【摘要】 背景 阻塞性睡眠呼吸暫停(OSA)的患病率很高,目前OSA已被證實(shí)是多種疾病的獨(dú)立危險因素,因此要加強(qiáng)對OSA高危人群的篩查。OSA患者易合并脂代謝異常,而作為能評估代謝異常的指標(biāo)——血漿致動脈粥樣硬化指數(shù)(AIP)、內(nèi)臟肥胖指數(shù)(VAI)、脂類積聚產(chǎn)物(LAP)、心臟代謝指數(shù)(CMI)以及中國人內(nèi)臟肥胖指數(shù)(CVAI)是否能用于預(yù)測OSA,目前尚不清楚。目的 通過病例對照研究分析代謝指數(shù)與OSA的相關(guān)性,并評估各代謝指數(shù)對OSA的預(yù)測效能。方法 選取2017年3月—2022年6月在新疆醫(yī)科大學(xué)第一附屬醫(yī)院已完善多導(dǎo)睡眠監(jiān)測(PSG)的疑似OSA且年齡≥18歲的住院患者共2 968例。根據(jù)納入、排除標(biāo)準(zhǔn)最終納入2 850例患者,根據(jù)呼吸暫停低通氣指數(shù)(AHI)將患者分為OSA組(AHI≥5次/h)2 193例和非OSA組(AHIlt;5次/h)657例。通過電子病歷系統(tǒng)收集患者的臨床資料和實(shí)驗(yàn)室檢查指標(biāo)。采用單因素及多因素Logistic回歸分析探究AIP、VAI、LAP、CMI、CVAI與OSA的相關(guān)性。采用受試者工作特征(ROC)曲線分析代謝指數(shù)預(yù)測患者發(fā)生OSA的效能。對人群進(jìn)行性別分層分析以探究代謝指數(shù)在不同人群中與OSA的關(guān)系。結(jié)果 OSA組患者年齡、性別(男性占比)、頸圍、身高、總膽固醇、三酰甘油、AHI、AIP、VAI、LAP、CMI、CVAI均高于非OSA組,HDL-C、平均血氧飽和度、最低血氧飽和度低于非OSA組(Plt;0.05)。將5個代謝指數(shù)按四分位數(shù)進(jìn)行分組(Q1~Q4),多因素Logistic回歸分析顯示,AIP〔OR=2.241,95%CI(1.689,2.972),Plt;0.001〕、VAI〔OR=2.517,95%CI(1.919,3.301),Plt;0.001〕、LAP〔OR=2.313,95%CI(1.761,3.038),Plt;0.001〕、CMI〔OR=2.732,95%CI(2.054,3.633),Plt;0.001〕、CVAI〔OR=6.060,95%CI(4.411,8.324),Plt;0.001〕與OSA發(fā)生風(fēng)險相關(guān)(Plt;0.05);進(jìn)一步將患者按性別進(jìn)行分層分析結(jié)果顯示:在女性患者中AIP、VAI、LAP、CMI、CVAI與OSA發(fā)生風(fēng)險相關(guān)(Plt;0.05),男性患者中CMI、LAP、VAI與OSA發(fā)生風(fēng)險無相關(guān)性(Pgt;0.05),AIP、CVAI與OSA發(fā)生風(fēng)險相關(guān)(Plt;0.05)。AIP、VAI、LAP、CMI、CVAI預(yù)測發(fā)生OSA的ROC曲線下面積(AUC)分別為〔0.593,95%CI(0.568,0.618)〕〔0.607,95%CI(0.583,0.632)〕〔0.594,95%CI(0.569,0.619)〕〔0.616,95%CI(0.591,0.640)〕〔0.728,95%CI(0.706,0.751)〕。為明確5個代謝指數(shù)預(yù)測OSA的效能,進(jìn)一步將患者按性別進(jìn)行分層分析:在女性人群中5個代謝指數(shù)預(yù)測OSA的AUC均較總?cè)巳涸黾樱行匀巳褐?個代謝指數(shù)的AUC均低于總?cè)巳?。無論在總?cè)巳哼€是在男女亞組人群中,CVAI指數(shù)的AUC均高于其他指數(shù)(總?cè)巳篈UC=0.728,女性AUC=0.764,男性AUC=0.681)。結(jié)論 隨著AIP、VAI、LAP、CMI、CVAI的四分位數(shù)分組增高,發(fā)生OSA的風(fēng)險增加。CVAI對OSA的預(yù)測效能優(yōu)于其他指數(shù),因此CVAI或可成為OSA高危人群篩查的預(yù)測指標(biāo)。
【關(guān)鍵詞】 睡眠呼吸暫停,阻塞性;脂代謝異常;代謝指數(shù);中國人內(nèi)臟肥胖指數(shù);預(yù)測;病例對照研究
【中圖分類號】 R 563.8 【文獻(xiàn)標(biāo)識碼】 A DOI:10.12114/j.issn.1007-9572.2023.0168
【引用本文】 溫雯,張凱楠,陳玉嵐,等.代謝指數(shù)作為預(yù)測因子與阻塞性睡眠呼吸暫停的相關(guān)性分析[J]. 中國全科醫(yī)學(xué),2023,26(30):3740-3747. DOI:10.12114/j.issn.1007-9572.2023.0168.[www.chinagp.net]
WEN W,ZHANG K N,CHEN Y L,et al. Correlation of metabolic indexes as predictors with obstructive sleep apnea[J]. Chinese General Practice,2023,26(30):3740-3747.
