• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel soliton molecule solutions for the second extend (3+1)-dimensional Jimbo-Miwa equation in fluid mechanics

    2023-12-28 09:20:08HongcaiMaXiaoyuChenandAipingDeng
    Communications in Theoretical Physics 2023年12期

    Hongcai Ma,Xiaoyu Chen and Aiping Deng

    Department of Applied Mathematics,Donghua University,Shanghai 201620,People’s Republic of China

    Abstract The main aim of this paper is to investigate the different types of soliton molecule solutions of the second extend (3+1)-dimensional Jimbo-Miwa equation in a fluid.Four different localized waves:line solitons,breather waves,lump solutions and resonance Y-type solutions are obtained by the Hirota bilinear method directly.Furthermore,the molecule solutions consisting of only line waves,breathers or lump waves are generated by combining velocity resonance condition and long wave limit method.Also,the molecule solutions such as line-breather molecule,lumpline molecule,lump-breather molecule,etc.consisting of different waves are derived.Meanwhile,higher-order molecule solutions composed of only line waves are acquired.

    Keywords: second extend(3+1)-dimensional Jimbo-Miwa equation,N-soliton solution,velocity resonance,soliton molecule solution

    1.Introduction

    The study of analytical solutions helps us to clarify the physical properties and behaviour of nonlinear equations,which are structural models for many physical phenomena[1].There are a number of theoretical approaches to solving analytical solutions,such as the tanh-coth method [2–4],Riemann–Hilbert method[5–7],the inverse scattering method[8,9],Darboux transformation method [10–13],the Painlevé analysis [14],the generalized symmetry method [15],Hirota bilinear method [16,17,38] and others [18–21].

    In the subject area of the natural sciences,solitons demonstrate remarkable order in the presence of nonlinear effects.In general,we refer to a wave that retains its original size,shape and direction during motion or propagation,and has stability,as a soliton wave [22].In recent years,a new topic soliton molecules has emerged in the study of solitons,which are bound states of one or more solitons [23–27,41–43].The three well-known local waves: lump waves,breathers and line waves are very significant components of soliton molecule solutions.

    The (3+1)-dimensional Jimbo-Miwa equation

    first introduced by Jimbo and Miwa [28] is the second equation of the KP hierarchy.This equation is used to describe certain interesting (3+1)-dimensional waves in physics and then discussed by many authors on its solutions[29],integrability properties[30],symmetries[31–33]and so on.Wazwaz have proposed two extended (3+1)-dimensional Jimbo-Miwa (3D-eJM) equations [34].The second 3D-eJM equation is deduced by replacinguytwithuxt+uyt+uztas

    where u=u(x,y,z,t)is a function with respect to three spatial coordinates x,y,z and temporal variable t which indicates the amplitude of the wave in the physics of fluids,especially in ocean engineering and science [1].Although equation (2)belongs to the Kadomtsev–Petviashvili hierarchy,but it does not satisfy the classical productability condition [28].

    Figure 2.Double soliton solution to the 3D-eJM equation with p1=1,q1=1,r1=2,p2=2,q2=4,r2=1,φ1=φ2=0,z=0 in equation (10).

    In contrast to other 3D-eJM equation,relatively little research has been done on this equation.For equation (2),Wazwaz derived multiple soliton solutions [34],Guo et al presented four different localized waves and interaction solutions between lump solutions,line solitons,breathers and rogue waves using the Hirota bilinear method,Sun et al found lump and lump-kink solution [36],Xu et al constructed the resonance behavior with the aid of special parameter restrictions[37].But as far as we know,no molecule solution of this equation has been studied,especially for the lump molecule solution,a special structural phenomenon that does not exist in most (2+1)-dimensional physical models by using long wave limit method [38,39].All of findings in this paper can be used to explain some natural phenomena in the ocean waves and nonlinear optics.Further,the study can be extended to investigate several other nonlinear systems to understand the physical insights of the molecule phenomenon in their dynamics.

    This paper has following structure.In section 2,we give four different types of localized waves and the expression of their velocity through the use of N-soliton solution,module and velocity resonance conditions,long wave limit method.We present three molecule solutions consisting of the same localized wave e.g: line molecule,breather molecule and lump molecule solution in section 3.In section 4,a number of molecule solutions with a mixture of different localized waves are obtained.And two forms of the higher order line molecule solutions are derived.Some conclusions and discussions are given in section 5.

