• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain Tumor Segmentation using Multi-View Attention based Ensemble Network

    2022-11-11 10:49:02NoreenMushtaqArfatAhmadKhanFaizanAhmedKhanMuhammadJunaidAliMalikMuhammadAliShahidChitapongWechtaisongandPeerapongUthansakul
    Computers Materials&Continua 2022年9期

    Noreen Mushtaq,Arfat Ahmad Khan,Faizan Ahmed Khan,Muhammad Junaid Ali,Malik Muhammad Ali Shahid,Chitapong Wechtaisong,*and Peerapong Uthansakul

    1COMSATS University Islamabad,Islamabad Campus,45550,Pakistan

    2Suranaree University of Technology,Nakhon Ratchasima,30000,Thailand

    3COMSATS University Islamabad,Lahore Campus,54000,Pakistan

    4Virtual University of Pakistan,Islamabad Campus,45550,Pakistan

    5COMSATS University Islamabad,Vehari Campus,61100,Pakistan

    Abstract: Astrocytoma IV or glioblastoma is one of the fatal and dangerous types of brain tumors.Early detection of brain tumor increases the survival rate and helps in reducing the fatality rate.Various imaging modalities have been used for diagnosing by expert radiologists, and Medical Resonance Image (MRI)is considered a better option for detecting brain tumors as MRI is a non-invasive technique and provides better visualization of the brain region.One of the challenging issues is to identify the tumorous region from the MRI scans correctly.Manual segmentation is performed by medical experts, which is a time-consuming task and got chances of errors.To overcome this issue,automatic segmentation is performed for quick and accurate results.The proposed approach is to capture inter-slice information and reduce the outliers.Deep learning-based brain tumor segmentation techniques proved best among available segmentation techniques.However,deep learning may miss some preliminary info while using MRI images during segmentation.As MRI volumes are volumetric, 3D U-Net-based models are used but complex.Combinations of multiple 2D U-Net predictions in axial, sagittal,and coronal views help to capture inter-slice information.This approach may reduce the system complexity.Moreover, the Conditional Random Fields(CRF)reduce the predictions’false positives and improve the segmentation results.This model is applied to Brain Tumor Segmentation (BraTS)2019 dataset, and cross-validation is performed to check the accuracy of results.The proposed approach achieves Dice Similarity Score (DSC)of 0.77 on Enhancing Tumor(ET),0.90 on Whole Tumor(WT),and 0.84 on Tumor Core(TC)with reduced Hausdorff Distance(HD)of 3.05 on ET,5.12 on WT and 3.89 on TC.

    Keywords: Brain tumor; deep learning; detection; conditional random field;segmentation

    1 Introduction

    In the present era,cancer is considered one of the common and growing fatal diseases worldwide.Cancer is the irregular growth of cells in the body.This irregular growth would start in any region of the body, and the root cause is unknown.Among the types of cancers, Brain cancer is the most lethal type of cancer [1].Depending on the initial origin, brain tumours can be separated into two kinds,primary and metastatic brain tumours.Primary brain tumours start from brain cell tissues,but metastatic brain tumours are cancerous and emerge from any other portion of the body.Gliomas are primary brain tumours that are derived from glial cells.Researchers focus on gliomas because these are the main type of tumors.Gliomasare used to describe the WHO grading of glioma, the Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG)[2].LGG are also known as Astrocytoma and Oligendroglioma.In comparison,HGG(grade IV)is glioblastoma or Astrocytoma IV,the most aggressive brain tumor[3].

    Early diagnosis of tumors gives hope to a patient to increase the survival time, less painful treatment, and more chances to survive.There are many medical imaging techniques to diagnose tumors, Computed Tomography (CT), Single Photon Emission Computed Tomography (SPECT),Positron Emission Tomography (PET), Magnetic Resonance Spectroscopy (MRS)[4].These procedures allow you to obtain information about the tumour’s size,shape,location,and metabolism.MRI is a conventional procedure since it does not require ionizing radiation and good soft-tissue contrast instead of other procedures.MRI is not harmful to the human body because it does not use radiations but magnetic fields and radio waves[5].In one MRI,around 150 slices of 2D images were produced to represent the 3D brain volume.T1 images are used to distinguish healthy tissues.T2 images are used to demarcate the edema region.T1-Gd images distinguish the tumor border,while Fluid-Attenuated Inversion Recovery(FLAIR)images help distinguish the edema region from the Cerebrospinal Fluid(CSF).