Correlation of Metabolic Indexes as Predictors with Obstructive Sleep Apnea WEN Wen1,2,ZHANG Kainan2,CHEN Yulan3,LI Yu4,ZHANG Xiangyang1*
1.The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830000,China
2.Graduate School of Xinjiang Medical University,Urumqi 830000,China
3.Department of Hypertension,the First Affiliated Hospital of Xinjiang Medical University,Urumqi 830000,China
4.The Second Department of General Internal Medicine,the First Affiliated Hospital of Xinjiang Medical University,Urumqi 830000,China
*Corresponding author:ZHANG Xiangyang,Chief physician/Professor/Doctoral supervisor;E-mail:zxiangyang1999@163.com
【Abstract】 Background Obstructive sleep apnea(OSA) has a high prevalence,and it has been shown to be an independent risk factor for various diseases. Therefore,it is important to strengthen screening for population at highrisk of OSA. OSA patients are prone to combine with lipid metabolism disorders,but it remains unclear whether the atherogenic index of plasma(AIP),visceral adiposity index(VAI),lipid accumulation product(LAP),cardiometabolic index(CMI),and Chinese visceral adiposity index(CVAI),which are used asmetabolic indexes,can be used to predict OSA. Objective To analyze the correlation between metabolic indexes and OSA,and evaluate the predictive efficacy of each metabolic index through a case-control study. Methods A total of 2 968 inpatients with suspected OSA and aged ≥18 years who completed polysomnography(PSG)in the First Affiliated Hospital of Xinjiang Medical University from March 2017 to June 2022 were selected,with 2 850 patients finally included based on the inclusion and exclusion criteria and divided into the OSA group 〔apnea-hypopnea index(AHI)≥5 times/h,n=2 193〕 and non-OSA group(AHIlt;5 times/h,n=657)according to the AHI. The clinical data and laboratory test results of these patients were collected through the electronic medical record system. Univariate and multivariate Logistic regression analyses were used to investigate the correlation of AIP,VAI,LAP,CMI,and CVAI with OSA. The receiver operating characteristic(ROC) curve was plotted to analyze the efficacy of metabolic indexes in predicting OSA. A gender-stratified analysis was performed to explore the relationship between metabolic indexes and OSA in different populations. Results Age,gender (male proportion),neck circumference,height,total cholesterol,triacylglycerol,AHI,AIP,VAI,LAP,CMI,and CVAI were significantly higher in the OSA group than the non-OSA group,high-density lipoprotein cholesterol(HDL-C),mean oxygen saturation and minimum oxygen saturation were significantly lower than the non-OSA group (Plt;0.05). After dividing the five metabolic indexes into quartiles (Q1 to Q4),them ultivariate Logistic regression analysis showed that AIP〔OR=2.241,95%CI(1.689,2.972),Plt;0.001〕,VAI〔OR=2.517,95%CI(1.919,3.301),Plt;0.001〕,LAP〔OR=2.313,95%CI(1.761,3.038),Plt;0.001〕,CMI〔OR=2.732,95%CI(2.054,3.633),Plt;0.001〕,and CVAI〔OR=6.060,95%CI(4.411,8.324),Plt;0.001〕 were associated with the risk of OSA (Plt;0.05). Further analysis stratified by gender showed that in female patients,AIP,VAI,LAP,CMI,and CVAI were associated with the risk of OSA(Plt;0.05);in male patients,CMI,LAP,and VAI were not associated with OSA (Pgt;0.05),but AIP and CVAI were associated with OSA(Plt;0.05). The areas under the ROC curves(AUCs) of AIP,VAI,LAP,CMI,and CVAI for predicting OSA were〔0.593,95%CI(0.568,0.618)〕〔0.607,95%CI(0.583,0.632)〕〔0.594,95%CI(0.569,0.619)〕〔0.616,95%CI(0.591,0.640)〕,and〔0.728,95%CI(0.706,0.751)〕,respectively.Further analysis stratified by gender for the clarification of the predictive efficacy of five metabolic indexes for OSA showed that the AUCs of the five metabolic indices for predicting OSA were higher in the female population than the total population,and the AUCs of the five metabolic indexes were lower in the male population than the total population. The AUC of CVAI was higher than other indexes in the total population,male and female populations(AUC=0.728 for the overall population,AUC=0.764 for the female population,AUC=0.681 for the male population). Conclusion As the quartiles of AIP,VAI,LAP,CMI,and CVAI increase,the risk of OSA rises. CVAI has a better predictive efficacy for OSA than other indexes,therefore,CVAI may be used as a predictor for screening of population at high risk of OSA.