    2.Different localized waves to the second 3D-eJM equation

    According to the Hirota bilinear method and Bell polynomial technique,with logarithmic transform

    the equation (2) can be converted to following bilinear form:

    where operators Dx,Dtare defined by

    To facilitate mathematical calculations,the equation (4) can be expanded as

    The N order solution of equation (4) has the following form:

    where

    Figure 3.First order line breather solution to the 3D-eJM equation with=2 +i,φ1=φ2=0,z=0 in equation (6).

    Here,pk,qk,rk,φk(k=1,2,…,N) are arbitrary constants,Σμ=0,1denotes all combinations of μk=0 or 1.The N-soliton solution of equation(2)can be expressed through substituting equation (6) into equation (3).Based on the N-soliton solution,we construct a number of different localized waves.

    Figures 1(a),(b) depicts the 3D-plot and density plot of single line soliton with parameters p1=1,q1=1,r1=2,φ1=0 at z=0 plane.Subject to this parameter,equation (3)is reduced to

    Actually the ratio of p1to-q1determines the slope of the line in figure 1(b),φ1affects the initial position (t=0) of the solution in the diagram.In other words,if φ1is not equal to zero,then the centre of the solution at the initial position must not pass through (0,0) at z=0.In order to better study the motion of line wave,we decompose the velocity of the solution orthogonally in the x,y perpendicular directions and give its expression as follows

    whereωksatisfies equation (7).The velocity of single line wave in equation (8) is.The correctness of the above assertion can be demonstrated in figure 1(b).

    Double soliton solution can be seen as a morphism consisting of the nonlinear superposition of two single soliton solutions.Its kinematic process can be split into two mutually independent single line wave motions and its velocity can be elaborated by two velocity expressions in equation (9).This also indicates that the collision between two soliton waves is elastic: the velocity,phase shift and amplitude do not change before or after the collision.With p1=1,q1=1,r1=2,p2=2,q2=4,r2=1,φ1=φ2=0,a double soliton solution to the 3D-eJM equation is presented as

    It can be seen in figure 2 and travels at a speed of

    The N-order breather solution can be obtained by imposing module resonance condition on the parameters of the 2N-order soliton solution,i.e.

    where the symbol ?indicates the complex conjugate number of the parameter.It is similar in nature since the breather solution is derived from the soliton solution.But the pace expression of breather is

    For N=2,second order breather solution can be deduced fromu=2 (l nfx) with

    The N-order lump solution also can be derivated from 2N-order soliton solution.As the procedure for finding the exact solution of lump using the long-wave limit method is well established,we directly provide following constraints:

    Then the N-order lump solution to the 3D-eJM equation can be acquired if we take δ →0,specific forms are

    whereξk,Aks(k,s=1,2,3,4) fulfills the equation (7).The second-order breather solution can similarly be viewed as the interaction situation between two first order ones.In order to clearly show the interaction solution described,we make the directions of motion of the two first order breather solutions orthogonal to each other and show in figure 4.One along thePk,Qk,Rk,φkare arbitrary constants,Φkaffects the initial position of the corresponding lump solution.We usually study the trajectory of the wave crest of the lump wave.According to the solution of the system of equations{ux=0,uy=0},we accquire the velocity formula of lump wave

    negative direction of the y and the other along the negative direction of the x,with velocitiesrespectively.

    When N=1,with specific parameters,the expression of a first order lump wave is reduced as below:

    We put the three-dimensional plot,density plot and sectional plot of the above solution in figure 5.

    When N=2

    whereθk,Bksmeet the equation (16).Second order lump solution can be represented by placing equation (19) in equation (3) as shown in figure 6.We makeφk(k=1,2,3,4) not all zero,allowing us to split the trajectory of the two first order lump solutions.Their speeds arerespectively.

