• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines

    2023-12-29 13:41:58YinZhongFanChunTianShunYaoTongQingLiuFanXuBaoBaoShiHongLianAiandJiKaiLiu
    Natural Products and Bioprospecting 2023年6期

    Yin-Zhong Fan ,Chun Tian ,Shun-Yao Tong ,Qing Liu ,Fan Xu ,Bao-Bao Shi* ,Hong-Lian Ai*and Ji-Kai Liu*

    Abstract A series of terpenoids (1-17),comprising six new compounds designated bipolariterpenes A-F (1-6) and eleven recognized compounds (7-17),were isolated from the wheat culture of the potato endophytic fungus Bipolaris eleusines.Their structures and stereochemistry were clarified by HRESIMS,NMR,DP4+probability analyses,and computations for electronic circular dichroism (ECD).All compounds are made up of six meroterpenoids,four sesterterpenes and seven sesquiterpenes.Among them,four sesterterpenes (4,5,10,11) were investigated for their antifungal,antibacterial and cytotoxic properties,and six meroterpenoids (1-3,7-9) were evaluated for their antifungal properties.The compounds 7,9,and 10 had substantial antifungal activity against Epidermophyton floccosum at a concentration of 100 μM.No antibacterial and cytotoxic activities were observed.

    Keywords Endophytic fungus,Bipolaris eleusines,Terpenoids,Isolation and structure elucidation,Antifungal activity

    1 Introduction

    Terpenoids,possessed several hundred initial terpene scaffolds,are very important secondary metabolites [1].Terpenoids have a basic unifying trait that all terpenoids are derived from the five carbon precursor molecules dimethylallyl diphosphate and isopentenyl diphosphate[2].According to their chemical skeletons,terpenoids are further categorized into monoterpenes,sesquiterpenes,diterpenes,sesterterpenes and triterpenes as well as meroterpenoids derived from the hybridization of polyketide and terpenoid [3].Terpenoids offer a wide spectrum of biological functions,such as the cancerfighting monoterpene carvacrol [4],the sesquiterpene atractylenolide V with anti-inflammatory effects [5],and the diterpene 7-deoxynimbidiol with antioxidant activity [6].One of the most important sources of terpenoids is endophytic fungi,which have been widely reported to have specific biosynthetic capabilities [7,8].As a result,the metabolites of endophytic fungi deserve to be further investigated.

    Bipolarisis a genus of fungi belonging to the family Pleosporaceae [9,14],and many metabolites have been reported from several species of this genus,such as terpenes,polyketides,quinones,peptides and alkaloids [10,11,14].The majority of them have a wide spectrum of beneficial biological qualities,such as antifungal,antibacterial,and cytotoxic properties [12-14].In our previous study onB.eleusines,a series of meroterpenoids,sesquiterpenes and chromones have been characterized [14-16].Among them,bipolarithizole A,a new phenylthiazole-sativene merosesquiterpenoid having a MIC value of 16 μg/mL,inhibitedRhizoctoniasolani[14].To find more potent biological agents,a chemical study onB.eleusineswith a large-scale fermentation was carried out.As a result,seventeen terpenoids,including six undescribed compounds,were isolated from cultures of the fungusB.eleusines.The details of its isolation,structural elucidation,and antifungal,antibacterial as well as cytotoxic activities are reported in this paper (Fig.1).

    2 Results and discussion

    Compound1was purified as a colorless solid.The protonated molecule signal in the HRESIMS was used to calculate its chemical formula,which was C29H41NO6S(10 indices of hydrogen deficiency).The1H NMR spectrum of1(Table 1) revealed indications for seven methyl groups [δH0.85 (t,J=7.4 Hz),1.20 (s),1.19 (s),1.11 (s),1.36 (s),1.44 (d,J=7.1 Hz) and 0.76 (d,J=6.6 Hz)],two oxymethine protons [δH3.29 (m),and 3.26 (m)],as well as a number of aliphatic methylene multiplets.In connection with the DEPT experiment,the13C NMR spectrum (Table 1) revealed 29 carbon resonances traceable to seven methyls,five methylenes,seven methines and ten quaternary carbons.The one-dimensional (1D)NMR data of1were quite similar to those of known substance 19-dehydroxyl-3-epi-arthripenoid A [17],which is a meroterpenoid with sesquiterpenoid and polyketide components.This was followed by more research into the HMBC and1H -1H COSY spectra,which confirmed the planar structure of1.The sesquiterpenoid unit(C-12-C-26) was calculated from the1H-1H COSY correlations of H2-19/H2-20/H-21,H2-15/H2-16/H-17 and H2-12/H-13 as well as HMBC cross-peaks from H3-23 to C-21,C-22,and C-24,from H3-26 to C-13,C-14,and C-15,and from H2-12 to C-13 and C-14 (Fig.2).The polyketide unit (C-1-C-11,C-27 and C-28) was clarified using the1H-1H COSY correlations of H3-1/H2-2/H-3,as well as HMBC cross-peaks from H3-28 to C-2,C-3,and C-4 and from H-27 to C-4,C-5,and C-6(Fig.2).Following that,the two units were linked using the HMBC cross-peaks from H2-12 to C-8,C-9,C-10,C-13,C-14 and C-18.Furthermore,the ROESY correlations of H-21 (δH3.29)/H-19α(δH1.49)/H-17 (δH3.26)/H-13 (δH2.00) and H-19β(δH2.68)/H3-25(δH1.11)/H3-26 (δH1.36)/H-12 (δH5.49) proposed that H-21,H-17,and H-13 wereα-oriented,whereas H3-26,H3-25 and H-12 wereβ-oriented in the sesquiterpenoid section(Fig.3).Based on prior discoveries from single crystal X-ray diffraction and the stereoselectivity of enzymes in biosynthesis,the relative configuration of C-5 is known to be fixed (5S-configuration) [18,19].The absolute configuration of C-3 can be determined using the diagnostic chemical shift of C-2.The13C chemical shift values at the C-2 location are substantially downshifted (δC26.8 for 3SandδC23.6 for 3R),as reported for the 3S-conformation [18].Therefore,the chemical shifts of C-2 atδC27.3 in1revealed that C-3 isS-configured.The proposed structure of1was further confirmed by the quantum chemical calculations of the NMR data (qccNMR) of two diastereoisomers (3S-1and 3R-1).The two epimers were submitted to a thorough conformational screening approach,and the NMR chemical shifts were estimated using the PCM solvent model in methanol at the mPW1PW91/6-31+G(d,p)//M06-2X/def2-SVP level of theory.As a result,the calculated13C NMR data for 3S-1agreed well with its experimental values and DP4+analysis also identified 3S-1as the most instructive structure of1with 100% DP4+chance for all data (Fig.4 and Additional file 1: Fig.S78).Therefore,compound1was defined as (3S,5S,12S,13S,14R,17R,18R,21R)-1.

