jstrokecerebrovasdis.2022.106801.
TASHIRO R,BAUTISTA-GARRIDO J,OZAKI D,et al. Transplantation of astrocytic mitochondria modulates neuronal antioxidant defense and neuroplasticity and promotes functional recovery after intracerebral hemorrhage[J]. J Neurosci,2022,42(36):7001-7014. DOI:10.1523/jneurosci.2222-21.2022.
ZHAO J,QU D,XI Z,et al. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF[J]. Transl Res,2021,235:102-114. DOI:10.1016/j.trsl.2021.03.017.
ZHAN Z,MA Z,YAN C,et al. Muscle-derived autologous mitochondrial transplantation:a novel strategy for treating cerebral ischemic injury[J]. Behav Brain Res,2019,356:322-331. DOI:10.1016/j.bbr.2018.09.005.
ROBICSEK O,ENE H M,KARRY R,et al. Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder[J]. Schizophr Bull,2018,44(2):432-442. DOI:10.1093/schbul/sbx077.
HUANG P J,KUO C C,LEE H C,et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains[J]. Cell Transplant,2016,25(5):913-927. DOI:10.3727/096368915X689785.
ZHANG Z F,ZOU X X,ZHANG R,et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke[J]. Aging (Albany NY),2021,13(2):3060-3079. DOI:10.18632/aging.202466.
FENG B,MENG L,LUAN L M,et al. Upregulation of extracellular vesicles-encapsulated miR-132 released from mesenchymal stem cells attenuates ischemic neuronal injury by inhibiting Smad2/c-Jun pathway via Acvr2b suppression[J]. Front Cell Dev Biol,2020,8:568304. DOI:10.3389/fcell.2020.568304.
COURT A C,LE-GATT A,LUZ-CRAWFORD P,et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response[J]. EMBO Rep,2020,21(2):e48052. DOI:10.15252/embr.201948052.
MARINO B L B,DE SOUZA L R,SOUSA K P A,et al. Parkinson's disease:a review from pathophysiology to treatment[J]. Mini Rev Med Chem,2020,20(9):754-767. DOI:10.2174/1389557519666191104110908.
(收稿日期:2023-02-25;修回日期:2023-04-10)
(本文編輯:毛亞敏)