    As we all know that two soliton will transform to resonance Y-type soliton if we take suitablepi,qi,ri(i=1,2) in accordance with exp (Aks)=0and{pk≠psorqk≠qsorrk≠rs}.The speed of Y-type structure solution has rarely been investigated in the previous literature.We likewise provide an expression for its velocity by analysing the variation with time of the position of the intersection point,

    Let N=2,the f is transformed to 2-resonance Y-type solution as

    where ξkare given by equation(7),and this phenomenon can be observed in figure 7.The velocity of above solution is

    Let N=3,with exp(A12)=exp (A13)=0,the f is reduced as

    where ξk,bksare given by equation (7) and equation (13).Substitute equation(22)in equation(3),we achieve two different kinds of 3-resonance Y-type solutions as show in figure 8.One in x-y and z=0 plane,the other is in y-z and x=0 plane.The shape of solution in figure 8(a) is similar to that of X.

    3.Molecules composed of the same waves

    In the last section we focused on four types of local waves and gave expressions for their respective velocities.It is not hard to see from the images of the higher-order solutions that a higher-order solution can be seen as an interaction phenomenon between several lower-order solutions.Much literature shows that collisions between these four local waves are all elastic collisions,the same as between two line waves[44–46].It is well known that assuming that the velocities of the two lower order solutions are identical (including the x,y axes),the two solutions are bound into a new structure during the motion called molecule solution.This section demonstrates several molecule solutions consisting of the same local wave.

    To investigate the single line molecule solution,the fuction f can be choosed as same as second order soliton solution.With the parameters as the figures 9(a)–(c),the u can be unfolded as

    In particular,we find the velocity resonance among two breather waves by picking parameters in equation (13) meet module resonance condition and

    Based the bilinear form,like the lump molecule solution which does not exist in many (2+1)-dimensional integrable models,such as the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko model [38],Kadomtsev–Petviashvili(KP)system[39],(3+1)-dimensional nagative order KdV-CBS model [47],etc.But for KP systerm,lump molecules can be discovered by using the reduced version of the Grammian form[35,40].With the aid of equation (17),we find the lump molecule solution in equation (2),which needs to cater for

    in equation(19).figure 12 vividly depicts this type of molecule solution with speed,the distance between the centres of two single lump solution is constant.

    4.Molecules made up of the different waves

    In this section,we investigate molecule solutions consisting of different localized waves.It is obvious from the previous analysis that,again,no contact occurs between waves,which remain relatively stationary.The function f can be chosen as

    if we want to look for the line-breather molecule which consisting of a single line and a single wave.ξk,bksare given by equation(7)and(13).Like the one shown in the figure 13,the line wave move parallel to the breather with the same speed.Once the coefficients of x,y,z,t have been determined,φ1,φ3determines the distance between the two solutions.By φ1=φ3,we find a phenomenon shown in figure 14,the breather collides line wave continuously and changes its own form.

    When searching for a molecule solution consisting of lump solution and other solutions,the partial long-wave limit method is required.For example,let

    the lump-line solution will be located on figure 15 with velocity

    When adjusting φ3to 0,the line wave passes exactly through the centre of the lump solution and the two waves merge to form a lump-kink solution.And the lump solution is divided into exactly two section,with the upwardly raised part on top of the kinked area and vice versa.The method used for the idea just mentioned is different from the test We promote on the basis of equation (28) that

    Figure 14.Always collide case with φ1=φ2=φ3=0,other parameters are consistent with figure 13.

    Figure 16.Lump-kink solution to the 3D-eJM equation with Φ3=0,other parameters are consistent with figure 15.

    then the interaction solution between lump and two line waves is derived from weak sense.Another case is that the lump solution and the two line waves as a whole form a molecule solution,i.e.lump-2 line solution.These two cases are shown in figures 17 and 18.The velocity of the molecule solution in both diagrams is,and other line wave is (0,0).

    Since the 2-resonance Y-type solution is derived from the two-soliton solution and we have given lump-2 line molecule in figure 17,it follows that molecule solution consisting of lump solution and 2-resonance Y-type solution must exist in this system.If equation (35) meet the following parameter restrictions

    where ξk,θk,Bks,b34suit equations(7),(13)and(30).On this basis we find two different scenarios.The first case is where the lump solution forms a bound molecule with one of the line waves and moves in the direction in which the other line wave is located.The distance between the lump solution and the two line waves remains fixed,although there is a change in relative position between the two line waves as time changes,and this can be interpreted as a lump-2 line solution in the then it can be denoted as lump-resonance Y-type molecule solution in figure 19.Lump solution is located in the middle of the two branches of the resonance Y-type solution,and the distance between the lump solution and the two branches remains the same from the beginning to the end.This molecule solution is moving at