    Fig. 1 The chemical structures of compounds 1-17

    Table 1 1H (600 MHz) and 13C (150 MHz) NMR data of compounds 1-3

    Fig. 2 1H-1H COSY (blue bold lines) and HMBC (red arrows) correlations of compounds 1-6

    Compound2was purified as a purple solid.The protonated molecule signal in the HRESIMS was used to calculate its chemical formula,which was C28H37NO5(11 indices of hydrogen deficiency).The1H NMR spectrum of2(Table 1) revealed indications for seven methyl groups [δH0.85 (t,J=7.4 Hz),1.20 (s),1.19 (s),1.12 (s),1.53 (s),2.25 (s) and 1.27 (d,J=7.0 Hz)],two oxymethine protons [δH3.21 (m) and 3.19 (m)],as well as a number of aliphatic methylene multiplets.In connection with the DEPT experiment,the13C NMR spectrum (Table 1) revealed 28 carbon resonances traceable to seven methyls,five methylenes,four methines (two oxygenated),and twelve quaternary carbons (three oxygenated carbons and two carbonyls).The1H and13C NMR data of2were structurally similar to those of cochlioquinone G [17] except for the absence of a hydroxyl group at C-12 and the presence of an additional double bond atδC111.1 (C-12) and 145.2(C-13).This hypothesiswas validated by HMBC correlations from H-12 (δH6.38) to C-10 (δC175.3),C-9(δC116.3),C-8 (δC151.0) and C-14 (δC81.2) (Fig.2).The ROESY correlations of H-21/H-17 indicated that H-21 and H-17 were on the same face and were given asα-orientation (Fig.3).The correlations of CH3-25 and CH3-26 established theβ-orientation of H3-25 and H3-26,which was similar to those of cochlioquinone G.Similar to1,the absolute configuration of C-3 was calculated utilizing chemical shifts of C-2 (δC29.8) and the quantum chemical calculations of the NMR data as well as DP4+analysis (Fig.4 and Additional file 1: Fig.S79).Therefore,the absolute configuration of2was defined as (3S,14R,17R,18R,21R)-2.

    Fig. 3 ROESY correlations of compounds 1-6

    Fig. 4 Correlation plots of experimental and calculated 13C NMR for 1,2,4 and DP4+results of all NMR data

    Compound3was purified as a yellow oil.The protonated molecule signal in the HRESIMS was used to calculate its chemical formula,which was C28H39NO5(10 indices of hydrogen deficiency).The NMR data (Table 1)showed that compound3was comparable to compound2except for the lack of a double bond group at C-13(δC145.2) and C-12 (δC111.1) and the presence of two alkyl carbons of C-13 (δC48.5) and C-12 (δC17.1).This difference indicated that the double bond of C-13 and C-12 were replaced by a single bond,which was confirmed by HMBC correlations from H-12 (δH2.35) to C-10 (δC182.9),C-8 (δC159.2) and C-14 (δC83.1) and1H-1H COSY correlations of H-13/H-12 (Fig.2).Based on the ROESY profile (Fig.3) and its likely biosynthesis origin from2,the conformation of3was determined as the 3S,13R,14R,17R,18R,21Rconformation,which should be the same as2.

    Compound4was purified as a colorless powder.The protonated molecule signal in the HRESIMS was used to calculate its chemical formula,which was C27H40O6(8 indices of hydrogen deficiency).Its13C NMR spectra indicated 27 signals generated by six methyl carbons,sevensp3methylene carbons,foursp3tertiary carbons,twosp2methine carbons,twosp3quaternary carbons,foursp2nonprotonated carbons and two carbonyl carbons.The1H and13C NMR data of4(Table 2) weresimilar to those of terpestacin (11) [20].The obvious differences disclosed were that the double bond between C-12 and C-13 was absent and two more oxygenated resonances (δC65.1 and 63.5) occurred,suggesting that the double bond in11is oxidized to form an epoxy ring in compound4,which was confirmed by the1H-1H COSY correlations of H-15/H-14/H-13 and HMBC correlations from H-13 to C-22,C-15 and C-11 (Fig.2).ROESY correlations between H-3/H-5,H-20/H-2,H-7/H-9 and H-21/H-6 show that the two double bonds in4wereE-configured.While the ROESY correlation between H-15/H-23 implied that they were on the identical side and assigned asβ-orientation,the correlation between H-19/H-13,H-19/H-14b,H-14b/H-22,suggested that they were assigned asα-orientation (Fig.3).Furthermore,quantum chemical calculations of the nuclear magnetic resonance data (qccNMR) of two diastereoisomers,(12S,13S)-4and (12R,13R)-4,were undertaken to identify the configuration of the epoxy ring on C-12 and C-13.The two epimers were rigorously conformationally screened,and NMR chemical shifts were estimated in methanol using the mPW1PW91/6-31+G(d,p)//M06-2X/def2-SVP level of theory and the PCM solvent model.With a DP4+probability of 100%,the DP4+analysis also revealed (12R,13R)-4as the most plausible structure for4.(all data) (Fig.4),which was compatible with the ROESY study results presented above.Therefore,the absolute configuration of4was specified as (1S,11S,12R,13R,15R,23S)-4.

    Table 2 1H (600 MHz) and 13C (150 MHz) NMR data of compounds 4-6

    Compound5was purified as a colorless powder.The protonated molecule signal in the HRESIMS was used to calculate its chemical formula,which was C25H38O5(7 indices of hydrogen deficiency).Its13C NMR spectra revealed 25 signals from five methyl carbons,sevensp3methylene carbons,foursp3tertiary carbons,twosp2methine carbons,twosp3quaternary carbons,foursp2nonprotonated carbons and a carbonyl carbon.The NMR spectra of5indicated that it is closely linked to4,except that4lacks an acetyl group and has an additional hydroxyl group at C-24,which is corroborated by the 42 Da drop in molecular weight of5when compared to4.Based on ROESY profile (Fig.3) and its potential biosynthetic origin from4,the configuration of5would be equivalent to4for (1S,11S,12R,13R,15R,23S)-5.