    The purpose of segmentation is to transform the image into a meaningful and more accessible form for evaluation.The segmentation process divides the images into different segments,and these segments help the system diagnose tumor areas.In the medical field,one can say that segmentation is a complex problem because of unknown noise in medical images,missing boundaries,and some other problems.Segmentation of the brain tumour comprises diagnosis,delineation,and tissue separation.Tumor tissue,activated cells,necrotic nucleus,and edema can also be classified into three components.The normal brain tissues in the comparison include Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid(CSF).Manual annotation and segmentation are in practice which is a very timeconsuming task.Using deep learning methods,high segmentation performance is achieved[6].

    2 Related Work

    In [7], the authors proposed a 3D convolutional neural network that collects information from long-range 2D backgrounds for brain tumor segmentation.He used features learned from a 2D network in three different views (Sagittal, Axial, and Coronal), then fed them to a 3D model to capture more rich information in three orthogonal directions.They used a novel voting technique to combine the exects of multi-class segmentation.The approach they suggest reduces the computational complexity and increases the performance as compared to 2D architectures.

    In [8], the authors suggested adaptive function recombination and recalibration for the task of segmenting tumorous regions from a brain tumor.They used function map recalibration and recombination.Instead of the number of feature maps, they combined compressed data with linear feature expansion.The baseline architecture is a hierarchical Fully Convolutional Network (FCN).Since segmenting the WT region is difficult, they approach it as a binary segmentation problem,reducing false positives.RR blocks are not present in their Binary FCN.They used the Binary FCN prediction to find a Region of Interest (ROI), useful for segmenting multiple tumors within the ROI.The approach they propose is computationally intensive.In [9], for the task of brain tumor segmentation, a deep convolutional symmetric neural network is suggested.The proposed model adds symmetric masks to different layers of the Deep Convolutional Neural Network (DCNN).Their proposed method is robust and performs well when segmenting MRI volumes in less than ten seconds.To capture information at different scales,they used weighted dilated convolutions with various weights.The inference time and model complexity are substantially reduced when Dilated Multi-Fiber Networks(DMFNet)is used.The dice scores achieved by their proposed architecture are competitive[10].

    In[11],instead of changing the architecture,the authors proposed changing the training process.They make minor changes to the U-Net architecture by using a large patch size and a dice loss feature.It would be possible to obtain good results by training the model on previous BraTS challenges datasets,using model cascade,combinations of dice and cross-entropy,and a simple post-processing technique.In[12],the authors implemented a 3D Convolutional Neural Network(CNN)architecture for image segmentation.Input given to this architecture has four dimensions,3 for 3D spatial intensity information,and the fourth dimension provides information about MRI modalities.This architecture gave 87%results for the whole tumor region on the BraTS dataset.As compared to the architecture presented in[12],the authors developed a less dimensional method that transforms the 4D data[13].It uses 2D-CNN simple architecture for brain tumor segmentation.

    In[14],the authors used Deep Neural Network(DNN)classifier to classify brain tumors among three types GBM, sarcoma, and metastatic brain tumors.The authors used a Discrete Wavelet Transform(DWT)to extract features from MRI images and segment them using the Fuzzy C-means clustering technique.These extracted features are further given to DNN to train the architecture.In [15], the authors’performed the image segmentation using a hybrid clustering technique named K-means integrated with Fuzzy C-means (KIFCM).The K-means clustering technique is fast and straightforward,but sometimes it fails to detect the entire tumor-like metastatic brain tumor on large datasets.

    In [16], the authors presented a fully automatic segmentation method using deep CNN.The proposed technique completes its work in three steps, pre-processing, CNN, and post-processing.A morphological method is used in the post-processing stage that improves the segmentation results.Datasets used to train and test this system are BraTS 2013 and 2015 versions.Experiment results showed promising results.However,the authors used dropout after every convolutional layer,resulting in scarce features and overfitting.In[17],the authors used a biologically inspired algorithm for image segmentation and an enhanced Support Vector Machine(SVM)to classify the tumor.The proposed technique completes its task in different steps.

    In this paper,we proposed the approach to capture inter-slice information and reduce the outliers.Deep learning-based brain tumor segmentation techniques proved best among available segmentation techniques.However,deep learning may miss some preliminary info while using MRI images during segmentation.As MRI volumes are volumetric, 3D U-Net-based models are used but complex.Combinations of multiple 2D U-Net predictions in axial, sagittal, and coronal views help capture inter-slice information.This approach may reduce the system complexity.

    Moreover,the CRF reduces the false positive from the predictions and improve the segmentation results.This model has been applied to BraTS 2019 dataset,and cross-validation is performed to check the accuracy of results.The proposed approach achieves a DSC of 0.77 on ET,0.90 on WT,and 0.84 on TC with a reduced HD of 3.05 on ET,5.12 on WT,and 3.89 on TC.