【Key wrods】 Sleep apnea,obstructive;Dyslipidemia;Metabolic indices;Chinese visceral adiposity index;Forecasting;Case-control studies
阻塞性睡眠呼吸暫停(OSA)是一種睡眠時伴有上氣道阻塞的呼吸系統(tǒng)疾病,全球約有10億人受其影響,而在中國約有1.76億OSA患者[1]。因OSA發(fā)生于睡眠期間,若非伴有明顯的臨床癥狀或并發(fā)癥,很難被患者察覺而進(jìn)一步就診,因此OSA的患病率可能是被低估的。OSA是高血壓、糖尿病、心腦血管疾病、代謝性疾病等多種疾病的獨(dú)立危險因素,且OSA與上述疾病有很高的共患率[2]。這提示應(yīng)針對OSA高危人群開展篩查。
目前對OSA診斷的“金標(biāo)準(zhǔn)”是多導(dǎo)睡眠監(jiān)測(PSG)[2]。但PSG檢查費(fèi)用高,且受醫(yī)療條件的限制。OSA高危人群的人口基數(shù)龐大,大部分生活在醫(yī)療條件欠發(fā)達(dá)的地區(qū)。因此亟須一個更便捷、經(jīng)濟(jì)、適用性強(qiáng)的方法來篩查OSA高危人群。OSA通常合并脂代謝紊亂[3],首先,OSA患者更傾向于高脂飲食;其次,OSA會導(dǎo)致三酰甘油(triglycerides,TG)和游離脂肪酸升高、脂蛋白脂肪酶活性降低進(jìn)而引起TG清除延遲[4-5];
再次,OSA引發(fā)的氧化應(yīng)激會產(chǎn)生功能失調(diào)的氧化脂質(zhì),可降低高密度脂蛋白膽固醇(HDL-C),防止低密度脂蛋白膽固醇(LDL-C)氧化[6];最后,OSA患者體內(nèi)瘦素水平上升,出現(xiàn)瘦素抵抗,最終引起代謝紊亂[7]。以上述OSA的病理生理特征為切入點(diǎn),可通過評估OSA高危人群的血脂紊亂程度預(yù)測疾病的發(fā)生和預(yù)后,但由于不同脂蛋白組分之間的動態(tài)相互作用,且單一的血脂成分更容易受到生物學(xué)變異的影響,因此不能僅通過研究單一的血脂成分來評估血脂異常和OSA之間的聯(lián)系。
代謝指數(shù)是基于數(shù)學(xué)算法和統(tǒng)計學(xué)模型得出的可評估人群代謝性能的指標(biāo)。因其包含了更多經(jīng)過了數(shù)學(xué)加權(quán)或轉(zhuǎn)化的人體生物學(xué)指標(biāo),使其較單一的血脂成分更具有穩(wěn)定性。不僅如此,計算代謝指數(shù)的人體生物學(xué)指標(biāo)均是臨床容易獲得的,因此其便捷性、經(jīng)濟(jì)性均優(yōu)于PSG。已有大量研究表明,代謝指數(shù)預(yù)測各類代謝性疾病、心血管疾病的能力優(yōu)于單一的血脂成分[8-11]。目前已經(jīng)研究了OSA患者HDL-C和TG的對數(shù)比率,即血漿致動脈粥樣硬化指數(shù)(AIP)[12]。此外,內(nèi)臟肥胖指數(shù)(VAI)、脂類積聚產(chǎn)物(LAP)、心臟代謝指數(shù)(CMI)以及更適合中國人群特征的中國人內(nèi)臟肥胖指數(shù)(CVAI)均綜合考慮了血脂參數(shù)、腰圍(WC)、性別等因素,也分別在OSA中進(jìn)行了研究[13-16]。但仍缺乏全面的研究以綜合比較這些代謝指數(shù)與OSA的關(guān)系。因此本研究通過病例對照研究評估代謝指數(shù)與OSA的相關(guān)性以及作為早期診斷標(biāo)志物的可能性及效能。
1 對象與方法
1.1 研究對象 選取2017年3月—2022年6月在新疆醫(yī)科大學(xué)第一附屬醫(yī)院已完善PSG的疑似OSA且年齡≥18歲的住院患者共2 968例。根據(jù)PSG結(jié)果報告的呼吸暫停低通氣指數(shù)(AHI)將患者分為OSA組(AHI≥5次/h)及非OSA組(AHIlt;5次/h)。排除標(biāo)準(zhǔn):(1)PSG報告提示為中樞性及混合型OSA患者(46例);(2)有不穩(wěn)定的肺部疾病患者(15例);(3)服用中樞抑制性藥物患者(2例);(4)嚴(yán)重心力衰竭、肝腎功能不全、惡性腫瘤晚期患者(17例);(5)臨床資料不全的患者(38例);(6)孕婦及有精神類疾病患者(0例)。最終納入分析患者2 850例,其中非OSA組657例,OSA組2 193例。本研究臨床資料均來自臨床電子病歷系統(tǒng),并已通過新疆醫(yī)科大學(xué)第一附屬醫(yī)院倫理委員會審批(審批號:20170225-0023)?;颊呔橥?。
1.2 臨床資料 通過臨床電子病歷系統(tǒng)收集患者的臨床資料,包括就診年齡、性別、吸煙(是:當(dāng)前吸煙或戒煙時限小于1年;否:不吸煙或戒煙時限≥1年)、飲酒(是:當(dāng)前飲酒或戒酒時限小于1年;否:不飲酒或戒酒時限≥1年)、身高、體質(zhì)量、頸圍(NC)、WC、入院血壓、總膽固醇(TC)、TG、HDL-C、LDL-C,PSG中的AHI、總睡眠時間、睡眠有效率、平均血氧飽和度(SaO2)、最低SaO2。根據(jù)臨床資料計算AIP、VAI、LAP、CMI、CVAI。
