• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy in critical collapse

    2023-12-28 09:20:32YuHuJunQiGuoJunbinLiChengGangShaoandHongshengZhang
    Communications in Theoretical Physics 2023年12期

    Yu Hu ,Jun-Qi Guo ,Junbin Li ,Cheng-Gang Shao,? and Hongsheng Zhang

    1 MOE Key Laboratory of Fundamental Physical Quantities Measurement,Hubei Key Laboratory of Gravitation and Quantum Physics,PGMF,and School of Physics,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China

    2 School of Physics and Technology,University of Jinan,Jinan 250022,Shandong,China

    3 Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,Guangdong,China

    Abstract We study the energy issue in critical collapse.It is found that in critical collapse,the contribution from the material energy is greater than that from the gravitational energy.The quantity m/r plays an important role in identifying the formation of an apparent horizon in gravitational collapse,where m is the Misner–Sharp mass and r is the areal radius.We observe that in critical collapse,the maximum value of m/r fluctuates between 2/15 and 4/15.This denotes a large gap between critical collapse and black hole formation for which the criterion is m/r=1/2.

    Keywords: quasi-local energy,critical collapse,numerical relativity

    1.Introduction

    Energy is a key subject in physics.Due to the equivalence principle,one cannot define the gravitational energy locally.The success of the proof for the positive energy theorem inspired people to define the gravitational energy at the quasilocal level:the energy contained in a closed two-dimensional surface.Several notions of the quasi-local energy have been constructed,such as the Misner–Sharp energy [1],Brown–York energy [2],Hawking energy [3],Hayward energy [4],and Wang–Yau energy[5,6].The descriptions for the energy of gravitational waves were studied in[7–9].More details can be found in review [10].

    By fine-tuning the initial data of a spherically scalar field,Choptuik discovered the critical phenomena in gravitational collapse [11].On the sub-critical side,the collapse will lead to dispersion,while on the super-critical side,a tiny black hole will form.The critical collapse solution is discretely self-similar along the ever-decreasing time and space scales.This feature is universal,independent of the initial profiles of the matter field.The mass of the tiny black hole forming in the super-critical circumstance satisfies a power law,MBH∝|p-p*|γ,where p*is a critical parameter value in the initial data of the scalar field,and γ ≈0.37.Critical phenomena in many other collapse models were also observed (see [12] for review).Recently,the critical behavior in 3D gravitational collapse with no symmetry assumptions was studied in [13].Critical collapse of electromagnetic waves in axisymmetry was investigated in [14,15].Novel dynamical critical phenomena in the process of the nonlinear accretion of the scalar field into black holes were observed in [16].With one typical log-periodic formula in the discrete scale invariance systems,one approximate analytic solution for the spacetime near the center was obtained in [17].

    Three versions of the quasi-local energy in the Oppenheimer–Snyder dust collapse model were analyzed in [18].Quasilocal energy was calculated in the contexts of black hole physics and cosmology in[19–21].In[22],the gravitational and material energies in a static spherical star were discussed.Considering the fundamental role that energy has been playing in physics,in this paper,we investigate the energy issue in critical collapse,and we are especially interested in the comparison between the contributions from the gravitational and material energies.

    This paper is organized as follows.In section 2,we describe the methodology,including the collapse model and the definitions of energy.In section 3,we discuss the energy issue in critical collapse.Some features of the quantity m/r are studied in section 4.In section 5,the results are summarized.

    2.Methodology

    2.1.Gravitational collapse

    We consider the critical collapse of a spherically symmetric massless scalar field φ.The action for the system is

    We set G=1.The corresponding energy-momentum tensor for φ is

    We simulate critical collapse in the polar coordinates,

    For the metric (3),some components of the Einstein tensor and the energy-momentum tensor for φ are

    For the metric(3),the conservation of the energy-momentum tensor,=0,leads to

    Figure 1.Evolution of the scalar field at the center in critical collapse.