    3 Proposed Methodology

    Our proposed approach for the segmentation of brain tumors is mainly divided into four blocks.In the first step, we have different and multiple input images of the brain.These input images are given to the second block,known as data processing.In this step,after getting the data images from normalization, if performed.After normalization, augmentation is performed on this normalized data.The reason behind performing augmentation is to increase data.The reason behind increasing the data is that deep learning approaches or algorithms are data-hungry and perform better if training is performed on a large dataset.After normalization and augmentation,the data is fed to the proposed technique for training and validation purposes.The proposed architecture is shown in Fig.1.As the figure shows,the whole methodology is divided into four stages.In the first stage,we have the input data,then we apply data pre-processing in the second stage,in which we apply Z-score normalization to sequence the data,and the data augmentation is applied to increase the data.Data augmentation also helps the model to converge fast.Then the third stage is the training of the model,in which the model is fine-tuned on the augmented and normalized data.In the fourth and final stage,post-processing is performed in which we used CRF.

    Figure 1:Proposed system model

    3.1 Pre-Processing

    As the internet data traffic has been increasing with every passing day, it is vital to pre-process the data[18-21].In this paper,all the MRI volumes are normalized using the Z-Score normalization technique.Various pre-processing methods have been proposed in the literature to normalize the intensity range values.We have normalized each slice value with z-score normalization to make the intensity values in some range by using the following equation:

    3.2 Data Augmentation

    One of the key issues in deep learning-based systems is the limited availability of data.As most of the deep learning algorithms based on CNN requires more data to generalize well.Due to the limited data availability,we need to do a data augmentation task to make model convergence easy and overcome limited data.For augmentation,we duplicate the images by:

    ? Randomly shifting images horizontally.

    ? Randomly shift images vertically.

    ? Horizontally flip.

    ? Vertically flip.

    ? Rotating images by 90 degrees.

    ? Adding noise in images.

    3.3 Model Training

    In this study, Keras, a deep learning library, is used for training with the google colab platform having 12 GB ram, 12 GB Nvidia Titan-X GPU.The model is trained by manually dividing the dataset into 80/20, where 80% of data is training, and 20% belongs to testing images.The proposed algorithm used to perform experiments is shown in Algorithm 1.The proposed algorithm mainly performs three operations,training of 3 models,their ensemble,and post-processing.In the first step,the data consisting of MRI volumes and ground truth is split into 5 folds.The baseline model used to perform experiments is U-Net.After data split,three models based on the MRI views Axial,Saggital and Coronal.After training of these models,their predictions are combined using the majority voting ensemble technique.Then on the final predictions,CRF technique is applied.

    3.4 Post Processing

    For post-processing,we have applied CRF as a post-processing technique[22].CRF is a statistical modeling approach used in different machine learning and pattern recognition-based tasks.Most of the models fail to map the relationship between the pixel values in classification or segmentation,which CRF overcomes to map all the neighborhood pixel values to find the dependencies between pixel values.In this study, we have used CRF after the predictions from the proposed Multi-view training of U-Net.The output predictions,along with training images,are given to the model to refine the predictions.The evaluation results on the testing set show the improvement of dice scores of more than 2 percent on ET,WT and TC types.The motivation behind using CRF is to handle pixels-wise relationships to prevent outliers and reduce HD measure.In medical cases, False Positives (FP)are considered very dangerous as they lead to incorrect treatment.

    4 Proposed Model

    In the underline proposed approach, we use three different views of an image to our proposed network.Our proposed approach consists of three blocks.A convolutional layer is connected to multiple neurons; after this layer, a ReLu activation function is implemented.Then, the output of the previous layer is given to the next layer.In the next layer,max pooling is implemented.The idea behind using the max-pooling layer is to reduce the dimensionality of the output coming from the previous layer; its purpose is to down-sample the previous layer’s output.After passing through the pooling layer, the output is the input of the batch normalization layer.The purpose of this layer is to standardize the output of the pooling layer.We can use batch normalization before or after the activation function.This is the working of first block and same it goes for the next coming blocks.After going through these blocks a simple convolutional layer.Later on,In the further block we use the same approach with a change.Here in these blocks upsampling is implemented instead of downsampling.Here in these blocks while using the output of the previous block we also added up output of the comparative block from when we were performing down-sampling.