1.3 PSG 采用澳大利亞Compumedics型PSG系統(tǒng)進(jìn)行夜間7 h監(jiān)測,監(jiān)測前1 d要求患者開始禁止飲酒,禁服咖啡因、鎮(zhèn)靜劑、催眠藥物。在監(jiān)測當(dāng)晚測量身高、體質(zhì)量,計算BMI。
1.4 計算公式 (1)BMI=〔體質(zhì)量(kg)/身高2(m2)〕[17];(2)CVAI:男性CVAI = -267.93+0.68×年齡+0.03×BMI+4.00×WC+22.00×Log10TG-16.32×HDL-C;女性CVAI=-187.32+1.71×年齡+4.23×BMI+1.12×WC+39.76×Log10TG-11.66×HDL-C[18];(3)AIP=Log(TG/HDL-C)[19];(4)CMI=TG/HDL-C×(WC/身高)[20];(5)女性LAP=(WC-58)×TG,男性LAP=(WC-65)×TG[21];(6)VAI:男性VAI=〔WC/(39.68+1.88×BMI)〕×(TG/1.03)×(1.31/HDL-C);女性VAI=〔WC/(36.58+1.89×BMI)〕×(TG/0.81)×(1.52/HDL-C)[22]。
1.5 統(tǒng)計學(xué)方法 采用SPSS 23.0軟件及R語言(4.2.1)進(jìn)行統(tǒng)計數(shù)據(jù)分析。符合正態(tài)分布的計量資料以(x-±s)表示,兩組間比較采用獨(dú)立樣本t檢驗(yàn);非正態(tài)分布的計量資料以M(P25,P75)表示,兩組間比較采用Mann-Whitney U檢驗(yàn);計數(shù)資料以相對數(shù)表示,兩組間比較采用χ2檢驗(yàn)。采用單因素及多因素Logistic回歸分析探討代謝指數(shù)與OSA的相關(guān)性,繪制受試者工作特征(ROC)曲線比較各代謝指數(shù)對OSA的預(yù)測效能。根據(jù)性別對患者進(jìn)行分層分析,采用Logistic回歸分析探討評估各指數(shù)在不同性別中與OSA的關(guān)系。以Plt;0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 患者臨床資料 OSA組患者的年齡、性別(男性占比)、身高、頸圍、TC、TG、AHI、AIP、VAI、LAP、CMI、CVAI均高于非OSA組,HDL-C、平均SaO2、最低SaO2低于非OSA組,差異有統(tǒng)計學(xué)意義(Plt;0.05)。兩組患者的吸煙比例、飲酒比例、體質(zhì)量、BMI、腰圍、收縮壓、舒張壓、LDL-C、睡眠有效率、總睡眠時間比較,差異無統(tǒng)計學(xué)意義(Pgt;0.05),見表1。
2.2 代謝指數(shù)與OSA的相關(guān)性分析 將5個代謝指數(shù)按四分位數(shù)進(jìn)行分組(Q1~Q4),分析其與OSA的相關(guān)性。四分位數(shù)分組范圍如下:AIP的Q1(lt;0.01),Q2(0.01~0.20),Q3(0.21~0.39),Q4(gt;0.39);VAI的Q1(lt;1.64),Q2(1.64~2.49),Q3(2.50~3.86),Q4(gt;3.86);LAP的Q1(lt;40.56),Q2(40.56~61.40),Q3(61.41~94.07),Q4(gt;94.07);CMI的Q1(lt;0.60),Q2(0.60~0.94),Q3(0.95~1.48),Q4(gt;1.48);CVAI的Q1(lt;109.82),Q2(109.82~137.85),Q3(137.86~167.21),Q4(gt;167.21)。在單因素分析中,以是否診斷為OSA(賦值:非OSA=0,OSA=1)為因變量,以AIP、VAI、LAP、CMI、CVAI(賦值:均為實(shí)測值)為自變量,探討指數(shù)與OSA的相關(guān)性,結(jié)果顯示AIP、VAI、LAP、CMI、CVAI與OSA的發(fā)生風(fēng)險呈正相關(guān)(Plt;0.05)。AIP、VAI、LAP、CMI、CVAI與OSA的發(fā)生風(fēng)險呈正相關(guān)(Plt;0.05),見表2。在單因素Logistic分析的基礎(chǔ)上,對其他混雜因素進(jìn)行了校正,即以5個代謝指數(shù)分別與年齡(賦值:實(shí)測值)、性別(賦值:女=0,男=1)、吸煙(賦值:否=0,是=1)、飲酒(賦值:否=0,是=1)、收縮壓(賦值:實(shí)測值)、舒張壓(賦值:實(shí)測值)為自變量,以是否診斷為OSA為因變量,進(jìn)一步行多因素分析,結(jié)果顯示,AIP、VAI、LAP、CMI、CVAI與OSA的發(fā)生風(fēng)險呈正相關(guān)(Plt;0.05),見表3。