    The initial conditions for φ are set up asand φ,t|t=0=0.The spacial range is 0 ≤r ≤12.In seeking the numerical solution to critical collapse,we set a=0.336033778324 and σ=1.The initial values for the metric functions A and δ are obtained via integrations of equations (10) and (11).The regularity of equation(10)at the center requires that A|r=0=1.We choose δ|r=0=0.Consequently,the coordinate time is equal to the proper time at the center.

    In the simulation,we integrate equations(10)–(14)by the fourth-order Runge–Kutta method.Mesh refinement algorithm is implemented.For details on the numerics,see [23].

    2.2.Landau–Lifshitz pseudotensor approach

    We implement two separate approaches to define the gravitational and material energies: the Landau–Lifshitz pseudotensor approach and the Misner–Sharp energy approach.The Landau–Lifshitz pseudotensor is a typical definition for the energy of the gravitational field and is coordinate-dependent.The Misner–Sharp energy is one of the major notions for the quasi-local energy enclosed in a two-dimensional spacelike surface in spherical symmetry and is coordinate-independent.Regarding the first approach,we firstly take the following definitions [24,25],

    where g is the metric determinant,andis called the Landau–Lifshitz pseudotensor.The tensor density Hαμβνsatisfies the identity

    Figure 2.Gravitational and material energies in critical collapse defined by equations (21),(25),(26),(30)–(32).

    Then the Einstein equations can be expressed in the nontensorial form

    Using the antisymmetric property of Hμανβand the Einstein field equations,one obtains

    Equations (19) and (20) imply thatcan be interpreted as an energy-momentum (pseudo) tensor for the gravitational field.

    We define a total energy associated with the region V,

    When V includes the whole space,ELL(V)coincides with the Arnowitt–Deser–Misner mass.Since the value of the pseudotensor is coordinate-dependent,we choose the coordinates carefully when using a pseudotensor.Here we prefer the Cartesian coordinates,in which for the metric (3),there are

    Substitution of equation (22) into (21) yields

    Substituting equation (22) into (17) and using g ≡|gμν|=-e-2δ,we obtain

    With equation (2),we have T00=(1/2)e-2δ(P2+Q2).Then we can split the total energy (21) into the material and gravitational parts,

    Figure 3.Energy density at the critical collapse stage.The absolute value of the ratio between the gravitational and material energy densities in the large-radius region is much greater than that in the small-radius one.

    2.3.Misner–Sharp energy approach

    Before discussing the definitions for the material and gravitational energies in critical collapse with the Misner–Sharp energy approach,we first consider the energy issue in a static star of perfect fluid,with the energy-momentum tensor,Tμν=(ρf+pf)UμUν+pfgμν,where Uμis the tangent vector of the stationary observer.Inside the star,one mass function can be defined as

    On the boundary of the star r=rb,there is

    which is identical to the expression for the total mass in Newtonian gravity.However,in general relativity,the proper mass is

    whereh(=A-1r′4sin2θ)is the determinant of the induced metrichab[=diag(A-1,r′2,r′2sin2θ)]of the spacelike hypersurfacet=Const.

    The quantity M in equation (28) has clear physical meaning: it is the total mass (energy) of the Schwarzschild spacetime,including gravitational potential energy.However,the quantity Mpin equation(29)does not include gravitational potential energy,since ρf(the energy density measured by a stationary observer) includes the rest energy density of each particle in the star and the internal energy density,but does not include the gravitational energy density [22].

    Regarding the Misner–Sharp energy approach of defining the material and gravitational energies in critical collapse,we take similar method as in the static circumstance discussed above.We use the Misner–Sharp energy [1] to represent the total energy inside a closed two-dimensional spacelike surface S constrained byr=Const andt=Const.

    Figure 4.Evolution of the energy inside the region r ≤12.

    Figure 5.Terms in the equation of motion for φ (14).In the small and large-radius regions,equation (14) is respectively reduced to

    where ρ is the material energy density measured by a stationary observer,ρ ≡TμνUμUν=(1/2)A(P2+Q2).Uμis the tangent vector of the stationary observer,The material and gravitational energies are respectively defined as below,

    3.Results I: energy

    By fine-tuning the initial data of the scalar field,we obtain the numerical solution to critical collapse.The oscillating behavior of the scalar field at the center,φ versus-lnT,is shown in figure 1,where T ≡t*-t,and t* is the time for naked singularity formation.The period Δ for the oscillations takes the same value as reported in the literature,Δ ≈3.43.

