• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy in critical collapse

    2023-12-28 09:20:32YuHuJunQiGuoJunbinLiChengGangShaoandHongshengZhang
    Communications in Theoretical Physics 2023年12期

    Yu Hu ,Jun-Qi Guo ,Junbin Li ,Cheng-Gang Shao,? and Hongsheng Zhang

    1 MOE Key Laboratory of Fundamental Physical Quantities Measurement,Hubei Key Laboratory of Gravitation and Quantum Physics,PGMF,and School of Physics,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China

    2 School of Physics and Technology,University of Jinan,Jinan 250022,Shandong,China

    3 Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,Guangdong,China

    Abstract We study the energy issue in critical collapse.It is found that in critical collapse,the contribution from the material energy is greater than that from the gravitational energy.The quantity m/r plays an important role in identifying the formation of an apparent horizon in gravitational collapse,where m is the Misner–Sharp mass and r is the areal radius.We observe that in critical collapse,the maximum value of m/r fluctuates between 2/15 and 4/15.This denotes a large gap between critical collapse and black hole formation for which the criterion is m/r=1/2.

    Keywords: quasi-local energy,critical collapse,numerical relativity

    1.Introduction

    Energy is a key subject in physics.Due to the equivalence principle,one cannot define the gravitational energy locally.The success of the proof for the positive energy theorem inspired people to define the gravitational energy at the quasilocal level:the energy contained in a closed two-dimensional surface.Several notions of the quasi-local energy have been constructed,such as the Misner–Sharp energy [1],Brown–York energy [2],Hawking energy [3],Hayward energy [4],and Wang–Yau energy[5,6].The descriptions for the energy of gravitational waves were studied in[7–9].More details can be found in review [10].

    By fine-tuning the initial data of a spherically scalar field,Choptuik discovered the critical phenomena in gravitational collapse [11].On the sub-critical side,the collapse will lead to dispersion,while on the super-critical side,a tiny black hole will form.The critical collapse solution is discretely self-similar along the ever-decreasing time and space scales.This feature is universal,independent of the initial profiles of the matter field.The mass of the tiny black hole forming in the super-critical circumstance satisfies a power law,MBH∝|p-p*|γ,where p*is a critical parameter value in the initial data of the scalar field,and γ ≈0.37.Critical phenomena in many other collapse models were also observed (see [12] for review).Recently,the critical behavior in 3D gravitational collapse with no symmetry assumptions was studied in [13].Critical collapse of electromagnetic waves in axisymmetry was investigated in [14,15].Novel dynamical critical phenomena in the process of the nonlinear accretion of the scalar field into black holes were observed in [16].With one typical log-periodic formula in the discrete scale invariance systems,one approximate analytic solution for the spacetime near the center was obtained in [17].

    Three versions of the quasi-local energy in the Oppenheimer–Snyder dust collapse model were analyzed in [18].Quasilocal energy was calculated in the contexts of black hole physics and cosmology in[19–21].In[22],the gravitational and material energies in a static spherical star were discussed.Considering the fundamental role that energy has been playing in physics,in this paper,we investigate the energy issue in critical collapse,and we are especially interested in the comparison between the contributions from the gravitational and material energies.

    This paper is organized as follows.In section 2,we describe the methodology,including the collapse model and the definitions of energy.In section 3,we discuss the energy issue in critical collapse.Some features of the quantity m/r are studied in section 4.In section 5,the results are summarized.

    2.Methodology

    2.1.Gravitational collapse

    We consider the critical collapse of a spherically symmetric massless scalar field φ.The action for the system is

    We set G=1.The corresponding energy-momentum tensor for φ is

    We simulate critical collapse in the polar coordinates,

    For the metric (3),some components of the Einstein tensor and the energy-momentum tensor for φ are

    For the metric(3),the conservation of the energy-momentum tensor,=0,leads to

    Figure 1.Evolution of the scalar field at the center in critical collapse.

    The initial conditions for φ are set up asand φ,t|t=0=0.The spacial range is 0 ≤r ≤12.In seeking the numerical solution to critical collapse,we set a=0.336033778324 and σ=1.The initial values for the metric functions A and δ are obtained via integrations of equations (10) and (11).The regularity of equation(10)at the center requires that A|r=0=1.We choose δ|r=0=0.Consequently,the coordinate time is equal to the proper time at the center.