    Compound6was purified as a colorless powder.The protonated molecule signal in the HRESIMS was used to calculate its chemical formula,which was C15H24O2(4 indices of hydrogen deficiency).The1H and13C NMR spectra (Table 2) revealed 15 signals from three methyl carbons,threesp3methylene carbons,onesp2methylene carbon,fivesp3tertiary carbon,twosp3quaternary carbons,and onesp2nonprotonated carbon.According to the preceding data,the structural properties of6were comparable to those of longi-β-nozigiku alcohol[21],with the exception of an extra hydroxyl group in6.Chemical shifts at the C-5 (δC67.2) level have increased relative,together with the critical HMBC correlation from H-5 (δH3.87) to C-3 and C-9,suggesting the hydroxyl group was annexed to C-5 (Fig.2).The ROESY correlations of H-15/H-7and H-13/H-7 indicated that H-15,H-13 and H-7 are on the identical side and belong to theα-orientation (Fig.3).The correlations of H-1/H-10 determined theβ-orientation of H-1.Meanwhile,the correlations of H-5/H-11,H-11/H-13 and H-8/H-5 indicated that H-13,H-11,H-8 and H-5 are on the identical side and belong to theα-orientation (Fig.3).Hence,the hydroxyl groups that exist at C-5 isβ-configuration.The absolute configurations of6was determined by comparing the experimental ECD spectra with calculated ECD spectra (Fig.5).Therefore,the absolute configuration of6was defined as (1R,3R,5R,7S,13S,15R)-6.

    Eleven known compounds were identified as isocochlioquinone A (7) [11],cochlioquinone N (8) [22],stemphone (9) [23],(-)-terpestacin (10) [24],fusaproliferin(11) [20],cis-sativenediol (12) [25],helminthosporic acid(13),cochliobolin B (14) and cochliobolin A (15) [26],helminthosporol (16) [27] and bipolarisorokin H (17)[28] respectively,based on spectroscopic data comparisons with reported values.

    Since terpenoids are known to exhibit a variety of biological activities,the four sesterterpenes (4,5,10and11)were tested for their antibacterial,antifungal and cytotoxic properties,and six meroterpenoids (1-3,7-9) were evaluated for their antifungal activities.The antibacterial activity was evaluated against theEscherichiacoli,

    Fig. 5 Experimental and calculated ECD curves of compound 6

    Staphylococcusaureussubsp.Aureus,Salmonellaentericasubsp.Enterica andPseudomonasaeruginosa[29],but all tested compounds did not show any promising activity up to the highest tested concentration of 100 μM(Additional file 1: Table S7).Likewise,no cytotoxic activity against the human cancer cell lines (HL-60,A549,SMMC-7721,MDA-MB-231 and SW480) could be detected (at 40 μM) (Additional file 1: Table S8).The antifungal activity was evaluated against theEpidermophytonfloccosum,Trichophytonrubrum,Microsporum gypseumandCandidaalbicans.The compounds7,9,and10had good antifungal activity againstE.floccosumat a concentration of 100 μM,and compounds1,4,5and10exhibited moderate or weak antifungal activity againstM.gypseum(Table 3).

    3 Conclusions

    In conclusion,seventeen terpenoids,including six undescribed compounds,were identified from the endophytic fungusB.eleusines.Among these isolates,no compounds exhibited antibacterial and cytotoxic activities.However,the compounds7,9and10had significant antifungal activity againstE.floccosum.Our initial findings indicate that the endophytic fungusB.eleusinesis a plentiful supply of different and bioactive terpenoids.

    3.1 General experimental procedures

    A Bruker spectrometer (Bruker,Germany,model AM600) was used to obtain 1D and 2D spectra.A Q Exactive HF mass spectrometer (Thermo Fisher Scientific,USA) was used to collect HRESIMS date.Applied Circular dichroism spectrometer (Chirascan,New Haven,USA) was used to record CD spectra.Column chromatography (CC) was performed on silica gel (Qingdao Marine Chemical Ltd.,Qingdao,China),RP-18 gel(Fuji Silysia Chemical Ltd.,Japan),and Sephadex LH-20(Pharmacia Fine Chemical Co.,Ltd.,Sweden) [30].Semipreparative HPLC experiments were carried out on an Agilent 1260 HPLC with an Agilent Zorbax SB-C18column (5 μm,250 × 9.8 mm).Thin layer chromatography(GF 254) was used to monitor fractions,and spots were seen by heating silica gel plates coated with vanillin and 10% H2SO4in ethanol.

    3.2 Culture and fermentation of fungal material

    This fungus was identified by PCR amplification using fungal 18S universal primers ITS1 and ITS4.The sequenced 18S rDNA ITS sequences were subjected to homology sequence alignment analysis,which,using BLAST,showed 99% maximum similarity toBipolariseleusineswith the gene bank registration number(KY909768.1).Therefore,it was identified asB.eleusines,which was preserved in South-Central Minzu University,China.The strains were inoculated into PDA agar medium and incubated for 3-5 days at a constant temperature of 25 °C.The medium was then cut into several small pieces and placed into a solid wheat medium (50 g wheat and 50 mL water in 500 mL culture flasks,autoclaved at 120 °C for 30 min,for a total of 212 flasks) and fermented at 25 °C for 28 days.