    With the expressions (21),(25),(26),(30)–(32),we plot the material and gravitational energies and energy densities in figures 2 and 3,respectively.We also plot the evolution of the energies in a sufficiently large region of r ≤12 in figure 4,such that during the simulation the boundary is far enough from the collapse region and the total energy in the region remains constant.From these figures,we observe that both the Landau–Lifshitz pseudotensor approach and Misner–Sharp energy approach generate similar results:

    (i) In critical collapse,the contribution from the material energy is greater than that from the gravitational energy.

    (ii) The material energy density,in figure 3(a) and dEm/dr in figure 3(b),is positive.

    (iii) As shown in figure 3(a),the gravitational energy densityby the Landau–Lifshitz pseudotensor approach is sometimes negative and sometimes positive.As shown in figure 3(b),the gravitational energy densityby the Misner–Sharp energy approach is always negative.

    There is a strong correlation between the gravitational effects on the evolution of the scalar field and the ratio between the gravitational and material energy densities.As shown in figure 5,in the large-radius region (lnr>-7),the equation of motion for φ(14) is reduced to

    Figure 6.m/r in critical collapse in the polar coordinates(3).(a)and(b):m/r on some slices t=Const.In the transition place between the small-and large-radius regions,the maximum values of m/r stay in the range of [2/15,4/15].In figure (b),the slices are numbered in the temporal direction.(c)Numerical illustrations on the upper and lower limits for the maximum values of m/r.(d)K:the maximum value of m/r on slices T=Const.

    Figure 7.m/r in critical collapse on some slices t=Const in the double-null coordinates(38).(a)Numerical illustrations on the upper and lower limits for the maximum values of m/r.(b) K: the maximum value of m/r on slices T=Const.

    Therefore,the gravitational effects on the dynamics of the scalar field are important.On the other hand,in the smallradius region (lnr<-11),equation (14) becomes

    which is similar to what happens in flat spacetime.So the scalar field does not feel the gravitational effects directly.On the other hand,as shown in figure 5,in the transition region locating between the central and large-radius ones,in the equation of motion for the scalar field,the gravitational effects are not negligible.Then due to the connection between the central and transition regions,the scalar field in the central region feels the gravitational effects indirectly.Correspondingly,as shown in figure 3,the absolute value of the ratio between the gravitational and material energy densities in the large-radius region is much greater than in the small-radius one.The echoing behavior of the energy density is clearly demonstrated in figure 3.

    We make some comments on the result (34).In another two types of collapse (dispersion and early stage of collapse toward black hole formation),near the center,equation(14)is also reduced to the form(34).The causes are the following.In equation (14),the gravitational effects come from the firstorder derivatives of the metric functions.Under the smoothness requirement in the central region,the metric functions and the scalar field have the following asymptotic expressions[23]:

    Some details on the analytic investigations of equations (33)and (34) are presented in [26].

    As discussed in [26],in the large-radius region,the field φ admits the following approximate expression:

    where ξ ≡t-t*,such that ξ=0 upon naked singularity formation.The quantity [H(r,ξ)] has the following features:(i) For [H(r,ξ)],there is

    where α ≡A1/2e-δ.

    (ii) Note that H,ξ=ωα/r+ωα,ξξ/r.The numerical results yield

    The numerical results show that the transition region located between the central and large-radius regions can be described as r ?[r1,r2].At r=r1,there is∣C3H∣ ~∣ωlnr∣;and at r=r2,there is |C3H,r|~ω/r.

    4.Result II: m/r

    In gravitational collapse,m/r is an important quantity identifying the location of the apparent horizon,which is also crucial in identifying the formation of singularities [27],where m is the Misner–Sharp mass.It is natural to ask how far the spacetime in critical collapse is from black hole formation.Moreover,as studied in [28],the quantity m/r is closely related to the origin of the characteristic period in critical collapse Δ ≈3.43.