2.3 不同人群代謝指數(shù)與OSA的相關(guān)性分析 將代謝指數(shù)作為連續(xù)性變量進(jìn)行單因素分析,結(jié)果顯示:在總?cè)巳褐校x指數(shù)每增加1個單位值,OSA的發(fā)生風(fēng)險也相應(yīng)增加(Plt;0.05)。進(jìn)一步將患者按性別進(jìn)行分層分析結(jié)果顯示:在女性患者中,代謝指數(shù)每增加1個單位值,OSA的發(fā)生風(fēng)險均高于總?cè)巳海≒lt;0.05),其中AIP每增加一個單位值,OSA的發(fā)生風(fēng)險增加2.68倍〔OR=3.683,95%CI(2.184,6.211),Plt;0.001〕。而在男性患者中,CMI、LAP、VAI與OSA發(fā)生風(fēng)險無相關(guān)性(Pgt;0.05),AIP〔OR=1.705,95%CI(1.139,2.551),P=0.010〕、CVAI〔OR=1.010,95%CI(1.014,1.021),Plt;0.001〕與OSA發(fā)生風(fēng)險相關(guān),見圖1。
2.4 血脂參數(shù)及代謝性指數(shù)預(yù)測OSA的效能 除了TG〔ROC曲線下面積(AUC為0.615)外,TC(AUC為0.530)、HDL-C(AUC)為0.562〕、LDL-C(AUC為0.518)預(yù)測OSA的AUC均小于5個代謝性指數(shù)。AIP預(yù)測OSA的AUC為0.593 〔95%CI(0.568,0.618)〕,VAI預(yù)測OSA的AUC為0.607 〔95%CI(0.583,0.632)〕,LAP預(yù)測OSA的AUC為0.594 〔95%CI(0.569,0.619)〕,CMI預(yù)測OSA的AUC為0.616 〔95%CI(0.591,0.640)〕,CVAI預(yù)測OSA的AUC為0.728〔95%CI(0.706,0.751)〕,見表4。為明確5個代謝指數(shù)預(yù)測OSA的效能,進(jìn)一步將患者按性別進(jìn)行分層分析。在女性人群中,5個代謝指數(shù)預(yù)測OSA的AUC均較總?cè)巳涸黾?,見圖2B;而在男性人群中,5個代謝指數(shù)的AUC均低于總?cè)巳海妶D2A和圖2C。無論在總?cè)巳哼€是在男女亞組人群中,CVAI指數(shù)的AUC均高于其他指數(shù)(總?cè)巳篈UC=0.728,女性AUC=0.764,男性AUC=0.681)。
3 討論
OSA的患病率很高,并且已有研究表明OSA是心血管發(fā)病和死亡的危險因素[23]。但目前OSA的診斷率和知曉率偏低,因此需對OSA高危人群進(jìn)行盡早篩查[2]。OSA的篩查工具包括睡眠量表和睡眠呼吸監(jiān)測檢查,睡眠量表內(nèi)容復(fù)雜且需要??漆t(yī)師評估,睡眠監(jiān)測設(shè)備則需在高級別醫(yī)院進(jìn)行且費(fèi)用昂貴,上述兩種篩查工具受患者和醫(yī)療條件的限制,進(jìn)而影響OSA的篩查率[2]。因此需要更便捷、經(jīng)濟(jì)的篩查方式對OSA高危人群進(jìn)行篩查。結(jié)合OSA患者易并發(fā)脂代謝紊亂的特點(diǎn),本研究評估了OSA及非OSA患者的血脂參數(shù)和綜合代謝指數(shù)結(jié)果顯示,5個代謝指數(shù)與OSA均具有較強(qiáng)的相關(guān)性,將人群根據(jù)性別分層后發(fā)現(xiàn),5個代謝指數(shù)與女性O(shè)SA患者的相關(guān)性更強(qiáng),無論在總?cè)巳褐羞€是在不同性別的亞組人群中,CVAI對OSA的預(yù)測效能均高于其他指標(biāo)。
本研究結(jié)果顯示,AIP、VAI、LAP、CMI、CVAI與OSA的發(fā)生呈正相關(guān),在校正了年齡、性別、吸煙、飲酒等混雜因素后,該趨勢仍然明顯,且這些指數(shù)的最高四分位數(shù)組與OSA的相關(guān)性最強(qiáng)。BIKOV等[12]在包含461例OSA患者及99例非OSA患者的研究中發(fā)現(xiàn),AIP在OSA人群中升高。BIANCI等[24]根據(jù)柏林問卷報告了OSA高?;颊叩腖AP較高,但在這項(xiàng)研究中并未根據(jù)PSG對OSA進(jìn)行診斷。CHEN等[16]發(fā)現(xiàn)OSA患者的VAI增加,并與疾病嚴(yán)重程度和代謝綜合征相關(guān)。ZHENG等[13]在中國2型糖尿病患者中發(fā)現(xiàn)CVAI與OSA獨(dú)立相關(guān),本研究結(jié)果與之一致。本研究進(jìn)一步將代謝指數(shù)視為連續(xù)性變量進(jìn)行Logistic回歸分析,仍得到相類似的結(jié)果。DONG等[15]在317例2型糖尿病患者中研究發(fā)現(xiàn),LAP每增加一個單位值OSA發(fā)生風(fēng)險將會增加63.9%。而本研究中,LAP每增加一個單位值僅增加0.3%的OSA發(fā)生風(fēng)險,這提示LAP在不同特征人群中的表現(xiàn)具有明顯差異性。因此需在不同基礎(chǔ)疾病的特殊患者群體中進(jìn)一步評估各代謝指數(shù)與OSA的相關(guān)性。與上述研究相反,ZHAO等[25]發(fā)現(xiàn)VAI與OSA無關(guān),但該研究未在不同性別人群中對VAI做進(jìn)一步的探究,而本研究結(jié)果中,雖然VAI在總?cè)巳汉团匀巳褐信cOSA具有強(qiáng)相關(guān)性,但在男性人群中,VAI與OSA無相關(guān)性。不僅如此,在本研究的男性人群中,CMI、LAP與OSA的相關(guān)性也不明顯。以上原因可能是由于男性具有更多的危險因素(例如遺傳、吸煙、飲酒、社會壓力等),從而減弱了代謝因素與OSA之間的關(guān)系。因此針對不同性別群體,應(yīng)全面評估脂代謝對OSA的風(fēng)險影響,本研究彌補(bǔ)了既往研究的部分不足,但各代謝指數(shù)在不同性別人群中與OSA相關(guān)性差異的具體機(jī)制尚不明確。