    3.3 Extraction and isolation

    The wheat medium was pounded and extracted five times with EtOAc to yield 167 g of raw extract.The EtOAc extract was subjected to silica gel CC and eluted with a gradient of CH2Cl2-MeOH (100:0-0:100,ν/ν) to obtain six fractions (A-F).Fraction D (31.6 g) was subjected to C18 MPLC using MeOH-H2O (30:70-100:0,ν/ν),yielding ten subfractions (D1-D10).Fraction D5 (1.9 g) wasdivided by CC over silica gel and eluted in PE with a gradient of increasing acetone concentrations (30-100)to provide six fractions (D5-1-D5-6).Fraction D5-5(613.9 mg) was divided by using preparative HPLC (gradient elution with MeOH-H2O,18:82-40:60) to get11(3.2 mg,tR=12.7 min) and12(2.1 mg,tR=13.5 min).The Fraction D9 (903.5 mg) was separated into six subfractions D9-1-D9-6 by column chromatography (Sephadex LH-20,MeOH).Fraction D9-3 (113.6 mg) was separated by using preparative HPLC with a gradient of MeCN-H2O (50:50-60:40,ν/ν) to obtain8(4.3 mg,tR=20.5 min),9(1.2 mg,tR=24.6 min) and10(2.2 mg,tR=25.2 min).Fraction D9-4 (160.1 mg) was separated by using preparative HPLC with a gradient of MeCNH2O (40:60-60:40,ν/ν) to get7(3.5 mg,tR=12.1 min)and16(2.1 mg,tR=14.5 min).Fraction D9-6 (106.2 mg)was separated by Sephadex LH-20 (MeOH) to give four subfractions D9-6-1-D9-6-4 and then purified by usingpreparative HPLC with MeCN-H2O (50:50-60:40,ν/ν) to obtain2(12.2 mg,tR=32.6 min),14(4.5 mg,tR=34.2 min) and13(1.1 mg,tR=35.3 min).Fraction E(33.2 g) was separated by C18 MPLC using MeOH-H2O(10:90-100:0,ν/ν),yielding eight subfractions (E1-E8).The fraction E4 (3.4 g) was isolated by using Sephadex LH-20 and eluted with MeOH to yield five subdivisions E4-1-E4-5.Fraction E4-2 (532.6 mg) was divided by C18 MPLC with MeOH-H2O (60:40-75:25,ν/ν) to obtain3(5.2 mg,tR=18.2 min) and15(13.5 mg,tR=24.5 min).Fraction E4-5 (267.9 mg) was separated by using preparative HPLC with MeOH-H2O (65:35-80:20,ν/ν) to afford6(20.6 mg,tR=22.4 min) and4(15.7 mg,tR=26.8 min).Fraction E8 (7.4 g) was subjected to CC over silica gel with a gradient elution of PE-acetone (30:1-30:60,ν/ν)and then separated using a preparative C18 HPLC column with MeCN-H2O (45:55-60:40,ν/ν) to afford1(4.1 mg,tR=26.4 min),5(20.6 mg,tR=34.3 min) and17(6.2 mg,tR=36.4 min).

    Table 3 Inhibitory effect of compounds on four strains of fungi

    3.3.1 Bipolariterpene A (1)

    Colorless solid;mp 247-252 ℃;UV (CH3OH)λmax(logε)=235 (3.61);IR (KBr): 3414,2970,2939,2874,1713,1655,1458,1431,1381,1342,1308,1246,1146,1092,1026,833 cm-1;[α]+361 (c0.5,CH3OH);1H NMR and13C NMR (CDCl3) data are shown in Table 1;HRESIMSm/z532.27271 [M+H]+(calcd for C29H42NO6S,532.27274).

    3.3.2 Bipolariterpene B (2)

    Yellow oil;UV (CH3OH)λmax(logε)=210 (2.49),225(2.49),275 (2.57);IR (KBr): 3248,2963,2936,1666,1632,1578,1493,1443,1377,1304,1269,1207,1138,1096,1053,1022,957 cm-1;[α]+315 (c0.5,CH3OH);1H NMR and13C NMR (CDCl3) data are shown in Table 1;HRESIMSm/z490.25650 [M+Na]+(calcd for C28H37NNaO5,490.25639).

    3.3.3 Bipolariterpene C (3)

    Purple solid;mp 259-264 ℃;UV (CH3OH)λmax(logε)=245 (2.81);IR (KBr): 3453,2959,2939,2874,2862,1666,1647,1628,1570,1516,1458,1381,1334,1227,1207,1142,1092,1022 cm -1;[α]+216 (c0.1,CH3OH);1H NMR and13C NMR (methanol-d4) data are shown in Table 1;HRESIMSm/z470.28995 [M+H]+(calcd for C28H40NO5,470.29010).

    3.3.4 Bipolariterpene D (4)

    Colorless powder;UV (CH3OH)λmax(logε)=205 (2.69),260 (2.55);IR (KBr): 3387,2974,2939,1740,1709,1655,1458,1373,1238,1038 cm-1;[α]+14 (c0.6,CH3OH);1H NMR and13C NMR (methanol-d4) data are shown in Table 2;HRESIMSm/z483.27190 [M+Na]+(calcd for C27H40NaO6,483.27171).

    3.3.5 Bipolariterpene E (5)

    Colorless powder;UV (CH3OH)λmax(logε)=265 (1.59);IR (KBr): 3375,2970,2936,1697,1651,1450,1408,1389,1312,1142,1030,941,856 cm-1;[α]+19 (c0.5,CH3OH);1H NMR and13C NMR (CDCl3) data are shown in Table 2;HRESIMS m/z 441.26097 [M+Na]+(calcd for C25H38NaO5,441.26115).

    3.3.6 Bipolariterpene F (6)

    Colorless powder;UV (CH3OH)λmax(logε)=210 (2.56);IR (KBr): 3314,2955,1659,1597,1450,1346,1177,1130,1042,1003,949,880 cm-1;[α]-2 (c0.5,CH3OH);1H NMR and13C NMR (methanol-d4) data are shown in Table 2;HRESIMSm/z237.18486 [M+H]+(calcd for C15H25O2,237.18491).

    3.4 Quantum chemical calculations

    3.4.1 13C NMR calculation

    The NMR chemical shift calculations were carried out in Gaussian 16 using density functional theory (DFT) [31].Spartan’14 software was used to conduct the preliminary conformational distribution search.GaussView 6.0 was used to view conformational structures and modify computation input files for calculation.At the M062X/def-2svp level,all ground-state geometries were optimized,and the stable conformations obtained at that level were then used in magnetic shielding constants at the mpw1pw91/6-31+g(d,p) level.GaussView 6.0 was used to display the calculated chemical shift of each atom in each conformer,and the final chemical shift of each atom was calculated from the Boltzmann distribution of each conformer.The stereochemistry was assigned using the DP4+probability analysis of calculated and experimental chemical shifts.

    3.4.2 ECD calculations

    The absolute conformations of the compounds were determined using Gaussian 16 software.Briefly,the relative conformations of the compounds were first determined by ROESY spectroscopy,followed by a preliminary conformational analysis based on Spartan’14software.The obtained conformations were optimized at the M062X/def2svp level of density functional theory(TDDFT),and then ECD calculations were performed by M062X/def2svp.The ECD curves were generated by Origin software.

    3.5 Antifungal assay

    The endophytic fungus used in this assay wasBipolaris eleusines,and the samples to be tested were diluted in 96-well plates,and the fungal solution was added to each well.C.albicanswas nurtured at 37 °C for 24 h,and Filamentous fungi were nurtured at 25 °C for 5 days,and the absorbance value at 625 nm was measured by an enzyme marker.The experiment was set up with a medium blank control,a fungal control [32],and positive drug controls for amphotericin B and terbinafine hydrochloride.