    We plot the evolution of m/r on some slicest=Const in figure 6.On each slicet=Const,the quantity m/r takes its maximum value,denoted as∣max,in the transition place between the small-and large-radius regions.In [29],it was reported that the maximum value of∣maxis 0.26.In this work,we obtain more accurate results.Denote K(T) as the maximum value of m/r on slicesT=Const.As shown in figure 6,the numerical results for the upper and lower limits for K are about 0.266 407 and 0.132 328,respectively.With the same code used in [30],we simulate critical collapse in the double-null coordinates,

    where u=(t-x)/2 and v=(t+x)/2.As shown in figure 7,we obtain the numerical results for the upper and lower limits for K which are 0.266 646 and 0.132 729,respectively.So it is natural to state the limits by the fractional numbers,4/15 and 2/15.

    There is a big gap between the upper limit for m/r in critical collapse (which is 4/15) and the criterion for black hole formation(which is m/r=1/2).This is reasonable since dispersion,critical collapse and black hole formation are three distinct final outcomes of gravitational collapse.

    5.Summary

    Energy has played a fundamental role in physics,and the explorations on this concept keep bringing us an insightful understanding of nature.However,in general relativity,because of the nontensorial characteristic of the gravitational energy-momentum density expression,the energy issue in gravitational collapse has not been fully studied in the literature.A nontensorial object may still be meaningful.The Christoffel symbols are nontensorial and one can make them to be zero at a given point by coordinate transformation.However,they cannot be transformed to zero on an open domain in curved spacetime.So in this paper we took the adventure of studying the energy issue in critical collapse with the Landau–Lifshitz pseudotensor approach and Misner–Sharp energy approach.These two approaches generate similar results: in critical collapse,the contribution from the material energy is greater than that from the gravitational energy.

    The quantity m/r is indispensable in identifying the formation of the apparent horizon in gravitational collapse.In this paper,it was observed that in critical collapse the maximum value of m/r fluctuates between 2/15 and 4/15.So the upper bound 4/15 for m/r is a bit far from the criterion for black hole formation,m/r=1/2.

    Acknowledgments

    The authors are very grateful to the anonymous referees for their valuable comments.The authors thank Xiaokai He,Xiaoning Wu,and Cheng-Yong Zhang for the helpful discussions.YH and CGS are supported by the National Natural Science Foundation of China (Grant No.11925503).JQG is supported by Shandong Province Natural Science Foundation under grant No.ZR2019MA068.