    In the simulation,we integrate equations(10)–(14)by the fourth-order Runge–Kutta method.Mesh refinement algorithm is implemented.For details on the numerics,see [23].

    2.2.Landau–Lifshitz pseudotensor approach

    We implement two separate approaches to define the gravitational and material energies: the Landau–Lifshitz pseudotensor approach and the Misner–Sharp energy approach.The Landau–Lifshitz pseudotensor is a typical definition for the energy of the gravitational field and is coordinate-dependent.The Misner–Sharp energy is one of the major notions for the quasi-local energy enclosed in a two-dimensional spacelike surface in spherical symmetry and is coordinate-independent.Regarding the first approach,we firstly take the following definitions [24,25],

    where g is the metric determinant,andis called the Landau–Lifshitz pseudotensor.The tensor density Hαμβνsatisfies the identity

    Figure 2.Gravitational and material energies in critical collapse defined by equations (21),(25),(26),(30)–(32).

    Then the Einstein equations can be expressed in the nontensorial form

    Using the antisymmetric property of Hμανβand the Einstein field equations,one obtains

    Equations (19) and (20) imply thatcan be interpreted as an energy-momentum (pseudo) tensor for the gravitational field.

    We define a total energy associated with the region V,

    When V includes the whole space,ELL(V)coincides with the Arnowitt–Deser–Misner mass.Since the value of the pseudotensor is coordinate-dependent,we choose the coordinates carefully when using a pseudotensor.Here we prefer the Cartesian coordinates,in which for the metric (3),there are

    Substitution of equation (22) into (21) yields

    Substituting equation (22) into (17) and using g ≡|gμν|=-e-2δ,we obtain

    With equation (2),we have T00=(1/2)e-2δ(P2+Q2).Then we can split the total energy (21) into the material and gravitational parts,

    Figure 3.Energy density at the critical collapse stage.The absolute value of the ratio between the gravitational and material energy densities in the large-radius region is much greater than that in the small-radius one.

    2.3.Misner–Sharp energy approach

    Before discussing the definitions for the material and gravitational energies in critical collapse with the Misner–Sharp energy approach,we first consider the energy issue in a static star of perfect fluid,with the energy-momentum tensor,Tμν=(ρf+pf)UμUν+pfgμν,where Uμis the tangent vector of the stationary observer.Inside the star,one mass function can be defined as

    On the boundary of the star r=rb,there is

    which is identical to the expression for the total mass in Newtonian gravity.However,in general relativity,the proper mass is

    whereh(=A-1r′4sin2θ)is the determinant of the induced metrichab[=diag(A-1,r′2,r′2sin2θ)]of the spacelike hypersurfacet=Const.

    The quantity M in equation (28) has clear physical meaning: it is the total mass (energy) of the Schwarzschild spacetime,including gravitational potential energy.However,the quantity Mpin equation(29)does not include gravitational potential energy,since ρf(the energy density measured by a stationary observer) includes the rest energy density of each particle in the star and the internal energy density,but does not include the gravitational energy density [22].

    Regarding the Misner–Sharp energy approach of defining the material and gravitational energies in critical collapse,we take similar method as in the static circumstance discussed above.We use the Misner–Sharp energy [1] to represent the total energy inside a closed two-dimensional spacelike surface S constrained byr=Const andt=Const.

    Figure 4.Evolution of the energy inside the region r ≤12.

    Figure 5.Terms in the equation of motion for φ (14).In the small and large-radius regions,equation (14) is respectively reduced to

    where ρ is the material energy density measured by a stationary observer,ρ ≡TμνUμUν=(1/2)A(P2+Q2).Uμis the tangent vector of the stationary observer,The material and gravitational energies are respectively defined as below,

    3.Results I: energy

    By fine-tuning the initial data of the scalar field,we obtain the numerical solution to critical collapse.The oscillating behavior of the scalar field at the center,φ versus-lnT,is shown in figure 1,where T ≡t*-t,and t* is the time for naked singularity formation.The period Δ for the oscillations takes the same value as reported in the literature,Δ ≈3.43.