    3.6 Antibacterial assay

    The samples were evaluated for their antibacterial activity againstEscherichiacoli,Staphylococcusaureussubsp.Aureus,Salmonellaentericasubsp.Enterica andPseudomonasaeruginosa.Dissolve the compounds to be tested to a concentration range of 100 μM and add it to a 96-well culture plate.Each well received a bacteria solution until the final concentration reached 5 × 105CFU/ml.It was then cultivated at 27 ℃ for 24 h,and the inhibition rate was determined by the microplate reader at OD 600 nm.The medium blank control was used in the experiment [12].Sodium penicillin G and ceftazidime were used as the positive control.

    3.7 Cytotoxicity assay

    Five human cancer cell lines including HL-60 (promyelocytic leukemia),A549 (lung epithelial cancer),SMMC-7721 (liver cancer),MDA-MB-231 (breast cancer),and SW480 (colon cancer) were used for cytotoxicity assays by MTS method [12].In a word,cells were cultured in DMEM media supplemented with 10% fetal bovine serum before being injected in 96-well culture plates and treated with different concentrations of compounds.After 24 h,each well received 20 μL of MTS,and the OD at 492 nm was determined using a microplate reader.

    Supplementary Information

    The online version contains supplementary material available at https:// doi.org/ 10.1007/ s13659-023-00407-x.

    Additional file 1: Fig.S1.1H NMR spectrum of1.Fig.S2.13C NMR spectrum of1.Fig.S3.HSQC spectrum of1.Fig.S4.HMBC spectrum of1.Fig.S5.1H-1H COSY spectrum of1.Fig.S6.ROESY spectrum of1.Fig.S7.HRESIMS spectrum of1.Fig.S8.IR spectrum of1.Fig.S9.UV spectrum of1.Fig.S10.1H NMR spectrum of2.Fig.S11.13C NMR spectrum of2.Fig.S12.HSQC spectrum of2.Fig.S13.HMBC spectrum of2.Fig.S14.1H-1H COSY spectrum of2.Fig.S15.ROESY spectrum of2.Fig.S16.HRESIMS spectrum of2.Fig.S17.IR spectrum of2.Fig.S18.UV spectrum of2.Fig.S19.1H NMR spectrum of3.Fig.S20.13C NMR spectrum of3.Fig.S21.HSQC spectrum of3.Fig.S22.HMBC spectrum of3.Fig.S23.1H-1H COSY spectrum of3.Fig.S24.ROESY spectrum of3.Fig.S25.HRESIMS spectrum of3.Fig.S26.IR spectrum of3.Fig.S27.UV spectrum of3.Fig.S28.1H NMR spectrum of4.Fig.S29.13C NMR spectrum of4.Fig.S30.HSQC spectrum of4.Fig.S31HMBC spectrum of4.Fig.S32.1H-1H COSY spectrum of4.Fig.S33.ROESY spectrum of4.Fig.S34.HRESIMS spectrum of4.Fig.S35.IR spectrum of4.Fig.S36.UV spectrum of4.Fig.S37.1H NMR spectrum of5.Fig.S38.13C NMR spectrum of5.Fig.S39.HSQC spectrum of5.Fig.S40.HMBC spectrum of5.Fig.S41.1H-1H COSY spectrum of5.Fig.S42.ROESY spectrum of5.Fig.S43.HRESIMS spectrum of5.Fig.S44.IR spectrum of5.Fig.S45.UV spectrum of5.Fig.S46.1H NMR spectrum of6.Fig.S47.13C NMR spectrum of6.Fig.S48.HSQC spectrum of6.Fig.S49.HMBC spectrum of6.Fig.S50.1H-1H COSY spectrum of6.Fig.S51.ROESY spectrum of6.Fig.S52.HRESIMS spectrum of6.Fig.S53.IR spectrum of6.Fig.S54.UV spectrum of6.Fig.S55.1H NMR spectrum of7.Fig.S56.13C NMR spectrum of7.Fig.S57.1H NMR spectrum of8.Fig.S58.13C NMR spectrum of8.Fig.S59.1H NMR spectrum of9.Fig.S60.13C NMR spectrum of9.Fig.S61.1H NMR spectrum of10.Fig.S62.13C NMR spectrum of10.Fig.S63.1H NMR spectrum of11.Fig.S64.13C NMR spectrum of11.Fig.S65.1H NMR spectrum of12.Fig.S66.13C NMR spectrum of12.Fig.S67.1H NMR spectrum of13.Fig.S68.13C NMR spectrum of13.Fig.S69.1H NMR spectrum of14.Fig.S70.13C NMR spectrum of14.Fig.S71.1H NMR spectrum of15.Fig.S72.13C NMR spectrum of15.Fig.S73.1H NMR spectrum of16.Fig.S74.13C NMR spectrum of16.Fig.S75.1H NMR spectrum of17.Fig.S7613C NMR spectrum of17.Fig.S77.Correlations between calculated and experimental13C NMR chemical shifts of1Aand1B.Fig.S78.DP4+analysis results of1.Table S1.Energy analysis for conformers of1Aa~1Aeat mpw1pw91/6-31+g(d,p) level in the gas phase.Table S2.Cartesian coordinates for the low-energy optimized conformers of1Aat M062X/def2svp level.Fig.S79.Correlations between calculated and experimental13C NMR chemical shifts of2Aand2B.Fig.S80.DP4+analysis results of2.Table S3.Energy analysis for conformers of2Aa~2Aeat mpw1pw91/6-31+g(d,p) level in the gas phase.Table S4.Cartesian coordinates for the low-energy optimized conformers of2Aat M062X/def2svp level.Fig.S81.Correlations between calculated and experimental.13C NMR chemical shifts of4Aand4B.Fig.S82.DP4+analysis results of4Table S5.Energy analysis for conformers of4Aa~4Aeat mpw1pw91/6-31+g(d,p) level in the gas phaseTable S6.Cartesian coordinates for the low-energy optimized conformers of4Aat M062X/def2svp level.Table S7.Inhibitory effect of compounds on four strains of bacteria.Table S8.Inhibitory effect of compounds on five strains of Cytotoxicity.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China (32000011,82204239),Hubei Provincial Natural Science Foundation of China (2022CFB462),the Fund of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2022-KF03),the Fundamental Research Funds for the Central Universities,South-Central MinZu University(CZY23024).The authors thank the Bioactivity Screening Center,Kunming Institute of Botany,Chinese Academy of Sciences,for screening the bioactivity of the compounds.

    Author contributions

    H.-L.A.isolated and provided the fungus.Y.-Z.F.contributed to the extraction,isolation,and identification of the samples.C.T.was responsible for the evaluation of cytotoxic activity.S.-Y.T.,Q.L.and F.X.contributed to the extraction and isolation of the samples.Y.-Z.F.and B.-B.S.performed chemical calculation and wrote the paper.H.-L.A.and J.-K.L.designed experiments.All authors reviewed the manuscript.