    ORCID iDs

    热re99久久国产66热| 午夜福利欧美成人| 99精国产麻豆久久婷婷| 69精品国产乱码久久久| 免费看十八禁软件| 丝袜人妻中文字幕| 最近最新免费中文字幕在线| videosex国产| 精品免费久久久久久久清纯 | 黄频高清免费视频| 色精品久久人妻99蜜桃| 久久九九热精品免费| 美女主播在线视频| 两人在一起打扑克的视频| 777米奇影视久久| 欧美另类亚洲清纯唯美| 看免费av毛片| 免费在线观看视频国产中文字幕亚洲| 变态另类成人亚洲欧美熟女 | 国产aⅴ精品一区二区三区波| 亚洲午夜精品一区,二区,三区| 日韩成人在线观看一区二区三区| 国产福利在线免费观看视频| 婷婷丁香在线五月| 国产精品99久久99久久久不卡| 国产男靠女视频免费网站| videosex国产| 国产成人一区二区三区免费视频网站| 欧美日韩国产mv在线观看视频| 伊人久久大香线蕉亚洲五| 一二三四社区在线视频社区8| 超色免费av| 一级毛片电影观看| 激情视频va一区二区三区| 国产一卡二卡三卡精品| 亚洲人成电影观看| 欧美久久黑人一区二区| 黄色 视频免费看| 亚洲成av片中文字幕在线观看| 欧美亚洲 丝袜 人妻 在线| 法律面前人人平等表现在哪些方面| 两性午夜刺激爽爽歪歪视频在线观看 | 脱女人内裤的视频| 亚洲专区中文字幕在线| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 无限看片的www在线观看| 新久久久久国产一级毛片| 一个人免费在线观看的高清视频| 国产精品亚洲av一区麻豆| 香蕉久久夜色| 国产淫语在线视频| 亚洲人成电影观看| 窝窝影院91人妻| 12—13女人毛片做爰片一| 十八禁网站网址无遮挡| 极品人妻少妇av视频| 精品少妇内射三级| 日韩成人在线观看一区二区三区| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av香蕉五月 | 法律面前人人平等表现在哪些方面| a级毛片黄视频| 日韩 欧美 亚洲 中文字幕| 久久人人97超碰香蕉20202| 午夜免费成人在线视频| 在线观看66精品国产| 欧美精品亚洲一区二区| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| 女人久久www免费人成看片| 亚洲国产精品一区二区三区在线| 精品国产乱码久久久久久小说| 国产亚洲午夜精品一区二区久久| 在线观看舔阴道视频| 动漫黄色视频在线观看| 国产精品香港三级国产av潘金莲| 久久精品人人爽人人爽视色| 中国美女看黄片| 一本色道久久久久久精品综合| 国产精品电影一区二区三区 | 国产在视频线精品| 免费在线观看视频国产中文字幕亚洲| 在线 av 中文字幕| 国产亚洲一区二区精品| 天天影视国产精品| 欧美激情极品国产一区二区三区| 日韩熟女老妇一区二区性免费视频| 男女下面插进去视频免费观看| 在线观看免费日韩欧美大片| 精品一区二区三区四区五区乱码| 成人国语在线视频| 久久热在线av| 757午夜福利合集在线观看| 黄网站色视频无遮挡免费观看| 狠狠精品人妻久久久久久综合| 午夜福利欧美成人| 国产精品一区二区在线观看99| av超薄肉色丝袜交足视频| 精品久久久久久电影网| 精品少妇久久久久久888优播| 一本大道久久a久久精品| 亚洲欧美激情在线| 涩涩av久久男人的天堂| 人妻一区二区av| 黑丝袜美女国产一区| 国产黄频视频在线观看| 大码成人一级视频| 国产免费视频播放在线视频| 午夜两性在线视频| 天天影视国产精品| 亚洲av日韩精品久久久久久密| 99riav亚洲国产免费| 日韩中文字幕视频在线看片| 美女福利国产在线| 久久久精品区二区三区| 男女无遮挡免费网站观看| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区| 欧美精品av麻豆av| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 久久久久久久大尺度免费视频| 一区二区日韩欧美中文字幕| 国产精品自产拍在线观看55亚洲 | 欧美人与性动交α欧美精品济南到| 高清av免费在线| 色综合婷婷激情| 丝袜在线中文字幕| 国产一卡二卡三卡精品| 夜夜爽天天搞| 少妇的丰满在线观看| 天天躁日日躁夜夜躁夜夜| 王馨瑶露胸无遮挡在线观看| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区三| 国产成人精品无人区| 99久久精品国产亚洲精品| 9色porny在线观看| 亚洲中文日韩欧美视频| 桃花免费在线播放| 色尼玛亚洲综合影院| 一级毛片女人18水好多| 欧美精品啪啪一区二区三区| 三上悠亚av全集在线观看| 国产精品影院久久| 美女高潮喷水抽搐中文字幕| 交换朋友夫妻互换小说| 国产成人啪精品午夜网站| 久久国产精品人妻蜜桃| 欧美精品亚洲一区二区| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 18禁黄网站禁片午夜丰满| 国产在线精品亚洲第一网站| 