本研究結(jié)果顯示,CVAI不僅與OSA的相關(guān)性更強(qiáng),并且對OSA的預(yù)測性要優(yōu)于單一的血脂參數(shù)和其他代謝指數(shù)。目前研究已表明,在中國人群中CVAI對高血壓、糖尿病、脂代謝異常、心血管疾病的預(yù)測能力均優(yōu)于其他指數(shù)[18,26-29]。CVAI是能反映內(nèi)臟脂肪分布的指數(shù),其計算公式內(nèi)包含年齡、BMI、WC、TG和HDL-C,比AIP、LAP、CMI所包含的因素更多。不僅如此,年齡、BMI、WC、TG、HDL-C均是代謝性疾病、心血管疾病、高血壓、糖尿病等疾病發(fā)生、發(fā)展的傳統(tǒng)因素。而CVAI則是上述因素協(xié)同效應(yīng)的總和,因此CVAI與相關(guān)疾病的關(guān)聯(lián)要強(qiáng)于單一參數(shù)。而作為CVAI前身的VAI,雖然其計算公式內(nèi)包含了與CVAI同樣的傳統(tǒng)因素,但其適用人群為高加索人,因此對于中國人群疾病的預(yù)測價值要低于CVAI。本研究首次發(fā)現(xiàn)了CVAI與OSA的關(guān)系,并且相較于其他單一血脂參數(shù)和代謝指數(shù)而言,CVAI對OSA的預(yù)測效能更好。能解釋CVAI與OSA關(guān)聯(lián)的機(jī)制可能有:第一,肥胖患者易患OSA,而肥胖患者具有更高的WC、BMI和更嚴(yán)重的脂代謝異常;第二,年齡是OSA和代謝性疾病發(fā)生、發(fā)展的重要危險因素;第三,由于OSA導(dǎo)致的間歇性低氧會導(dǎo)致肝臟TG和TC產(chǎn)生增加、脂肪酶活性降低、TG清除減少、脂肪組織中游離脂肪酸動員增加[4-5,30];第四,間歇性低氧可引起氧化應(yīng)激反應(yīng),而氧化應(yīng)激能產(chǎn)生功能失調(diào)的脂質(zhì)產(chǎn)物,進(jìn)而干擾下游的脂質(zhì)代謝轉(zhuǎn)化[6];最后,瘦素抵抗、胰島素抵抗等原因均會進(jìn)一步加重OSA患者的脂質(zhì)代謝異常[7,31]。CVAI的靈敏度及特異度欠佳,因此僅能作為缺乏醫(yī)療條件的基層醫(yī)院對OSA患者的初篩指標(biāo)。不僅如此,CVAI增高還提示患者患代謝性及心腦血管性疾病的風(fēng)險增加[32-34],這為患者需要進(jìn)一步排查OSA、代謝性及心腦血管性疾病提供了依據(jù)。綜上所述,CVAI是一個可靠且易于測量的指標(biāo),可用于OSA高危人群的篩查。
本研究尚存在一定的局限性:第一,本研究為單中心研究,需要外部驗(yàn)證以評估CVAI對OSA的預(yù)測效能;第二,本研究為橫斷面研究,無法確定CVAI與OSA的因果關(guān)系,以及CVAI的變化性與OSA的關(guān)系。
綜上所述,AIP、VAI、LAP、CMI、CVAI與OSA均存在不同程度的正向相關(guān)性,隨著代謝指數(shù)的四分位數(shù)分組增高,發(fā)生OSA的風(fēng)險增加。各代謝指數(shù)對女性O(shè)SA患者的預(yù)測效能更好,其中CVAI在所有人群中的預(yù)測效能均優(yōu)于其他指數(shù),因此CVAI或可成為OSA高危人群篩查的預(yù)測指標(biāo)。
作者貢獻(xiàn):溫雯負(fù)責(zé)研究的構(gòu)思與設(shè)計、數(shù)據(jù)整理、統(tǒng)計分析、論文撰寫以及論文修訂;張凱楠負(fù)責(zé)數(shù)據(jù)收集、研究的可行性分析、統(tǒng)計協(xié)助及論文修訂;陳玉嵐、李瑜負(fù)責(zé)數(shù)據(jù)質(zhì)量控制及校審;張向陽提供研究思路,負(fù)責(zé)文章的質(zhì)量控制及校審、監(jiān)督管理,對文章整體負(fù)責(zé);所有作者確認(rèn)了論文的最終稿。
本文無利益沖突。
參考文獻(xiàn)
BENJAFIELD A V,AYAS N T,EASTWOOD P R,et al. Estimation of the global prevalence and burden of obstructive sleep apnoea:a literature-based analysis[J]. Lancet Respir Med,2019,7(8):687-698. DOI:10.1016/S2213-2600(19)30198-5.