    Funding

    This work was financially supported by the National Natural Science Foundation of China (32000011,82204239),Hubei Provincial Natural Science Foundation of China (2022CFB462),the Fund of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2022-KF03),the Fundamental Research Funds for the Central Universities,South-Central MinZu University(CZY23024).

    Availability of data and materials

    All data generated and analyzed during this study are included in this published article and its Additional file.

    Declarations

    Competing interests

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Author details

    1School of Pharmaceutical Sciences,South-Central MinZu University,Wuhan 430074,People’s Republic of China.

    Received:19 July 2023

    Accepted:8 October 2023

    麻豆av在线久日| 啪啪无遮挡十八禁网站| 久久国产精品影院| 九色国产91popny在线| 毛片女人毛片| 一区福利在线观看| 中文字幕高清在线视频| 在线观看免费日韩欧美大片| 欧美午夜高清在线| 国产一级毛片七仙女欲春2| 校园春色视频在线观看| 亚洲一码二码三码区别大吗| 久久亚洲精品不卡| 两个人的视频大全免费| 国产亚洲精品综合一区在线观看 | 国产精品亚洲av一区麻豆| 老鸭窝网址在线观看| 国产精品香港三级国产av潘金莲| 一级毛片高清免费大全| 99精品久久久久人妻精品| 国产午夜精品久久久久久| 国产在线观看jvid| 又紧又爽又黄一区二区| 脱女人内裤的视频| 老司机午夜福利在线观看视频| 日韩大码丰满熟妇| 国产午夜精品久久久久久| 亚洲片人在线观看| 成人av一区二区三区在线看| 日本熟妇午夜| 99热这里只有精品一区 | 国产蜜桃级精品一区二区三区| 成人av一区二区三区在线看| 亚洲中文字幕日韩| 国产黄片美女视频| 色综合婷婷激情| 国内精品久久久久精免费| 精品午夜福利视频在线观看一区| 久久这里只有精品19| 1024视频免费在线观看| 两个人视频免费观看高清| 19禁男女啪啪无遮挡网站| 国产真人三级小视频在线观看| 午夜免费成人在线视频| 人妻夜夜爽99麻豆av| 岛国在线观看网站| 国产熟女xx| 亚洲在线自拍视频| 亚洲欧洲精品一区二区精品久久久| 性欧美人与动物交配| 美女 人体艺术 gogo| 亚洲欧美日韩高清专用| 国产成人影院久久av| av在线天堂中文字幕| 亚洲熟妇熟女久久| 欧美午夜高清在线| 国内揄拍国产精品人妻在线| 亚洲美女黄片视频| 身体一侧抽搐| 妹子高潮喷水视频| 亚洲熟女毛片儿| 精品一区二区三区视频在线观看免费| 成人永久免费在线观看视频| 国产熟女xx| 国产精品电影一区二区三区| 精品一区二区三区av网在线观看| 国产成人啪精品午夜网站| 三级毛片av免费| 久久久久九九精品影院| 99久久无色码亚洲精品果冻| 俄罗斯特黄特色一大片| 日韩三级视频一区二区三区| 男女做爰动态图高潮gif福利片| 天天躁狠狠躁夜夜躁狠狠躁| 欧美三级亚洲精品| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 日本免费一区二区三区高清不卡| 国产精品综合久久久久久久免费| 亚洲人成网站在线播放欧美日韩| 欧美绝顶高潮抽搐喷水| 欧美精品啪啪一区二区三区| 999久久久国产精品视频| 青草久久国产| 免费看十八禁软件| 亚洲精华国产精华精| 俺也久久电影网| 一本久久中文字幕| 18美女黄网站色大片免费观看| 俄罗斯特黄特色一大片| 国产精品av久久久久免费| 变态另类丝袜制服| 久久亚洲精品不卡| 99国产极品粉嫩在线观看| 又紧又爽又黄一区二区| 天天一区二区日本电影三级| www.熟女人妻精品国产| 法律面前人人平等表现在哪些方面| www.精华液| 国内精品久久久久久久电影| 99riav亚洲国产免费| 国产精品精品国产色婷婷| 长腿黑丝高跟| 午夜免费观看网址| 欧美+亚洲+日韩+国产| 亚洲国产高清在线一区二区三| 小说图片视频综合网站| 亚洲一区中文字幕在线| 成人国产综合亚洲| 男男h啪啪无遮挡| 亚洲av片天天在线观看| 色综合欧美亚洲国产小说| 久久这里只有精品19| 国产熟女午夜一区二区三区| 女警被强在线播放| 桃红色精品国产亚洲av| 搡老妇女老女人老熟妇| 老汉色av国产亚洲站长工具| 国产精品香港三级国产av潘金莲| 亚洲电影在线观看av| 亚洲成av人片在线播放无| 一级毛片精品| 看黄色毛片网站| 亚洲在线自拍视频| 欧美一级a爱片免费观看看 | 成人永久免费在线观看视频| 国产激情欧美一区二区| 国产探花在线观看一区二区| 日本三级黄在线观看| 一进一出抽搐动态| 高清毛片免费观看视频网站| 人成视频在线观看免费观看| 亚洲精品粉嫩美女一区| 国产av不卡久久| 免费高清视频大片| 欧美黄色片欧美黄色片| 深夜精品福利| 十八禁网站免费在线| 成人三级黄色视频| 国产真人三级小视频在线观看| 一级a爱片免费观看的视频| 国内揄拍国产精品人妻在线| 免费av毛片视频| 免费电影在线观看免费观看| 国产欧美日韩一区二区三| 国产免费av片在线观看野外av| 国产真人三级小视频在线观看| 18禁黄网站禁片免费观看直播| 老司机靠b影院| 757午夜福利合集在线观看| 激情在线观看视频在线高清| 欧美日本视频| 国产精品一区二区三区四区免费观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品 欧美亚洲| 国产v大片淫在线免费观看| 精品久久久久久久人妻蜜臀av| 久久久久免费精品人妻一区二区| 国产精品野战在线观看| 两个人看的免费小视频| 99热这里只有是精品50| 黄色毛片三级朝国网站| 一区二区三区国产精品乱码| 午夜激情av网站| 国产精品一区二区精品视频观看| 婷婷亚洲欧美| 人妻夜夜爽99麻豆av| 久久人人精品亚洲av| 欧美黑人精品巨大| 亚洲国产欧洲综合997久久,| 日本免费a在线| 免费看十八禁软件| 欧美成人一区二区免费高清观看 | 99在线人妻在线中文字幕| 国内毛片毛片毛片毛片毛片| 狠狠狠狠99中文字幕| 