    If equation (36) meet the module resonance condition and

    where ω3is given by equation (12),then the lump-breather solution is vividly described in figure 20 with

    Since the three branches in the resonance Y-type solution(see figure 7) are not parallel to each other,neither the line wave nor the breather can form molecule solution that never collides with the resonance Y-type solution,but there are cases where they always collide but do not move relative to each other over time.It is sufficient to ensure that the velocities of the resonance Y-type solution and the line wave or breather solution are identical.We can also accquire lumpbreather-line molecule solution by making full use of the conditions (9),(12) and (17) inu=2 (l nfx),where

    In equation (3) and (6),we can obtain integral structure made from lump solution and two resonance Y-type solutions under the following condition

    Here,ξk,θk,Bksare given by equations (7),(13) and (30).It can be seen in figure 21 that lump solution lies between breather and line wave,and the speed is

    where ξk,θk,Bks,bksare given by equation(7),(13)and(30).The two white lines in figure 22 are the trajectories of the two resonance Y-type solutions and the black one is the lump solution.In terms of the positive direction of the x,two resonance Y-type solutions are all the fusion case.The fact that the three lines are parallel means that the lump solution will not collide with the other two solutions,and they have a common velocity.Three trajectories respectively are

    Finally we have generalised the order of the molecule solution consisting of only line waves.On the basis of the specificity expression of the N-order soliton solution (6),the N-line molecule solution has two forms One that we can let arbitrary rkand

    5.Conclusions

    Based on the bilinear form of the second extend (3+1)-dimensional Jimbo-Miwa equation,we concentrate on investigating molecule solution,the bound state that consisting of one or more soliton solutions of the 3D-eJM equation.Through the assistance of long wave limit method,module resonant condition and resonant condition,dynamical features of some one or two order localized waves are presented in figures 1–8.Although we have given an expression for the velocity of each individual localized wave,it should be noted that this is only true for the x–y plane.Of course these expressions can be extended to the x–z or y–z plane by simply replacing the coefficients of x,y in the equation (9),(12) and (20) with coefficients of x,z or y,z simultaneously.In order to achieve the velocity of the lump solution in the x–z or y–z plane,it is sufficient to solve for{ux=0,uz=0},{uy=0,uz=0}respectively.

    With velocity resonance mechanism,a wide range of molecule solutions consisting of line wave,breather wave,lump wave and resonance Y-type solution are graphed in figures 9–24.Particularly the lump-lump molecule in figure 12 which is not common in other low-dimensional physical models.An intersecting rather than parallel line molecule solution with various order are demonstrated in figures 9,23 and 24.We believe that above idea can be applied to other (3+1)-dimensional physical models.These molecule solutions may enlighten our understanding of the phenomenon of nonlinear wave propagation in fluids without collisional patterns.In future work,we are committed to finding new methods that allow us to obtain lump-lump molecule solutions in (2+1)-dimensional productable systems.

    Acknowledgments

    The authors are grateful to the anonymous referees of the journal for helpful comments on an earlier draft.

    Ethical approval

    The authors declare that they have adhered to the ethical standards of research execution.

    Conflict of interest

    The authors declare that there is no conflict of interest regarding the publication of this paper.

    Availability of data and materials

    All data generated or analyzed during this study are included in this published article.