    The proposed architecture is shown in Fig.2.The network consists of two down-sampling and two up-sampling paths.In literature, it is shown that short paths capture more spatial information.Each layer block consists of a Convolution layer followed by ReLu activation function and then Max Pooling and Batch Normalization (BN)layer, BN helps to prevent overfitting and learn more refined information.This simple approach helps to achieve good results.The ensemble approach is shown visually in Fig.3 in which models are trained on three views Axial,Sagittal and Coronal.The three models are then combined using majority voting technique and CRF is applied on the ensemble predictions.

    Figure 2:Proposed system model

    5 Experiment and Results

    The Tab.1 unveils the setting used for training of model training.

    Figure 3:Proposed system model ensemble

    Table 1: Hyper-parameters used for training of the proposed model

    5.1 Evaluation Metrics

    For evaluation of the proposed architecture, we have used these three performance measures named as DSC,sensitivity and HD.The DSC computes the similarity between the actual and predicted values.

    Sensitivity is a measure that finds out how correctly it identifies the true positives from the predictions.

    The HD is the longest distance you can be forced to travel by an opponent who chooses a point in one of the two sets and then forces you to travel to the other set.In other words,it is the longest distance between a point in one set and the nearest point in the other set.

    5.2 Training and Testing Results

    We have trained the proposed multi-view dataset on the standard U-Net architecture and compared it with training on single view to compare the effectiveness of the proposed approach.The results on four performance measures,DSC,sensitivity,specificity and HD is shown in Tabs.2-5.The Tab.2 shows the DSC score of ET, WT and TC comparison with baseline 2D U-Net architecture.The results show an improvement of 2% on ET, WT, and TC sub-tumor types using a multi-view training approach.

    Table 2: DSC score results using testing set

    Table 3: Sensitivity scores on test set

    Table 4: Specificity scores on testing set

    Table 5: Hausdorff distance score on testing setting

    Similarly, the Tab.3 shows the sensitivity scores of ET, WT and TC sub-tumor types.The comparison of sensitivity scores with baseline 2D U-Net is quite promising as the scores of WT and TC is better as compared to 2D U-Net due to capturing contextual information using multi-view approach.

    The Tab.4 shows the Specificity scores of sub-tumor types ET, WT and TC.The scores of specificity is similar to sensitivity.

    5.3 Analysis

    The proposed multi-view approach helps to capture inter-slice information, and the combined approach outperforms the vanilla U-Net.The CRF post-processing technique also increases the performance and reduces the Hausdorff distance.This embedded post-processing approach reduces the outliers.

    As far as the dataset is concerned, the BraTS Dataset consists of T1, T1-Contrast Enhanced(T1-CE), T2, and FLAIR are the four modalities used in the BraTs dataset for HGG and LGG volumes.Each MRI volume has a dimension of 155240240.Ground Truth(GT)labels for each patient segmentation include ET,Non-Enhancing Tumor(NET),and Peritumoral Edema(PE).The data set is comprised of 349 volumes(259 HGG and 76 LGG).The distribution of labels in the training and testing set is shown in Figs.4-6 shows every separated label from a single patient slice.

    Figure 4:Distribution of labels in training set

    Figure 5:Distribution of labels in test set

    Figure 6:Distribution of labels in test set

    5.4 Visual Results

    The visual results of segmented tumor regions on the validation set are shown in axial,sagittal,and coronal views with heat maps generated from intermediate CNN slides to assess results visually.The sub-tumor types are represented in different colors for proper evaluation.The Figs.7-9 are from a slice from a sample patient.This overlapping fusion enables to capture of inter-slice information.

    Figure 7:Heatmaps and tumor overlap on sample slice of patient in axial plane

    Figure 8:Heatmaps and tumor overlap on sample slice of patient in coronal plane

    Figure 9:Heatmaps and tumor overlap on sample slice of patient in saggitial plane

    The visual results of different patients in different slices are shown in Figs.10-13.The sub-tumor types are represented in different colors for proper evaluation.

    Figure 10:Distribution of labels in test set

    Figure 11:Distribution of labels in test set

    Figure 12:Distribution of labels in test set

    Figure 13:Distribution of labels in test set

    6 Conclusions

    In this study, we have proposed a novel multi-view training strategy for the brain tumor segmentation problem.Instead of combining multi-view model predictions,multi-view input is given to U-Net-based architecture, which achieved better results than U-Net-based architecture.Assessment of results shows the effectiveness of the proposed approach.In addition, the CRF reduced the false positives from the predictions and improved the segmentation results.This model has been applied to BraTS 2019 dataset,and cross-validation is performed to check the accuracy of results.The proposed approach achieves DSC of 0.77 on ET,0.90 on WT,and 0.84 on TC with a reduced HD of 3.05 on ET,5.12 on WT,and 3.89 on TC.