日本a在线网址| 老鸭窝网址在线观看| 高清毛片免费观看视频网站| 精品欧美国产一区二区三| 亚洲五月婷婷丁香| 成人av在线播放网站| 可以在线观看的亚洲视频| 国产成人aa在线观看| 国产亚洲欧美98| 色综合欧美亚洲国产小说| 亚洲欧洲精品一区二区精品久久久| 欧美久久黑人一区二区| 国产av麻豆久久久久久久| 91九色精品人成在线观看| 久久精品亚洲精品国产色婷小说| 国产伦一二天堂av在线观看| www日本在线高清视频| 国产黄片美女视频| 999久久久精品免费观看国产| 12—13女人毛片做爰片一| 精品电影一区二区在线| 国产精品影院久久| 日本 av在线| 久久99热这里只有精品18| 99精品欧美一区二区三区四区| 日本精品一区二区三区蜜桃| www.999成人在线观看| 成在线人永久免费视频| 免费搜索国产男女视频| 青草久久国产| 国产麻豆成人av免费视频| 久久久国产成人精品二区| 老司机福利观看| svipshipincom国产片| 男女那种视频在线观看| 人人妻人人看人人澡| 亚洲av五月六月丁香网| 日本黄大片高清| 欧美日本亚洲视频在线播放| 中文字幕人成人乱码亚洲影| 国产精品久久久久久精品电影| 19禁男女啪啪无遮挡网站| 黄频高清免费视频| 亚洲黑人精品在线| 精品欧美国产一区二区三| 无人区码免费观看不卡| 又爽又黄无遮挡网站| 最新美女视频免费是黄的| 一级毛片高清免费大全| 欧美日韩瑟瑟在线播放| 亚洲中文字幕一区二区三区有码在线看 | 非洲黑人性xxxx精品又粗又长| 成人亚洲精品av一区二区| 欧美久久黑人一区二区| 亚洲av片天天在线观看| 老司机在亚洲福利影院| 一进一出抽搐gif免费好疼| 日韩成人在线观看一区二区三区| 五月伊人婷婷丁香| 88av欧美| 听说在线观看完整版免费高清| 国产精品久久久久久人妻精品电影| 黄片大片在线免费观看| 在线看三级毛片| 色尼玛亚洲综合影院| 国产av麻豆久久久久久久| 手机成人av网站| 悠悠久久av| 啦啦啦免费观看视频1| 亚洲熟妇中文字幕五十中出| 国内毛片毛片毛片毛片毛片| 久久性视频一级片| 国产视频内射| 91大片在线观看| 国产伦在线观看视频一区| 精品不卡国产一区二区三区| av天堂在线播放| 婷婷六月久久综合丁香| 久久香蕉国产精品| 老鸭窝网址在线观看| 免费在线观看成人毛片| 欧美大码av| 国产亚洲精品av在线| 精品国产超薄肉色丝袜足j| ponron亚洲| 嫩草影院精品99| tocl精华| 非洲黑人性xxxx精品又粗又长| 久久九九热精品免费| 国产精品美女特级片免费视频播放器 | 999精品在线视频| 久久天堂一区二区三区四区| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久亚洲av毛片大全| 十八禁网站免费在线| 亚洲成av人片免费观看| 成人国语在线视频| 成人一区二区视频在线观看| 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| 亚洲狠狠婷婷综合久久图片| 男插女下体视频免费在线播放| 久久久久久亚洲精品国产蜜桃av| 看免费av毛片| 久热爱精品视频在线9| 午夜福利18| videosex国产| 禁无遮挡网站| 成人三级做爰电影| 一本综合久久免费| 国产在线观看jvid| 亚洲中文av在线| 香蕉国产在线看| 日本一本二区三区精品| 一边摸一边做爽爽视频免费| 日韩 欧美 亚洲 中文字幕| 亚洲性夜色夜夜综合| 香蕉国产在线看| 亚洲天堂国产精品一区在线| 欧美激情久久久久久爽电影| 日本五十路高清| 久久精品影院6| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 一区二区三区国产精品乱码| 午夜两性在线视频| 国产精品av视频在线免费观看| av在线天堂中文字幕| 国产欧美日韩一区二区精品| 精品久久久久久久久久免费视频| 精品不卡国产一区二区三区| 国产在线观看jvid| 欧美日韩乱码在线| 久久久国产成人精品二区| netflix在线观看网站| 午夜福利在线在线| 久久久久久久午夜电影| 午夜精品在线福利| 国产高清videossex| 曰老女人黄片| 欧美日本亚洲视频在线播放| 久久久精品欧美日韩精品| tocl精华| 99精品在免费线老司机午夜| 一边摸一边做爽爽视频免费| 97人妻精品一区二区三区麻豆| 日韩三级视频一区二区三区| 最近最新免费中文字幕在线| 国产人伦9x9x在线观看| 日韩精品中文字幕看吧| 18禁黄网站禁片免费观看直播| 亚洲七黄色美女视频| 女人被狂操c到高潮| 91九色精品人成在线观看| 亚洲成人精品中文字幕电影| or卡值多少钱| 18禁黄网站禁片午夜丰满| 麻豆一二三区av精品| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 国产av一区在线观看免费| 精品不卡国产一区二区三区| 美女黄网站色视频| 久久午夜亚洲精品久久| 伦理电影免费视频| 欧美精品亚洲一区二区| 五月伊人婷婷丁香| 久久久久国内视频| 最近最新中文字幕大全电影3| 成人特级黄色片久久久久久久| 五月玫瑰六月丁香| 青草久久国产| 91老司机精品| 成人特级黄色片久久久久久久| 久久精品国产清高在天天线| 久久性视频一级片| 一级毛片女人18水好多| 欧美日韩黄片免| 国产成年人精品一区二区| 午夜福利视频1000在线观看| 欧美大码av| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 麻豆一二三区av精品| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| 法律面前人人平等表现在哪些方面| 小说图片视频综合网站| 国产成年人精品一区二区| 真人一进一出gif抽搐免费| 欧美最黄视频在线播放免费| 国产三级中文精品| 叶爱在线成人免费视频播放| 国产区一区二久久| 欧美激情久久久久久爽电影| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻福利社区极品人妻图片| 中出人妻视频一区二区| 欧美激情久久久久久爽电影| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品久久国产高清桃花| 午夜久久久久精精品| 亚洲中文字幕一区二区三区有码在线看 | 90打野战视频偷拍视频| 精品日产1卡2卡| 麻豆久久精品国产亚洲av| 久久久久久大精品| 成年免费大片在线观看| 亚洲欧美日韩东京热| 日韩欧美一区二区三区在线观看| 国产精华一区二区三区| 啦啦啦观看免费观看视频高清| 欧美+亚洲+日韩+国产| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 国产精品久久久久久久电影 | 免费在线观看日本一区| 亚洲熟女毛片儿| 国产三级黄色录像| 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 