老司机在亚洲福利影院| 丁香六月天网| 色老头精品视频在线观看| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 国产老妇伦熟女老妇高清| 久久中文看片网| 日本wwww免费看| 岛国在线观看网站| 亚洲中文av在线| 亚洲国产欧美在线一区| 午夜精品国产一区二区电影| 亚洲一码二码三码区别大吗| 久久 成人 亚洲| 99re在线观看精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| a级毛片黄视频| 99精品欧美一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 黄色视频在线播放观看不卡| 美女午夜性视频免费| 亚洲欧美一区二区三区黑人| 亚洲情色 制服丝袜| a级毛片黄视频| 国产1区2区3区精品| 国产日韩欧美在线精品| 免费在线观看黄色视频的| 国产精品久久久久成人av| 久久天堂一区二区三区四区| 国产单亲对白刺激| 一区二区三区激情视频| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 91成人精品电影| 免费看十八禁软件| 老司机亚洲免费影院| 一本一本久久a久久精品综合妖精| av片东京热男人的天堂| 丝袜在线中文字幕| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲| av有码第一页| 精品第一国产精品| 久久国产精品男人的天堂亚洲| 久久九九热精品免费| 我要看黄色一级片免费的| 免费在线观看完整版高清| 国产男女超爽视频在线观看| 国产精品一区二区免费欧美| 午夜福利欧美成人| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看 | 久久精品国产亚洲av高清一级| 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 亚洲免费av在线视频| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 久久国产精品人妻蜜桃| 国产高清激情床上av| 一区二区av电影网| 欧美日韩黄片免| 亚洲精品中文字幕一二三四区 | 免费观看人在逋| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 精品国产乱码久久久久久小说| 97人妻天天添夜夜摸| 露出奶头的视频| 多毛熟女@视频| 99国产极品粉嫩在线观看| 嫁个100分男人电影在线观看| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 啦啦啦中文免费视频观看日本| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 亚洲成人免费av在线播放| 亚洲天堂av无毛| 下体分泌物呈黄色| 国产免费福利视频在线观看| 精品久久久精品久久久| videosex国产| 中文字幕av电影在线播放| 日韩视频在线欧美| 色精品久久人妻99蜜桃| 性少妇av在线| 中国美女看黄片| 亚洲成国产人片在线观看| 欧美乱码精品一区二区三区| 波多野结衣av一区二区av| 国产成人精品久久二区二区91| 黑人猛操日本美女一级片| 亚洲中文字幕日韩| 黄色视频不卡| 最新在线观看一区二区三区| 女性被躁到高潮视频| 久热这里只有精品99| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 热re99久久精品国产66热6| 国产精品九九99| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 老司机深夜福利视频在线观看| 精品人妻熟女毛片av久久网站| 成人三级做爰电影| 精品亚洲成国产av| 精品国产一区二区久久| 999久久久国产精品视频| 超色免费av| 手机成人av网站| 国产精品av久久久久免费| 怎么达到女性高潮| 亚洲男人天堂网一区| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| 最新在线观看一区二区三区| 午夜免费成人在线视频| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 香蕉国产在线看| 亚洲欧美精品综合一区二区三区| 人成视频在线观看免费观看| 欧美性长视频在线观看| 免费观看av网站的网址| 在线观看舔阴道视频| 日韩三级视频一区二区三区| 国产日韩一区二区三区精品不卡| 91麻豆精品激情在线观看国产 | av网站免费在线观看视频| 在线观看舔阴道视频| 国产在线免费精品| 国产av国产精品国产| 人妻一区二区av| 丰满人妻熟妇乱又伦精品不卡| 欧美精品高潮呻吟av久久| 久9热在线精品视频| 黄网站色视频无遮挡免费观看| 动漫黄色视频在线观看| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| 