    With the expressions (21),(25),(26),(30)–(32),we plot the material and gravitational energies and energy densities in figures 2 and 3,respectively.We also plot the evolution of the energies in a sufficiently large region of r ≤12 in figure 4,such that during the simulation the boundary is far enough from the collapse region and the total energy in the region remains constant.From these figures,we observe that both the Landau–Lifshitz pseudotensor approach and Misner–Sharp energy approach generate similar results:

    (i) In critical collapse,the contribution from the material energy is greater than that from the gravitational energy.

    (ii) The material energy density,in figure 3(a) and dEm/dr in figure 3(b),is positive.

    (iii) As shown in figure 3(a),the gravitational energy densityby the Landau–Lifshitz pseudotensor approach is sometimes negative and sometimes positive.As shown in figure 3(b),the gravitational energy densityby the Misner–Sharp energy approach is always negative.

    There is a strong correlation between the gravitational effects on the evolution of the scalar field and the ratio between the gravitational and material energy densities.As shown in figure 5,in the large-radius region (lnr>-7),the equation of motion for φ(14) is reduced to

    Figure 6.m/r in critical collapse in the polar coordinates(3).(a)and(b):m/r on some slices t=Const.In the transition place between the small-and large-radius regions,the maximum values of m/r stay in the range of [2/15,4/15].In figure (b),the slices are numbered in the temporal direction.(c)Numerical illustrations on the upper and lower limits for the maximum values of m/r.(d)K:the maximum value of m/r on slices T=Const.

    Figure 7.m/r in critical collapse on some slices t=Const in the double-null coordinates(38).(a)Numerical illustrations on the upper and lower limits for the maximum values of m/r.(b) K: the maximum value of m/r on slices T=Const.

    Therefore,the gravitational effects on the dynamics of the scalar field are important.On the other hand,in the smallradius region (lnr<-11),equation (14) becomes

    which is similar to what happens in flat spacetime.So the scalar field does not feel the gravitational effects directly.On the other hand,as shown in figure 5,in the transition region locating between the central and large-radius ones,in the equation of motion for the scalar field,the gravitational effects are not negligible.Then due to the connection between the central and transition regions,the scalar field in the central region feels the gravitational effects indirectly.Correspondingly,as shown in figure 3,the absolute value of the ratio between the gravitational and material energy densities in the large-radius region is much greater than in the small-radius one.The echoing behavior of the energy density is clearly demonstrated in figure 3.

    We make some comments on the result (34).In another two types of collapse (dispersion and early stage of collapse toward black hole formation),near the center,equation(14)is also reduced to the form(34).The causes are the following.In equation (14),the gravitational effects come from the firstorder derivatives of the metric functions.Under the smoothness requirement in the central region,the metric functions and the scalar field have the following asymptotic expressions[23]:

    Some details on the analytic investigations of equations (33)and (34) are presented in [26].

    As discussed in [26],in the large-radius region,the field φ admits the following approximate expression:

    where ξ ≡t-t*,such that ξ=0 upon naked singularity formation.The quantity [H(r,ξ)] has the following features:(i) For [H(r,ξ)],there is

    where α ≡A1/2e-δ.

    (ii) Note that H,ξ=ωα/r+ωα,ξξ/r.The numerical results yield

    The numerical results show that the transition region located between the central and large-radius regions can be described as r ?[r1,r2].At r=r1,there is∣C3H∣ ~∣ωlnr∣;and at r=r2,there is |C3H,r|~ω/r.

    4.Result II: m/r

    In gravitational collapse,m/r is an important quantity identifying the location of the apparent horizon,which is also crucial in identifying the formation of singularities [27],where m is the Misner–Sharp mass.It is natural to ask how far the spacetime in critical collapse is from black hole formation.Moreover,as studied in [28],the quantity m/r is closely related to the origin of the characteristic period in critical collapse Δ ≈3.43.