    Funding Statement:This research was supported by Suranaree University of Technology, Thailand,Grant Number:BRO7-709-62-12-03.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲av二区三区四区| 亚洲性夜色夜夜综合| 国内久久婷婷六月综合欲色啪| 成人鲁丝片一二三区免费| 99精品久久久久人妻精品| 成年免费大片在线观看| 欧美黄色淫秽网站| 久久人妻av系列| 99久久成人亚洲精品观看| 免费观看精品视频网站| 激情在线观看视频在线高清| 在线十欧美十亚洲十日本专区| 久久香蕉精品热| 老熟妇仑乱视频hdxx| 搡老岳熟女国产| 午夜福利免费观看在线| 禁无遮挡网站| 亚洲av熟女| 岛国视频午夜一区免费看| 九九热线精品视视频播放| 久久6这里有精品| 美女cb高潮喷水在线观看| 日韩av在线大香蕉| 国产成人福利小说| 深夜精品福利| 舔av片在线| 久久国产乱子伦精品免费另类| 日韩 欧美 亚洲 中文字幕| 免费电影在线观看免费观看| 国内毛片毛片毛片毛片毛片| 99久久精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产黄片美女视频| 两个人的视频大全免费| 精品国产三级普通话版| 无遮挡黄片免费观看| www日本黄色视频网| 国产成人系列免费观看| 88av欧美| 精品免费久久久久久久清纯| 国产成人aa在线观看| 成年免费大片在线观看| 99热精品在线国产| 免费av不卡在线播放| 亚洲精品在线美女| 日韩欧美精品v在线| 午夜免费观看网址| 两个人视频免费观看高清| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区 | 欧美日韩瑟瑟在线播放| 国产视频一区二区在线看| 国产精品,欧美在线| 免费在线观看成人毛片| 国产亚洲精品综合一区在线观看| 搡女人真爽免费视频火全软件 | 欧美日韩综合久久久久久 | 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区视频了| 高清毛片免费观看视频网站| 亚洲18禁久久av| 99久久精品国产亚洲精品| 一级毛片女人18水好多| 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看| 99热精品在线国产| 深夜精品福利| 日本熟妇午夜| 一级作爱视频免费观看| 深夜精品福利| 我的老师免费观看完整版| e午夜精品久久久久久久| 亚洲av五月六月丁香网| 亚洲在线观看片| 久久精品综合一区二区三区| 91九色精品人成在线观看| av视频在线观看入口| 国产毛片a区久久久久| 亚洲av熟女| 日本与韩国留学比较| 午夜福利欧美成人| 日本 av在线| 网址你懂的国产日韩在线| 精品日产1卡2卡| 免费看十八禁软件| 一区二区三区免费毛片| 最近最新中文字幕大全免费视频| 成年版毛片免费区| 欧美日韩精品网址| 两个人的视频大全免费| 国产三级在线视频| 亚洲激情在线av| 哪里可以看免费的av片| 国产三级黄色录像| 俄罗斯特黄特色一大片| 欧美xxxx黑人xx丫x性爽| 18禁裸乳无遮挡免费网站照片| 男人和女人高潮做爰伦理| 国产亚洲av嫩草精品影院| 可以在线观看毛片的网站| 怎么达到女性高潮| 成人欧美大片| 国产69精品久久久久777片| 老司机午夜福利在线观看视频| 少妇的丰满在线观看| 美女高潮的动态| xxxwww97欧美| 亚洲精品456在线播放app | 国产精品1区2区在线观看.| 日本熟妇午夜| 亚洲成人免费电影在线观看| 一个人看的www免费观看视频| 9191精品国产免费久久| 日日夜夜操网爽| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久中文看片网| 91麻豆精品激情在线观看国产| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩卡通动漫| tocl精华| 熟女人妻精品中文字幕| 欧美日韩一级在线毛片| 成年版毛片免费区| 亚洲人成网站在线播| 美女cb高潮喷水在线观看| 国产免费av片在线观看野外av| 搞女人的毛片| 波多野结衣巨乳人妻| 日本黄色片子视频| 欧美激情在线99| 香蕉av资源在线| 又紧又爽又黄一区二区| 黑人欧美特级aaaaaa片| 给我免费播放毛片高清在线观看| 精品乱码久久久久久99久播| 在线a可以看的网站| 法律面前人人平等表现在哪些方面| av在线天堂中文字幕| 搡老岳熟女国产| 可以在线观看毛片的网站| 麻豆成人午夜福利视频| 国产一区二区在线av高清观看| 婷婷精品国产亚洲av| 亚洲成人久久爱视频| 亚洲专区国产一区二区| 女人被狂操c到高潮| 色在线成人网| 亚洲在线自拍视频| www.