亚洲av国产av综合av卡| 麻豆乱淫一区二区| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 亚洲精品中文字幕一二三四区 | 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 欧美激情高清一区二区三区| 日韩免费高清中文字幕av| 欧美日韩中文字幕国产精品一区二区三区 | 午夜激情av网站| 中文字幕另类日韩欧美亚洲嫩草| 丰满少妇做爰视频| 国产一区二区三区在线臀色熟女 | 最新美女视频免费是黄的| 亚洲国产看品久久| 亚洲天堂av无毛| 成人特级黄色片久久久久久久 | 亚洲自偷自拍图片 自拍| 精品久久久久久久毛片微露脸| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 久久久久精品人妻al黑| 99精品在免费线老司机午夜| 亚洲中文av在线| 亚洲色图综合在线观看| 性高湖久久久久久久久免费观看| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区 | 动漫黄色视频在线观看| 欧美精品一区二区免费开放| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 国产精品久久久久久精品古装| 国产黄频视频在线观看| 老汉色∧v一级毛片| 91国产中文字幕| 欧美成人午夜精品| 久久九九热精品免费| 午夜两性在线视频| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频| 香蕉丝袜av| 欧美乱码精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产成+人综合+亚洲专区| 丝袜美腿诱惑在线| 在线十欧美十亚洲十日本专区| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看 | 新久久久久国产一级毛片| 亚洲人成伊人成综合网2020| 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 国产精品麻豆人妻色哟哟久久| 无人区码免费观看不卡 | 亚洲成国产人片在线观看| 精品亚洲成国产av| 人妻久久中文字幕网| 日韩视频在线欧美| 久久久精品94久久精品| 黄片小视频在线播放| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 脱女人内裤的视频| 一个人免费在线观看的高清视频| 亚洲专区字幕在线| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 在线观看66精品国产| 18在线观看网站| 中文亚洲av片在线观看爽 | 91老司机精品| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 天堂中文最新版在线下载| 亚洲va日本ⅴa欧美va伊人久久| 精品免费久久久久久久清纯 | 男女无遮挡免费网站观看| 国产激情久久老熟女| 国产又爽黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 国产一区二区三区在线臀色熟女 | 亚洲第一青青草原| 精品久久蜜臀av无| 日韩免费av在线播放| 一级,二级,三级黄色视频| 一本大道久久a久久精品| 国产精品.久久久| 精品一区二区三区av网在线观看 | 久久九九热精品免费| 激情在线观看视频在线高清 | 黑丝袜美女国产一区| 50天的宝宝边吃奶边哭怎么回事| 人妻 亚洲 视频| 少妇的丰满在线观看| 亚洲av成人不卡在线观看播放网| 91国产中文字幕| 黄色成人免费大全| 天堂中文最新版在线下载| 国产av国产精品国产| 国产淫语在线视频| 国产极品粉嫩免费观看在线| 午夜激情av网站| 成人亚洲精品一区在线观看| 久久久精品94久久精品| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 欧美精品一区二区大全| 老鸭窝网址在线观看| 99国产精品99久久久久| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| 色在线成人网| 国产一区二区三区在线臀色熟女 | 欧美变态另类bdsm刘玥| 极品人妻少妇av视频| 国产精品99久久99久久久不卡| 国产精品一区二区在线观看99| 久久人妻av系列| 久久狼人影院| 99热国产这里只有精品6| 曰老女人黄片| 亚洲av电影在线进入| 黄色a级毛片大全视频| 午夜福利欧美成人| 免费不卡黄色视频| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 老司机深夜福利视频在线观看| 国产免费现黄频在线看| 久久人人爽av亚洲精品天堂| 欧美激情久久久久久爽电影 | 老司机在亚洲福利影院| 欧美精品一区二区免费开放| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久| 