    We plot the evolution of m/r on some slicest=Const in figure 6.On each slicet=Const,the quantity m/r takes its maximum value,denoted as∣max,in the transition place between the small-and large-radius regions.In [29],it was reported that the maximum value of∣maxis 0.26.In this work,we obtain more accurate results.Denote K(T) as the maximum value of m/r on slicesT=Const.As shown in figure 6,the numerical results for the upper and lower limits for K are about 0.266 407 and 0.132 328,respectively.With the same code used in [30],we simulate critical collapse in the double-null coordinates,

    where u=(t-x)/2 and v=(t+x)/2.As shown in figure 7,we obtain the numerical results for the upper and lower limits for K which are 0.266 646 and 0.132 729,respectively.So it is natural to state the limits by the fractional numbers,4/15 and 2/15.

    There is a big gap between the upper limit for m/r in critical collapse (which is 4/15) and the criterion for black hole formation(which is m/r=1/2).This is reasonable since dispersion,critical collapse and black hole formation are three distinct final outcomes of gravitational collapse.

    5.Summary

    Energy has played a fundamental role in physics,and the explorations on this concept keep bringing us an insightful understanding of nature.However,in general relativity,because of the nontensorial characteristic of the gravitational energy-momentum density expression,the energy issue in gravitational collapse has not been fully studied in the literature.A nontensorial object may still be meaningful.The Christoffel symbols are nontensorial and one can make them to be zero at a given point by coordinate transformation.However,they cannot be transformed to zero on an open domain in curved spacetime.So in this paper we took the adventure of studying the energy issue in critical collapse with the Landau–Lifshitz pseudotensor approach and Misner–Sharp energy approach.These two approaches generate similar results: in critical collapse,the contribution from the material energy is greater than that from the gravitational energy.

    The quantity m/r is indispensable in identifying the formation of the apparent horizon in gravitational collapse.In this paper,it was observed that in critical collapse the maximum value of m/r fluctuates between 2/15 and 4/15.So the upper bound 4/15 for m/r is a bit far from the criterion for black hole formation,m/r=1/2.

    Acknowledgments

    The authors are very grateful to the anonymous referees for their valuable comments.The authors thank Xiaokai He,Xiaoning Wu,and Cheng-Yong Zhang for the helpful discussions.YH and CGS are supported by the National Natural Science Foundation of China (Grant No.11925503).JQG is supported by Shandong Province Natural Science Foundation under grant No.ZR2019MA068.