中華醫(yī)學(xué)會呼吸分會睡眠呼吸障礙學(xué)組,中國醫(yī)學(xué)裝備協(xié)會呼吸病學(xué)裝備技術(shù)專業(yè)委員會睡眠呼吸設(shè)備學(xué)組. 成人阻塞性睡眠呼吸暫停高危人群篩查與管理專家共識[J]. 中華健康管理學(xué)雜志,2022,16(8):520-528. DOI:10.3760/cma.j.cn115624-20220615-00460.
王云,何燕,劉師節(jié),等. 阻塞性睡眠呼吸暫停低通氣綜合征與糖脂代謝紊亂的機(jī)制研究進(jìn)展[J]. 中國全科醫(yī)學(xué),2022,25(2):243-247. DOI:10.12114/j.issn.1007-9572.2021.01.311.
JI Y,LIANG Y M,CHU P H,et al. The effects of intermittent hypoxia on hepatic expression of fatty acid translocase CD36 in lean and diet-induced obese mice[J]. Biomed J,2022:S2319-S4170(22)00141-X. DOI:10.1016/j.bj.2022.10.003.
JUN J C,SHIN M K,YAO Q L,et al. Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice[J]. Am J Physiol Endocrinol Metab,2012,303(3):E377-388. DOI:10.1152/ajpendo.00641.2011.
BARROS D,GARCíA-RíO F. Obstructive sleep apnea and dyslipidemia:from animal models to clinical evidence[J]. Sleep,2019,42(3):zsy236. DOI:10.1093/sleep/zsy236.
于悅,譚慧文,劉奕姝,等. 阻塞性睡眠呼吸暫停低通氣綜合征病情嚴(yán)重程度的影響因素及代謝相關(guān)激素與臨床相關(guān)指標(biāo)的關(guān)系研究[J]. 中國全科醫(yī)學(xué),2021,24(8):947-953. DOI:10.12114/j.issn.1007-9572.2021.00.142.
LI B Q,WANG J,ZHOU X,et al. Chinese visceral adiposity index is more closely associated with hypertension and prehypertension than traditional adiposity indices in Chinese population:results from the REACTION study[J]. Front Endocrinol (Lausanne),2022,13:921997. DOI:10.3389/fendo.2022.921997.
BIKOV A,F(xiàn)RENT S,REISZ D,et al. Comparison of composite lipid indices in patients with obstructive sleep apnoea[J]. Nat Sci Sleep,2022,14:1333-1340. DOI:10.2147/NSS.S361318.
XIE X,LI Q,ZHANG L M,et al. Lipid accumulation product,visceral adiposity index,and Chinese visceral adiposity index As markers of cardiometabolic risk in adult growth hormone deficiency patients:a cross-sectional study[J]. Endocr Pract,2018,
24(1):33-39. DOI:10.4158/ep-2017-0007.
ROTTER I,RY? A,SZYLI?SKA A,et al. Lipid accumulation product (LAP) as an index of metabolic and hormonal disorders in aging men[J]. Exp Clin Endocrinol Diabetes,2017,125(3):176-182. DOI:10.1055/s-0042-116071.
BIKOV A,MESZAROS M,KUNOS L,et al. Atherogenic index of plasma in obstructive sleep apnoea[J]. J Clin Med,2021,
10(3):417. DOI:10.3390/jcm10030417.
ZHENG C Y,ZHENG X L,LIN X Y,et al. Visceral adipose tissue indices independently correlated with obstructive sleep apnea in patients with type 2 diabetes[J]. J Diabetes Res,2022,2022:4950528. DOI:10.1155/2022/4950528.
CAI X T,HU J L,WEN W,et al. Associations of the cardiometabolic index with the risk of cardiovascular disease in patients with hypertension and obstructive sleep apnea:results of a longitudinal cohort study[J]. Oxid Med Cell Longev,2022,2022:4914791. DOI:10.1155/2022/4914791.
DONG L Q,LIN M Z,WANG W G,et al. Lipid accumulation product (LAP) was independently associatedwith obstructive sleep apnea in patients with type 2 diabetes mellitus[J]. BMC Endocr Disord,2020,20(1):179. DOI:10.1186/s12902-020-00661-x.