国产欧美日韩一区二区三| 久久热在线av| 国产亚洲欧美在线一区二区| 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 日本五十路高清| 老司机午夜福利在线观看视频 | 免费观看a级毛片全部| 亚洲专区中文字幕在线| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 人人澡人人妻人| 日本黄色日本黄色录像| netflix在线观看网站| 免费女性裸体啪啪无遮挡网站| 国产精品国产高清国产av | 国产单亲对白刺激| 人妻 亚洲 视频| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频| 亚洲欧美一区二区三区久久| 天天操日日干夜夜撸| 午夜两性在线视频| 国产极品粉嫩免费观看在线| 日本欧美视频一区| 久久午夜综合久久蜜桃| 国产精品.久久久| 超碰成人久久| 日韩大码丰满熟妇| 久久久久久人人人人人| 18禁裸乳无遮挡动漫免费视频| 国产精品麻豆人妻色哟哟久久| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 成人精品一区二区免费| 男女免费视频国产| 国产亚洲一区二区精品| 一区二区av电影网| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 视频区欧美日本亚洲| 一本综合久久免费| 麻豆av在线久日| 超碰97精品在线观看| 99久久国产精品久久久| 国产又爽黄色视频| 欧美久久黑人一区二区| 国产成人精品在线电影| 国产精品国产高清国产av | 欧美成人免费av一区二区三区 | 精品视频人人做人人爽| 天堂8中文在线网| 久久精品人人爽人人爽视色| 下体分泌物呈黄色| 操出白浆在线播放| 在线观看免费视频网站a站| av国产精品久久久久影院| 亚洲欧美一区二区三区黑人| 蜜桃国产av成人99| 狂野欧美激情性xxxx| 午夜福利,免费看| 国产亚洲精品一区二区www | 久久久久久久久免费视频了| 丝袜美腿诱惑在线| 久久久精品区二区三区| 18禁裸乳无遮挡动漫免费视频| 欧美激情 高清一区二区三区| 精品国产国语对白av| 中亚洲国语对白在线视频| 男人舔女人的私密视频| 欧美中文综合在线视频| 国产免费现黄频在线看| 在线观看66精品国产| 一区二区av电影网| 少妇被粗大的猛进出69影院| 美女福利国产在线| 男女边摸边吃奶| 国产深夜福利视频在线观看| 国产高清videossex| 人人妻人人澡人人爽人人夜夜| 精品福利观看| 精品国产一区二区久久| 热99久久久久精品小说推荐| netflix在线观看网站| 99riav亚洲国产免费| 涩涩av久久男人的天堂| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区| 超碰97精品在线观看| av又黄又爽大尺度在线免费看| 天堂动漫精品| 欧美激情久久久久久爽电影 | 久久国产精品男人的天堂亚洲| 亚洲精品久久午夜乱码| 大型av网站在线播放| 丝袜在线中文字幕| 国产精品久久电影中文字幕 | 国产成人精品无人区| 久久久久久人人人人人| 午夜成年电影在线免费观看| videosex国产| 在线观看免费视频日本深夜| 色婷婷av一区二区三区视频| 午夜福利,免费看| 欧美 亚洲 国产 日韩一| 久久性视频一级片| 欧美在线黄色| 国产99久久九九免费精品| 交换朋友夫妻互换小说| 成人国产一区最新在线观看| 久久ye,这里只有精品| 精品国产一区二区三区久久久樱花| 天堂俺去俺来也www色官网| 日韩中文字幕视频在线看片| 19禁男女啪啪无遮挡网站| 国产精品一区二区精品视频观看| 亚洲人成伊人成综合网2020| 精品乱码久久久久久99久播| 热99国产精品久久久久久7| 99精品久久久久人妻精品| 国产高清激情床上av| 亚洲午夜理论影院| 久久九九热精品免费| 午夜福利欧美成人| 国产成人精品久久二区二区免费| 超色免费av| 日本欧美视频一区| 真人做人爱边吃奶动态| 99riav亚洲国产免费| 国产在线观看jvid| 人人澡人人妻人| 日韩视频一区二区在线观看| 热99国产精品久久久久久7| 久久精品成人免费网站| 女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 午夜福利视频在线观看免费| 人妻久久中文字幕网| 精品人妻在线不人妻| 久久国产精品人妻蜜桃| 性高湖久久久久久久久免费观看| 亚洲av日韩在线播放| 午夜福利影视在线免费观看| 91av网站免费观看| 水蜜桃什么品种好| 欧美日韩视频精品一区| 91字幕亚洲| 久久久久国产一级毛片高清牌| 日韩欧美一区视频在线观看| 国精品久久久久久国模美| 亚洲欧美一区二区三区黑人| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 中文字幕制服av| 中文字幕色久视频| 高清视频免费观看一区二区| 国产在视频线精品| 欧美精品人与动牲交sv欧美| 免费在线观看影片大全网站| 老鸭窝网址在线观看|