    ORCID iDs

    免费女性裸体啪啪无遮挡网站| av福利片在线| 麻豆精品久久久久久蜜桃| 国产成人av激情在线播放| 精品一区二区三区四区五区乱码 | 2021少妇久久久久久久久久久| 久久久精品94久久精品| 制服诱惑二区| 电影成人av| 岛国毛片在线播放| 精品视频人人做人人爽| 国产日韩欧美视频二区| 精品卡一卡二卡四卡免费| 精品一区在线观看国产| 少妇人妻 视频| 街头女战士在线观看网站| 精品久久久久久电影网| 色综合欧美亚洲国产小说| 精品一区二区三区av网在线观看 | 精品少妇久久久久久888优播| 亚洲精品国产av成人精品| 在线 av 中文字幕| 一边摸一边做爽爽视频免费| 一级a爱视频在线免费观看| 在线亚洲精品国产二区图片欧美| 蜜桃国产av成人99| 涩涩av久久男人的天堂| 极品少妇高潮喷水抽搐| 天天躁狠狠躁夜夜躁狠狠躁| 18禁观看日本| 青春草视频在线免费观看| 欧美黑人欧美精品刺激| 久久精品国产亚洲av涩爱| a级片在线免费高清观看视频| 深夜精品福利| av有码第一页| 欧美老熟妇乱子伦牲交| 欧美激情极品国产一区二区三区| 精品国产露脸久久av麻豆| 母亲3免费完整高清在线观看| 午夜av观看不卡| 久久久久视频综合| 国产视频首页在线观看| 午夜福利视频精品| 亚洲三区欧美一区| 在线精品无人区一区二区三| 大香蕉久久成人网| 天美传媒精品一区二区| 超碰97精品在线观看| kizo精华| 亚洲精品视频女| 国产成人啪精品午夜网站| 亚洲四区av| 精品亚洲成a人片在线观看| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜爱| 晚上一个人看的免费电影| 99国产精品免费福利视频| 香蕉国产在线看| 精品一区二区三区av网在线观看 | 在线天堂中文资源库| 日本午夜av视频| 黄色怎么调成土黄色| 久久精品久久精品一区二区三区| 亚洲精品国产区一区二| 岛国毛片在线播放| 日韩精品有码人妻一区| netflix在线观看网站| 老熟女久久久| 99国产综合亚洲精品| 免费不卡黄色视频| www日本在线高清视频| 国产又爽黄色视频| 大话2 男鬼变身卡| 一级毛片电影观看| 青春草国产在线视频| 午夜福利,免费看| 十八禁人妻一区二区| 亚洲情色 制服丝袜| 性色av一级| 亚洲,欧美,日韩| 男人操女人黄网站| 午夜日韩欧美国产| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡 | 多毛熟女@视频| 观看美女的网站| 在线观看国产h片| 成人18禁高潮啪啪吃奶动态图| 丰满少妇做爰视频| 亚洲成人一二三区av| 秋霞在线观看毛片| 欧美精品亚洲一区二区| 青春草国产在线视频| 国产日韩欧美亚洲二区| 人人妻人人爽人人添夜夜欢视频| 久久女婷五月综合色啪小说| 久久人妻熟女aⅴ| av网站免费在线观看视频| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久小说| 啦啦啦在线观看免费高清www| 日日摸夜夜添夜夜爱| 欧美人与性动交α欧美软件| 飞空精品影院首页| 国产亚洲精品第一综合不卡| 一区二区日韩欧美中文字幕| 在线观看一区二区三区激情| 精品人妻在线不人妻| 成人免费观看视频高清| 尾随美女入室| 欧美日本中文国产一区发布| 伦理电影大哥的女人| 肉色欧美久久久久久久蜜桃| 伊人亚洲综合成人网| 亚洲熟女精品中文字幕| 哪个播放器可以免费观看大片| 中文字幕色久视频| 国产99久久九九免费精品| a级毛片黄视频| 欧美亚洲日本最大视频资源| 日本欧美视频一区| 亚洲在久久综合| 久久精品国产亚洲av高清一级| 99香蕉大伊视频| 国产精品三级大全| 成人18禁高潮啪啪吃奶动态图| 热re99久久国产66热| a 毛片基地| 美女视频免费永久观看网站| 亚洲伊人色综图| 超碰97精品在线观看| 性色av一级| 纯流量卡能插随身wifi吗| 老司机靠b影院| 欧美av亚洲av综合av国产av | 久久鲁丝午夜福利片| 国产一卡二卡三卡精品 | 欧美日韩综合久久久久久| 母亲3免费完整高清在线观看| 一级片免费观看大全| 又大又爽又粗| 免费人妻精品一区二区三区视频| 亚洲色图 男人天堂 中文字幕| 男的添女的下面高潮视频| 免费女性裸体啪啪无遮挡网站| 19禁男女啪啪无遮挡网站| 美女高潮到喷水免费观看| 高清视频免费观看一区二区| 美女高潮到喷水免费观看| 国产熟女欧美一区二区| 婷婷色麻豆天堂久久| 91aial.com中文字幕在线观看| 欧美在线一区亚洲| 人成视频在线观看免费观看| 亚洲精品aⅴ在线观看| 精品福利永久在线观看| 男女边摸边吃奶| 一区二区三区精品91| 黄片无遮挡物在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲av一区麻豆 | 蜜桃国产av成人99| 乱人伦中国视频| 亚洲成人免费av在线播放| 久久精品aⅴ一区二区三区四区| 五月开心婷婷网| 美女高潮到喷水免费观看| 国产av码专区亚洲av| 纵有疾风起免费观看全集完整版| 一级爰片在线观看| 捣出白浆h1v1| av.