色视频.com| 国内精品一区二区在线观看| 欧美丝袜亚洲另类 | 午夜a级毛片| 国产老妇女一区| 淫妇啪啪啪对白视频| 午夜精品久久久久久毛片777| 国产蜜桃级精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产成+人综合+亚洲专区| 成人精品一区二区免费| 在线视频色国产色| 亚洲欧美日韩东京热| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区免费观看 | 久久99热这里只有精品18| 哪里可以看免费的av片| 午夜福利免费观看在线| 男女之事视频高清在线观看| 日韩av在线大香蕉| 真人一进一出gif抽搐免费| 久9热在线精品视频| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 2021天堂中文幕一二区在线观| 一二三四社区在线视频社区8| 亚洲精华国产精华精| 黄色片一级片一级黄色片| 色av中文字幕| 亚洲国产日韩欧美精品在线观看 | 久久久久久久久久黄片| 男女之事视频高清在线观看| 国内精品久久久久久久电影| 欧美一级a爱片免费观看看| 波野结衣二区三区在线 | 国产黄色小视频在线观看| x7x7x7水蜜桃| 99精品在免费线老司机午夜| av天堂中文字幕网| 久久久久亚洲av毛片大全| 97超视频在线观看视频| 男女之事视频高清在线观看| 麻豆成人午夜福利视频| 制服人妻中文乱码| 中文资源天堂在线| 熟女电影av网| 欧美三级亚洲精品| 久久人人精品亚洲av| www.色视频.com| 欧美性感艳星| 亚洲精品久久国产高清桃花| 亚洲男人的天堂狠狠| 国产精品电影一区二区三区| 午夜两性在线视频| eeuss影院久久| 九色成人免费人妻av| av在线天堂中文字幕| 亚洲欧美日韩高清专用| 国产又黄又爽又无遮挡在线| 国产精品国产高清国产av| 97碰自拍视频| 丰满人妻一区二区三区视频av | 国产免费av片在线观看野外av| 欧美日韩国产亚洲二区| 悠悠久久av| 91麻豆精品激情在线观看国产| 精品久久久久久久毛片微露脸| 别揉我奶头~嗯~啊~动态视频| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 国产老妇女一区| 在线观看一区二区三区| 亚洲av熟女| 色视频www国产| 日日摸夜夜添夜夜添小说| 婷婷亚洲欧美| 精品人妻偷拍中文字幕| 高清日韩中文字幕在线| 日韩欧美免费精品| 又爽又黄无遮挡网站| 久久精品国产亚洲av涩爱 | 国产成人a区在线观看| 色老头精品视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 一进一出抽搐gif免费好疼| eeuss影院久久| 香蕉丝袜av| 老司机午夜十八禁免费视频| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 国产精品香港三级国产av潘金莲| 日本免费a在线| 99久久精品国产亚洲精品| 国产熟女xx| 神马国产精品三级电影在线观看| 俄罗斯特黄特色一大片| 很黄的视频免费| 香蕉久久夜色| 村上凉子中文字幕在线| 欧美性感艳星| 午夜激情欧美在线| 国产成人av激情在线播放| 亚洲 欧美 日韩 在线 免费| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 性欧美人与动物交配| 免费一级毛片在线播放高清视频| 三级男女做爰猛烈吃奶摸视频| av国产免费在线观看| 69av精品久久久久久| 99热6这里只有精品| 久久国产精品人妻蜜桃| 又黄又爽又免费观看的视频| 中文字幕av成人在线电影| 国产精品免费一区二区三区在线| 一夜夜www| 成人鲁丝片一二三区免费| 亚洲成av人片在线播放无| ponron亚洲| 免费在线观看日本一区| 精品电影一区二区在线| 国产亚洲欧美在线一区二区| 97超级碰碰碰精品色视频在线观看| 麻豆一二三区av精品| 三级男女做爰猛烈吃奶摸视频| eeuss影院久久| 女生性感内裤真人,穿戴方法视频| 欧美xxxx黑人xx丫x性爽| 国产精品永久免费网站| 757午夜福利合集在线观看| 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 久久久久久久精品吃奶| 欧美黄色淫秽网站| 国产色婷婷99| 日韩精品中文字幕看吧| 国产真实伦视频高清在线观看 | 美女被艹到高潮喷水动态| 欧美日韩瑟瑟在线播放| 免费看a级黄色片| 亚洲,欧美精品.