亚洲精品美女久久av网站| 国产区一区二久久| 手机成人av网站| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 国产片内射在线| 欧美三级亚洲精品| or卡值多少钱| 特大巨黑吊av在线直播| 一二三四在线观看免费中文在| 欧美黑人欧美精品刺激| 女警被强在线播放| 熟妇人妻久久中文字幕3abv| av在线播放免费不卡| 日韩大码丰满熟妇| 成人欧美大片| 国产主播在线观看一区二区| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| 两个人免费观看高清视频| 久99久视频精品免费| 无限看片的www在线观看| 亚洲av成人av| 欧美成人免费av一区二区三区| 小说图片视频综合网站| 九色成人免费人妻av| 成人亚洲精品av一区二区| 老司机靠b影院| 国产成人精品无人区| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 日韩av在线大香蕉| 丁香六月欧美| 国产一区在线观看成人免费| 男插女下体视频免费在线播放| 色综合婷婷激情| 亚洲美女视频黄频| 男插女下体视频免费在线播放| 99久久99久久久精品蜜桃| 日韩欧美精品v在线| 欧美乱妇无乱码| 国产伦在线观看视频一区| 免费在线观看完整版高清| 久久九九热精品免费| www国产在线视频色| 亚洲成av人片在线播放无| 男人舔女人下体高潮全视频| 成人手机av| 亚洲成av人片在线播放无| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 久久亚洲精品不卡| tocl精华| 久久久久免费精品人妻一区二区| 久久99热这里只有精品18| 国产亚洲欧美98| 亚洲成人免费电影在线观看| 国产黄色小视频在线观看| 日日爽夜夜爽网站| 搡老岳熟女国产| 好男人在线观看高清免费视频| 黑人操中国人逼视频| 色综合亚洲欧美另类图片| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 女生性感内裤真人,穿戴方法视频| 国产激情久久老熟女| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 日韩欧美在线乱码| 午夜免费观看网址| 99在线视频只有这里精品首页| 国产成+人综合+亚洲专区| 1024香蕉在线观看| xxxwww97欧美| 999精品在线视频| 国产精品久久久久久人妻精品电影| 成人欧美大片| 国产精品av视频在线免费观看| aaaaa片日本免费| 婷婷精品国产亚洲av| 变态另类丝袜制服| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 精品午夜福利视频在线观看一区| 久久久久久免费高清国产稀缺| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| 美女免费视频网站| 最近在线观看免费完整版| 成人高潮视频无遮挡免费网站| 国产精品九九99| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 亚洲五月天丁香| 亚洲午夜理论影院| 亚洲熟妇中文字幕五十中出| 成人亚洲精品av一区二区| 神马国产精品三级电影在线观看 | 精品第一国产精品| 18禁黄网站禁片免费观看直播| 欧美乱妇无乱码| 欧美日韩精品网址| 俄罗斯特黄特色一大片| 50天的宝宝边吃奶边哭怎么回事| 国产在线观看jvid| 女警被强在线播放| 久久国产精品影院| 在线观看美女被高潮喷水网站 | 久久久久久久久免费视频了| 亚洲成人精品中文字幕电影| 久久久久性生活片| 国产一区二区三区视频了| 亚洲精品久久国产高清桃花| 人人妻人人看人人澡| 国产91精品成人一区二区三区| 久久这里只有精品19| 国产一区二区三区视频了| 日韩av在线大香蕉| 亚洲成av人片在线播放无| 长腿黑丝高跟| 黄色丝袜av网址大全| 久久人人精品亚洲av| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 我要搜黄色片| 国产av麻豆久久久久久久| 国产91精品成人一区二区三区| 欧美丝袜亚洲另类 | 黄色视频,在线免费观看| 成人欧美大片| 国产成年人精品一区二区| svipshipincom国产片| 2021天堂中文幕一二区在线观| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 色综合婷婷激情| 国产午夜精品久久久久久| 制服人妻中文乱码| 免费av毛片视频| 欧美国产日韩亚洲一区| 亚洲精品久久成人aⅴ小说| 亚洲精品国产一区二区精华液| 美女免费视频网站| 夜夜夜夜夜久久久久| 午夜视频精品福利| 亚洲色图 男人天堂 中文字幕| 麻豆成人av在线观看| 亚洲五月天丁香| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久久5区| 亚洲中文日韩欧美视频| 床上黄色一级片| 国产99久久九九免费精品| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 丁香欧美五月| av片东京热男人的天堂| 神马国产精品三级电影在线观看 | 亚洲午夜精品一区,二区,三区| 一个人免费在线观看电影 | 国产av一区在线观看免费| www日本黄色视频网| 久久精品国产99精品国产亚洲性色| 国产野战对白在线观看| 亚洲免费av在线视频| 国产精品久久久久久亚洲av鲁大| 欧美日韩福利视频一区二区| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 国产精品1区2区在线观看.| 欧美日韩乱码在线| 免费在线观看视频国产中文字幕亚洲| 香蕉丝袜av| 搞女人的毛片| 大型av网站在线播放| 一二三四在线观看免费中文在| 久久久久国内视频| 在线a可以看的网站| 一个人观看的视频www高清免费观看 | 国产91精品成人一区二区三区| 日本在线视频免费播放| 草草在线视频免费看| 日本在线视频免费播放| 国产av一区二区精品久久| 日本在线视频免费播放| 草草在线视频免费看| 国产精品 欧美亚洲| 两个人免费观看高清视频| 法律面前人人平等表现在哪些方面| 五月伊人婷婷丁香| 美女扒开内裤让男人捅视频| 亚洲片人在线观看| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影| 久久伊人香网站| 欧美午夜高清在线| 最近最新中文字幕大全电影3| 亚洲,欧美精品.| 亚洲av成人精品一区久久| 五月玫瑰六月丁香| 免费在线观看日本一区| 老汉色av国产亚洲站长工具| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 成人精品一区二区免费| 欧美一区二区国产精品久久精品 | 小说图片视频综合网站| 桃红色精品国产亚洲av| 精品国产亚洲在线| 麻豆成人午夜福利视频|