在线天堂| 欧美精品一区二区免费开放| 国产成人91sexporn| 国产成人欧美在线观看 | 精品视频人人做人人爽| 久久精品aⅴ一区二区三区四区| 国产成人午夜福利电影在线观看| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区黑人| 欧美日韩成人在线一区二区| 少妇被粗大猛烈的视频| www.熟女人妻精品国产| 女人精品久久久久毛片| 久久这里只有精品19| 制服人妻中文乱码| 中文字幕av电影在线播放| 午夜日韩欧美国产| 免费黄色在线免费观看| 亚洲国产成人一精品久久久| 丝袜喷水一区| kizo精华| 成人亚洲欧美一区二区av| 只有这里有精品99| 亚洲av男天堂| 伦理电影免费视频| 色婷婷久久久亚洲欧美| 五月天丁香电影| 久久精品国产a三级三级三级| 国产精品国产av在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜av观看不卡| 亚洲av男天堂| av天堂久久9| 国产 精品1| 久久久久久人人人人人| 国产精品国产av在线观看| 在线精品无人区一区二区三| 波野结衣二区三区在线| 亚洲七黄色美女视频| 狠狠婷婷综合久久久久久88av| 91国产中文字幕| 黄色怎么调成土黄色| 亚洲欧美一区二区三区国产| 日韩制服丝袜自拍偷拍| 亚洲精品久久成人aⅴ小说| 国产伦人伦偷精品视频| av在线观看视频网站免费| 成年女人毛片免费观看观看9 | 晚上一个人看的免费电影| 国产伦理片在线播放av一区| 久久精品国产亚洲av高清一级| 一边亲一边摸免费视频| 不卡av一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产色婷婷99| 久久久国产精品麻豆| 亚洲精品,欧美精品| 国产片内射在线| 99久久综合免费| 性色av一级| 亚洲第一av免费看| 国产精品.久久久| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 热99国产精品久久久久久7| 高清在线视频一区二区三区| 国产一区二区激情短视频 | 999久久久国产精品视频| 久热这里只有精品99| 亚洲综合色网址| 最近手机中文字幕大全| 亚洲伊人色综图| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 欧美日韩精品网址| 午夜福利乱码中文字幕| 国产精品av久久久久免费| 一级毛片 在线播放| 啦啦啦在线免费观看视频4| 老汉色∧v一级毛片| 国产成人午夜福利电影在线观看| 久久免费观看电影| 下体分泌物呈黄色| 亚洲精品在线美女| 欧美黑人精品巨大| 午夜日本视频在线| 亚洲综合色网址| 亚洲婷婷狠狠爱综合网| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 久久久久久久久久久久大奶| 日本wwww免费看| 中文字幕高清在线视频| 嫩草影视91久久| 赤兔流量卡办理| 国产高清不卡午夜福利| 日韩一卡2卡3卡4卡2021年| 久久97久久精品| 美女视频免费永久观看网站| 国产av一区二区精品久久| 男女免费视频国产| 亚洲精品国产一区二区精华液| av网站免费在线观看视频| 少妇人妻久久综合中文| 亚洲 欧美一区二区三区| 性色av一级| 深夜精品福利| 久久免费观看电影| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 精品福利永久在线观看| 久久久精品94久久精品| 亚洲五月色婷婷综合| 欧美黄色片欧美黄色片| 汤姆久久久久久久影院中文字幕| 国产成人啪精品午夜网站| 亚洲国产欧美网| 国产乱人偷精品视频| 精品国产露脸久久av麻豆| 成人黄色视频免费在线看| 制服人妻中文乱码| 99热全是精品| 一本一本久久a久久精品综合妖精| 国产av码专区亚洲av| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| 老熟女久久久| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 黄色怎么调成土黄色| 麻豆精品久久久久久蜜桃| 一级爰片在线观看| 99精国产麻豆久久婷婷| 