CHEN G P,QI J C,WANG B Y,et al. Applicability of visceral adiposity index in predicting metabolic syndrome in adults with obstructive sleep apnea:a cross-sectional study[J]. BMC Pulm Med,2016,16:37. DOI:10.1186/s12890-016-0198-0.
KEYS A,F(xiàn)IDANZA F,KARVONEN M J,et al. Indices of relative weight and obesity[J]. J Chronic Dis,1972,25(6/7):329-343. DOI:10.1016/0021-9681(72)90027-6.
XIA M F,CHEN Y,LIN H D,et al. A indicator of visceral adipose dysfunction to evaluate metabolic health in adult Chinese[J]. Sci Rep,2016,6:38214. DOI:10.1038/srep38214.
DOBIA?S?OVA? M. Atherogenic index of plasma[log(triglycerides/HDL-cholesterol)]:theoretical and practical implications[J]. Clin Chem,2004,50(7):1113-1115. DOI:10.1373/clinchem.2004.033175.
SHI W R,WANG H Y,CHEN S,et al. Estimate of prevalent diabetes from cardiometabolic index in general Chinese population:a community-based study[J]. Lipids Health Dis,2018,17(1):236. DOI:10.1186/s12944-018-0886-2.
KAHN H S. The “l(fā)ipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk:a population-based comparison[J].BMC Cardiovasc Disord,2005,5(1):1-10. DOI:10.1186/1471-2261-5-26.
AMATO M C,GIORDANO C,GALIA M,et al. Visceral Adiposity Index:a reliable indicator of visceral fat function associated with cardiometabolic risk[J]. Diabetes Care,2010,33(4):920-922. DOI:10.2337/dc09-1825.
YEGHIAZARIANS Y,JNEID H,TIETJENS J R,
et al. Obstructive sleep apnea and cardiovascular disease:a scientific statement from the American heart association[J]. Circulation,2021,144(3):e56-67. DOI:10.1161/CIR.0000000000000988.
BIANCHI V E,HERBERT W G,MYERS J,et al. Relationship of obstructive sleep apnea and cardiometabolic risk factors in elderly patients with abdominal aortic aneurysm[J]. Schlaf Atmung,2015,19(2):593-598. DOI:10.1007/s11325-014-1053-2.
ZHAO X L,XU H J,QIAN Y J,et al. Abdominal obesity is more strongly correlated with obstructive sleep apnea than general obesity in China:results from two separated observational and longitudinal studies[J].Obes Surg,2019,29(8):2535-2547. DOI:10.1007/s11695-019-03870-z.
XIE Y L,ZHANG Y Y,QIN P,et al. The association between Chinese Visceral Adipose Index and coronary heart disease:a cohort study in China[J]. Nutr Metab Cardiovasc Dis,2022,
32(3):550-559. DOI:10.1016/j.numecd.2021.10.020.
CHEN X Y,SHI F X,XIAO J,et al. Associations between abdominal obesity indices and nonalcoholic fatty liver disease:Chinese visceral adiposity index[J]. Front Endocrinol (Lausanne),2022,13:831960. DOI:10.3389/fendo.2022.831960.
CAI X T,LI N F,HU J L,et al. Nonlinear relationship between Chinese visceral adiposity index and new-onset myocardial infarction in patients with hypertension and obstructive sleep apnoea:insights from a cohort study[J]. J Inflamm Res,2022,15:687-700. DOI:10.2147/jir.s351238.
TSOU M T,CHANG Y C,HSU C P,et al. Visceral adiposity index outperforms conventional anthropometric assessments as predictor of diabetes mellitus in elderly Chinese:a population-based study[J]. Nutr Metab,2021,18(1):1-12. DOI:10.1186/s12986-021-00608-6.
DRAGER L F,TAVONI T M,SILVA V M,et al. Obstructive sleep apnea and effects of continuous positive airway pressure on triglyceride-rich lipoprotein metabolism[J]. J Lipid Res,2018,59(6):1027-1033. DOI:10.1194/jlr.M083436.
LIU A,CARDELL J,ARIEL D,et al. Abnormalities of lipoprotein concentrations in obstructive sleep apnea are related to insulin resistance[J]. Sleep,2015,38(5):793-799. DOI:10.5665/sleep.4678.
WANG Y Y,ZHAO X D,CHEN Y,et al. Visceral adiposity measures are strongly associated with cardiovascular disease among female participants in Southwest China:a population-based prospective study[J]. Front Endocrinol,2022,13:969753. DOI:10.3389/fendo.2022.969753.
WAN H,WANG Y Y,XIANG Q,et al. Associations between abdominal obesity indices and diabetic complications:Chinese visceral adiposity index and neck circumference[J]. Cardiovasc Diabetol,2020,19(1):118. DOI:10.1186/s12933-020-01095-4.
WEI J X,LIU X,XUE H,et al. Comparisons of visceral adiposity index,body shape index,body mass index and waist circumference and their associations with diabetes mellitus in adults[J]. Nutrients,2019,11(7):1580. DOI:10.3390/nu11071580.
(收稿日期:2023-02-11;修回日期:2023-05-26)
(本文編輯:崔莎)