| 91久久精品国产一区二区成人 | 欧美最黄视频在线播放免费| 白带黄色成豆腐渣| 免费看a级黄色片| 日本精品一区二区三区蜜桃| 国产高清有码在线观看视频| 黄色片一级片一级黄色片| 真人做人爱边吃奶动态| 精品国产亚洲在线| 久久中文看片网| 黄片大片在线免费观看| 国产 一区 欧美 日韩| 波野结衣二区三区在线 | 久久久久久久精品吃奶| 日本撒尿小便嘘嘘汇集6| 91在线观看av| 国产免费一级a男人的天堂| 美女高潮喷水抽搐中文字幕| 综合色av麻豆| 女人被狂操c到高潮| 亚洲中文日韩欧美视频| 黄色成人免费大全| 国产不卡一卡二| 叶爱在线成人免费视频播放| 操出白浆在线播放| 中文字幕人妻熟人妻熟丝袜美 | АⅤ资源中文在线天堂| 俺也久久电影网| 亚洲男人的天堂狠狠| 在线十欧美十亚洲十日本专区| 熟女电影av网| 97碰自拍视频| 偷拍熟女少妇极品色| 国产精品嫩草影院av在线观看 | 国产美女午夜福利| 欧美色欧美亚洲另类二区| 国产探花在线观看一区二区| 日本黄色视频三级网站网址| 婷婷六月久久综合丁香| 69人妻影院| 成人鲁丝片一二三区免费| 欧美乱码精品一区二区三区| 久久欧美精品欧美久久欧美| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 国产亚洲精品av在线| 亚洲人成网站在线播放欧美日韩| 热99在线观看视频| 成人午夜高清在线视频| 老司机午夜福利在线观看视频| 欧美日韩国产亚洲二区| 欧美日本亚洲视频在线播放| 少妇裸体淫交视频免费看高清| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 美女cb高潮喷水在线观看| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 99热只有精品国产| 欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| 757午夜福利合集在线观看| 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产高清在线一区二区三| 国产免费av片在线观看野外av| 国产成人影院久久av| 国内精品久久久久精免费| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 亚洲久久久久久中文字幕| 全区人妻精品视频| 久久精品综合一区二区三区| 老司机午夜十八禁免费视频| 亚洲无线观看免费| 亚洲精品日韩av片在线观看 | 热99re8久久精品国产| 看黄色毛片网站| 精华霜和精华液先用哪个| 日韩欧美精品免费久久 | 中文字幕久久专区| 亚洲精品在线观看二区| 一个人观看的视频www高清免费观看| 久久人妻av系列| 一进一出抽搐gif免费好疼| 欧美性猛交黑人性爽| 国产日本99.免费观看| 欧美乱码精品一区二区三区| 3wmmmm亚洲av在线观看| 日本 欧美在线| 亚洲天堂国产精品一区在线| 亚洲 欧美 日韩 在线 免费| 有码 亚洲区| 久久久国产成人精品二区| 国产毛片a区久久久久| 久久精品国产自在天天线| 亚洲av第一区精品v没综合| 色av中文字幕| 亚洲最大成人中文| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 脱女人内裤的视频| 高清日韩中文字幕在线| 欧美极品一区二区三区四区| av天堂在线播放| 亚洲欧美日韩卡通动漫| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 国产成人aa在线观看| 日本成人三级电影网站| 国产伦人伦偷精品视频| 九色国产91popny在线| 男女午夜视频在线观看| 十八禁人妻一区二区| av天堂中文字幕网| 嫩草影院精品99| 色av中文字幕| 欧美日本亚洲视频在线播放| 日韩有码中文字幕| 白带黄色成豆腐渣| 91在线精品国自产拍蜜月 | 美女黄网站色视频| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 日本a在线网址| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 老司机福利观看| 成人三级黄色视频| 操出白浆在线播放| 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件 | 免费看十八禁软件| 白带黄色成豆腐渣| 91在线精品国自产拍蜜月 | 88av欧美| 99热这里只有精品一区| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 国产av在哪里看| 给我免费播放毛片高清在线观看| 精品福利观看| 观看美女的网站| 欧美乱码精品一区二区三区| 97超视频在线观看视频| 日本三级黄在线观看| 九九久久精品国产亚洲av麻豆| 午夜亚洲福利在线播放| 精品久久久久久久久久久久久| 精品人妻1区二区| 成年人黄色毛片网站| 欧美日韩精品网址| 淫秽高清视频在线观看| 熟女少妇亚洲综合色aaa.