日本wwww免费看| 99久久99久久久精品蜜桃| 亚洲图色成人| 成年美女黄网站色视频大全免费| 久久久精品94久久精品| 欧美成人精品欧美一级黄| 伦理电影大哥的女人| 操美女的视频在线观看| 又黄又粗又硬又大视频| 久久人人97超碰香蕉20202| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美精品永久| 亚洲欧美精品综合一区二区三区| 免费在线观看完整版高清| 精品一区二区三区四区五区乱码 | 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 亚洲第一青青草原| 久久久精品94久久精品| 国产午夜精品一二区理论片| 国产视频首页在线观看| 久久亚洲国产成人精品v| 午夜久久久在线观看| 亚洲第一av免费看| 2018国产大陆天天弄谢| 一区二区日韩欧美中文字幕| svipshipincom国产片| 久久婷婷青草| 国产精品欧美亚洲77777| 美女中出高潮动态图| 成年女人毛片免费观看观看9 | 亚洲第一青青草原| 黄片播放在线免费| 国产一区二区三区综合在线观看| 校园人妻丝袜中文字幕| 欧美激情极品国产一区二区三区| 午夜福利视频精品| 精品酒店卫生间| 久久99热这里只频精品6学生| 18禁国产床啪视频网站| 天堂8中文在线网| 亚洲国产精品999| 国产片内射在线| 赤兔流量卡办理| 欧美另类一区| a级片在线免费高清观看视频| √禁漫天堂资源中文www| 秋霞伦理黄片| 精品一区在线观看国产| 免费在线观看完整版高清| 亚洲av电影在线观看一区二区三区| 免费看不卡的av| www.熟女人妻精品国产| 午夜福利,免费看| 亚洲国产精品一区三区| 十八禁网站网址无遮挡| 在线观看免费高清a一片| 日韩熟女老妇一区二区性免费视频| 国产1区2区3区精品| 国产在线视频一区二区| 热re99久久国产66热| 午夜福利在线免费观看网站| 美国免费a级毛片| 国产熟女欧美一区二区| 在线 av 中文字幕| 日韩av在线免费看完整版不卡| 国产精品99久久99久久久不卡 | 丝袜在线中文字幕| 少妇人妻 视频| 99久久人妻综合| 日本vs欧美在线观看视频| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www| av在线老鸭窝| 国产男女内射视频| 宅男免费午夜| 国产一区二区 视频在线| 亚洲男人天堂网一区| 校园人妻丝袜中文字幕| 成人亚洲精品一区在线观看| 亚洲综合精品二区| 男女下面插进去视频免费观看| 9热在线视频观看99| 久久免费观看电影| 啦啦啦啦在线视频资源| 国产极品粉嫩免费观看在线| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人| 天天添夜夜摸| www.精华液| tube8黄色片| 日本wwww免费看| 丰满少妇做爰视频| 日本欧美视频一区| 观看av在线不卡| 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 少妇的丰满在线观看| 999精品在线视频| 国产精品成人在线| a 毛片基地| 免费女性裸体啪啪无遮挡网站| 精品久久久精品久久久| 亚洲中文av在线| 精品一区二区三区av网在线观看 | 免费黄色在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 久久精品aⅴ一区二区三区四区| 操美女的视频在线观看| 免费看av在线观看网站| a级毛片在线看网站| 欧美成人午夜精品| av福利片在线| 一个人免费看片子| www.精华液| 黄片小视频在线播放| 久久久久久久精品精品| 天天添夜夜摸| 老司机在亚洲福利影院| 超色免费av| 女的被弄到高潮叫床怎么办| 国产97色在线日韩免费| 精品人妻在线不人妻| 成人影院久久| 黄色视频不卡| 老司机深夜福利视频在线观看 | 叶爱在线成人免费视频播放| 亚洲欧美中文字幕日韩二区| 精品福利永久在线观看| 久久久久久免费高清国产稀缺| 99精品久久久久人妻精品| 十八禁高潮呻吟视频| 成人三级做爰电影| 人人妻人人爽人人添夜夜欢视频| 天堂8中文在线网| 性高湖久久久久久久久免费观看| 99久国产av精品国产电影| 久久天躁狠狠躁夜夜2o2o | 日韩电影二区| 亚洲国产精品一区三区| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线不卡| 成人免费观看视频高清| 在现免费观看毛片| 久久性视频一级片| 精品亚洲乱码少妇综合久久| 大片电影免费在线观看免费| 男女床上黄色一级片免费看| 精品国产国语对白av| 永久免费av网站大全| 丰满饥渴人妻一区二区三| 久久久久精品久久久久真实原创| 巨乳人妻的诱惑在线观看| 成人影院久久| 90打野战视频偷拍视频| a级毛片黄视频| 在线观看免费日韩欧美大片| 精品亚洲乱码少妇综合久久| 啦啦啦中文免费视频观看日本| 色吧在线观看| 黄色 视频免费看| 久久免费观看电影| 国产精品嫩草影院av在线观看| 色94色欧美一区二区| 久久99热这里只频精品6学生| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 女人高潮潮喷娇喘18禁视频| 日本wwww免费看| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 又大又爽又粗| 免费黄色在线免费观看| 日韩一本色道免费dvd| 午夜激情av网站| 母亲3免费完整高清在线观看| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av高清一级| 99久国产av精品国产电影| 99精国产麻豆久久婷婷| 丝袜美足系列| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 亚洲成人av在线免费| 日韩 亚洲 欧美在线| 欧美日韩一级在线毛片| 男人添女人高潮全过程视频| 国产99久久九九免费精品| 天堂中文最新版在线下载| 国产亚洲一区二区精品| 最近最新中文字幕免费大全7| kizo精华| 咕卡用的链子| 欧美亚洲 丝袜 人妻 在线| 伊人久久国产一区二区| 搡老乐熟女国产| 亚洲成色77777| 九色亚洲精品在线播放| 亚洲美女视频黄频| 少妇被粗大的猛进出69影院| 色播在线永久视频| 国产黄色免费在线视频| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图| 天天添夜夜摸| 亚洲三区欧美一区| 亚洲精品,欧美精品| 国产成人欧美| 久久久久精品久久久久真实原创| 亚洲精品乱久久久久久| 国产在线一区二区三区精| 免费不卡黄色视频| 午夜精品国产一区二区电影| 国产国语露脸激情在线看| 999久久久国产精品视频| 国产麻豆69| 新久久久久国产一级毛片| 成人国语在线视频| 欧美精品高潮呻吟av久久| 亚洲综合色网址| 精品人妻在线不人妻| 在线观看国产h片| 一本一本久久a久久精品综合妖精| 久久99热这里只频精品6学生| 国产一区二区激情短视频 | 国产av码专区亚洲av| 不卡av一区二区三区| av网站免费在线观看视频| 亚洲精品成人av观看孕妇| 黄片无遮挡物在线观看| 18禁动态无遮挡网站| 国产一区二区在线观看av| 亚洲欧美色中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大的猛进出69影院| 亚洲精品国产色婷婷电影| 大香蕉久久网| 欧美精品亚洲一区二区| 国产成人91sexporn| 国产毛片在线视频| 热99国产精品久久久久久7| 婷婷色综合大香蕉| 久久精品熟女亚洲av麻豆精品| 久久 成人 亚洲| 1024视频免费在线观看| 丁香六月天网| 久久99热这里只频精品6学生| 国产av码专区亚洲av| 亚洲五月色婷婷综合| 成人国产av品久久久| 免费av中文字幕在线| 久久国产精品大桥未久av| 国产精品一二三区在线看| 亚洲一级一片aⅴ在线观看| 99国产精品免费福利视频| av女优亚洲男人天堂| 日本wwww免费看| 亚洲国产精品999| 咕卡用的链子| 交换朋友夫妻互换小说| 最近的中文字幕免费完整| 丝袜人妻中文字幕| 国产精品国产三级国产专区5o| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 精品久久蜜臀av无| 热99久久久久精品小说推荐| 亚洲精品久久午夜乱码| 夫妻性生交免费视频一级片| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 飞空精品影院首页| 一级毛片电影观看| 最近中文字幕2019免费版| 999精品在线视频| 夫妻午夜视频| 国产av精品麻豆| 悠悠久久av| 欧美另类一区| 免费观看av网站的网址| 欧美亚洲日本最大视频资源| 国产成人啪精品午夜网站| 叶爱在线成人免费视频播放| 欧美成人精品欧美一级黄| 男女高潮啪啪啪动态图| 狠狠婷婷综合久久久久久88av| 国产欧美日韩一区二区三区在线| 久久久精品94久久精品| 狠狠婷婷综合久久久久久88av| 中文字幕制服av| 青春草亚洲视频在线观看| 中文字幕人妻丝袜制服| 天天躁夜夜躁狠狠躁躁| 9色porny在线观看| 男的添女的下面高潮视频| 精品亚洲成国产av| 日韩成人av中文字幕在线观看| 久久久亚洲精品成人影院|