| 熟女电影av网| 超碰av人人做人人爽久久 | 国产综合懂色| 少妇丰满av| 色视频www国产| 中文字幕av成人在线电影| 亚洲欧美日韩高清专用| 日本黄大片高清| 国产淫片久久久久久久久 | 老司机深夜福利视频在线观看| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看| 听说在线观看完整版免费高清| 可以在线观看毛片的网站| 88av欧美| 最新在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三区av网在线观看| 亚洲国产中文字幕在线视频| 欧美一级a爱片免费观看看| 国产亚洲精品av在线| 又紧又爽又黄一区二区| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 久久性视频一级片| 日日夜夜操网爽| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 香蕉丝袜av| 脱女人内裤的视频| 亚洲真实伦在线观看| 丝袜美腿在线中文| 免费观看精品视频网站| 麻豆久久精品国产亚洲av| 国产成人福利小说| 精品久久久久久久久久久久久| 国产精品一及| 久久久国产成人精品二区| 99国产极品粉嫩在线观看| 日韩亚洲欧美综合| 网址你懂的国产日韩在线| 黄色视频,在线免费观看| 国产97色在线日韩免费| 国产毛片a区久久久久| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 国产精品影院久久| 禁无遮挡网站| 欧美日韩黄片免| 午夜精品在线福利| 动漫黄色视频在线观看| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 欧美黑人巨大hd| 日日夜夜操网爽| 久久久久久久久大av| 成人鲁丝片一二三区免费| 人人妻,人人澡人人爽秒播| 一级黄片播放器| 日本五十路高清| 一级黄片播放器| 国产男靠女视频免费网站| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 亚洲成av人片免费观看| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 中文亚洲av片在线观看爽| 成人性生交大片免费视频hd| 久久精品国产自在天天线| 精品久久久久久久久久免费视频| 天天添夜夜摸| 亚洲人成网站在线播放欧美日韩| 国产视频内射| 久久久成人免费电影| 精品人妻一区二区三区麻豆 | 在线a可以看的网站| 国产真实乱freesex| 少妇人妻一区二区三区视频| 久久国产精品人妻蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 国内精品一区二区在线观看| 在线观看日韩欧美| 国产主播在线观看一区二区| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 每晚都被弄得嗷嗷叫到高潮| 91麻豆av在线| 有码 亚洲区| 白带黄色成豆腐渣| 99热6这里只有精品| 国产主播在线观看一区二区| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影| 我的老师免费观看完整版| 特大巨黑吊av在线直播| 国产成年人精品一区二区| 国产伦在线观看视频一区| 久久九九热精品免费| 久久国产乱子伦精品免费另类| 淫妇啪啪啪对白视频| 少妇裸体淫交视频免费看高清| 国产午夜福利久久久久久| 91麻豆av在线| 久久久久久国产a免费观看| 免费av不卡在线播放| 久久久久性生活片| 国产精品一及| 老司机深夜福利视频在线观看| 最近在线观看免费完整版| 18禁黄网站禁片免费观看直播| 天堂网av新在线| 欧美在线一区亚洲| 国产99白浆流出| 蜜桃亚洲精品一区二区三区| 波多野结衣高清作品| 天天一区二区日本电影三级| www.www免费av| 国产男靠女视频免费网站| 黑人欧美特级aaaaaa片| 午夜亚洲福利在线播放| 国产一区二区在线观看日韩 | 久久精品国产亚洲av香蕉五月| 亚洲成av人片在线播放无| 免费观看的影片在线观看| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 露出奶头的视频| 国产视频一区二区在线看| 性欧美人与动物交配| 国产黄a三级三级三级人| 黄色成人免费大全| 精品无人区乱码1区二区| 97超视频在线观看视频| 熟妇人妻久久中文字幕3abv| 最后的刺客免费高清国语| 欧美av亚洲av综合av国产av| 丁香六月欧美| 午夜福利在线观看吧| 久久国产乱子伦精品免费另类| 国产激情欧美一区二区| 母亲3免费完整高清在线观看| 日韩精品青青久久久久久| 国产在视频线在精品| 精品免费久久久久久久清纯| 成人av一区二区三区在线看| 黄色丝袜av网址大全| 深爱激情五月婷婷| 12—13女人毛片做爰片一| 在线播放国产精品三级| 欧美性感艳星| 国产高潮美女av| svipshipincom国产片| 我要搜黄色片| 悠悠久久av| 日本在线视频免费播放| 乱人视频在线观看| 国产一区二区三区视频了| 成人18禁在线播放| 搡老妇女老女人老熟妇| 国产三级中文精品| 久久国产精品人妻蜜桃| 色播亚洲综合网| 日本五十路高清| 国产激情欧美一区二区| 高清毛片免费观看视频网站|