    在线播放国产精品三级| 久久人妻福利社区极品人妻图片| 国产精华一区二区三区| 很黄的视频免费| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点 | 91麻豆精品激情在线观看国产 | 精品国产亚洲在线| 80岁老熟妇乱子伦牲交| 午夜福利在线观看吧| 99久久综合精品五月天人人| 欧美 亚洲 国产 日韩一| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区| 欧美激情高清一区二区三区| 夜夜夜夜夜久久久久| av国产精品久久久久影院| 变态另类成人亚洲欧美熟女 | 国内毛片毛片毛片毛片毛片| 一区在线观看完整版| 黑人猛操日本美女一级片| 淫妇啪啪啪对白视频| 怎么达到女性高潮| 激情视频va一区二区三区| 亚洲中文字幕日韩| 欧美老熟妇乱子伦牲交| 十八禁人妻一区二区| 午夜久久久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲黑人精品在线| 精品日产1卡2卡| 亚洲午夜理论影院| 好男人电影高清在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲一区二区三区色噜噜 | 日韩大码丰满熟妇| 很黄的视频免费| 黄色丝袜av网址大全| 国产1区2区3区精品| 一本大道久久a久久精品| 高清欧美精品videossex| 激情视频va一区二区三区| 午夜影院日韩av| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜一区二区| 亚洲黑人精品在线| 免费不卡黄色视频| 免费在线观看日本一区| 精品少妇一区二区三区视频日本电影| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一小说| 极品人妻少妇av视频| 法律面前人人平等表现在哪些方面| 黄色毛片三级朝国网站| 精品国产亚洲在线| 一进一出好大好爽视频| 久久久久国内视频| 精品午夜福利视频在线观看一区| 中文字幕av电影在线播放| 老司机在亚洲福利影院| 国产野战对白在线观看| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区91| 欧美日韩一级在线毛片| 天堂影院成人在线观看| 欧美日韩av久久| 动漫黄色视频在线观看| 免费av毛片视频| 日韩三级视频一区二区三区| 午夜免费激情av| x7x7x7水蜜桃| 怎么达到女性高潮| 变态另类成人亚洲欧美熟女 | 在线视频色国产色| 国产午夜精品久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 欧美性长视频在线观看| 精品国产超薄肉色丝袜足j| 国产精品99久久99久久久不卡| 999久久久国产精品视频| 一a级毛片在线观看| 黄色视频不卡| 中文欧美无线码| 99久久综合精品五月天人人| 国产熟女xx| 久久精品91蜜桃| 在线视频色国产色| 国产av精品麻豆| 久久午夜亚洲精品久久| 国产高清国产精品国产三级| 女性被躁到高潮视频| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 一级片免费观看大全| 精品一区二区三区四区五区乱码| 国产激情欧美一区二区| 欧美亚洲日本最大视频资源| 午夜福利欧美成人| 丝袜人妻中文字幕| 黑人猛操日本美女一级片| 国产亚洲精品一区二区www| 一区二区三区激情视频| 搡老岳熟女国产| 色综合站精品国产| 欧美成狂野欧美在线观看| 久久草成人影院| 久久 成人 亚洲| 97人妻天天添夜夜摸| 99国产极品粉嫩在线观看| 国产精品国产av在线观看| 欧美激情高清一区二区三区| 色婷婷av一区二区三区视频| av国产精品久久久久影院| 欧美精品亚洲一区二区| 男人舔女人下体高潮全视频| 免费观看人在逋| 欧美人与性动交α欧美精品济南到| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 国产精品综合久久久久久久免费 | 悠悠久久av| 日韩成人在线观看一区二区三区| 国产av精品麻豆| 麻豆国产av国片精品| 男女高潮啪啪啪动态图| 精品福利观看| 在线观看免费视频网站a站| 欧美日本中文国产一区发布| 一区在线观看完整版| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 亚洲一区二区三区色噜噜 | 久久天躁狠狠躁夜夜2o2o| 日本撒尿小便嘘嘘汇集6| 日韩大尺度精品在线看网址 | 黄网站色视频无遮挡免费观看| 久久狼人影院| 免费人成视频x8x8入口观看| 久久草成人影院| 丁香六月欧美| 天堂俺去俺来也www色官网| 日韩欧美国产一区二区入口| 一个人免费在线观看的高清视频| 亚洲成国产人片在线观看| 在线播放国产精品三级| 亚洲三区欧美一区| 亚洲精品一二三| 男女下面插进去视频免费观看| 亚洲欧美激情综合另类| 日日爽夜夜爽网站| 亚洲 欧美 日韩 在线 免费| 免费av毛片视频| 亚洲精华国产精华精| 大码成人一级视频| 夜夜躁狠狠躁天天躁| 麻豆成人av在线观看| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影 | 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费 | 国产精品香港三级国产av潘金莲| 亚洲五月天丁香| √禁漫天堂资源中文www| 久久久久国产精品人妻aⅴ院| 亚洲国产毛片av蜜桃av| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 高清欧美精品videossex| 老汉色∧v一级毛片| 国产欧美日韩一区二区三| 1024视频免费在线观看| 日韩大尺度精品在线看网址 | 国产男靠女视频免费网站| 国产精品九九99| 久久香蕉激情| 国产成人免费无遮挡视频| 欧美一区二区精品小视频在线| 成年人免费黄色播放视频| 69精品国产乱码久久久| 成人18禁高潮啪啪吃奶动态图| 日本免费一区二区三区高清不卡 | netflix在线观看网站| 国产高清视频在线播放一区| 国产一区二区在线av高清观看| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 丝袜在线中文字幕| 国产成人精品在线电影| 99精品久久久久人妻精品| xxxhd国产人妻xxx| 色哟哟哟哟哟哟| 深夜精品福利| 香蕉国产在线看| 搡老乐熟女国产| 亚洲精品成人av观看孕妇| 国产免费av片在线观看野外av| 亚洲精华国产精华精| 日韩欧美在线二视频| 一二三四在线观看免费中文在| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 可以免费在线观看a视频的电影网站| 两性午夜刺激爽爽歪歪视频在线观看 | 人人澡人人妻人| 亚洲欧美激情在线| 久久中文看片网| 黄片大片在线免费观看| 淫妇啪啪啪对白视频| 国产成人欧美| 精品久久久久久久毛片微露脸| 精品国产一区二区久久| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 99热国产这里只有精品6| 一级毛片精品| 免费看a级黄色片| 久久人妻福利社区极品人妻图片| 久久草成人影院| 亚洲午夜精品一区,二区,三区| 国产高清激情床上av| 亚洲精华国产精华精| 高清在线国产一区| 日本黄色视频三级网站网址| 亚洲av成人av| 在线观看日韩欧美| 黄色毛片三级朝国网站| 新久久久久国产一级毛片| 久久中文字幕一级| 老司机福利观看| 黄色成人免费大全| 18禁国产床啪视频网站| 女警被强在线播放| 亚洲一区中文字幕在线| 99精品欧美一区二区三区四区| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 久久狼人影院| 制服诱惑二区| 色老头精品视频在线观看| 他把我摸到了高潮在线观看| 国产国语露脸激情在线看| 岛国在线观看网站| 长腿黑丝高跟| 91麻豆av在线| www.自偷自拍.com| 国产黄色免费在线视频| 热re99久久国产66热| 国产蜜桃级精品一区二区三区| 中文欧美无线码| 久久久久久久久中文| 无遮挡黄片免费观看| 久久午夜亚洲精品久久| 超碰成人久久| 日本黄色日本黄色录像| 国内久久婷婷六月综合欲色啪| 热re99久久精品国产66热6| 黄色视频不卡| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 日韩欧美三级三区| 两人在一起打扑克的视频| a级毛片黄视频| 国产91精品成人一区二区三区| 大码成人一级视频| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕一二三四区| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女 | 国产不卡一卡二| 国产成人影院久久av| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 香蕉久久夜色| 另类亚洲欧美激情| 操美女的视频在线观看| 国产亚洲精品久久久久久毛片| 久久精品人人爽人人爽视色| 99久久综合精品五月天人人| 麻豆久久精品国产亚洲av | 午夜久久久在线观看| 久久国产精品影院| 成年人免费黄色播放视频| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 国产精品日韩av在线免费观看 | 成人三级做爰电影| 亚洲 欧美 日韩 在线 免费| а√天堂www在线а√下载| 丁香六月欧美| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 一级毛片高清免费大全| 国产又爽黄色视频| 中文欧美无线码| 国产亚洲精品综合一区在线观看 | 久久精品成人免费网站| 中文字幕av电影在线播放| 亚洲成人精品中文字幕电影 | 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 亚洲人成77777在线视频| 一级片'在线观看视频| 精品一区二区三区视频在线观看免费 | 91av网站免费观看| 精品一区二区三区av网在线观看| 亚洲少妇的诱惑av| 1024视频免费在线观看| 成人永久免费在线观看视频| 波多野结衣高清无吗| 国产精品国产av在线观看| 一个人观看的视频www高清免费观看 | 亚洲精品美女久久久久99蜜臀| 精品国产一区二区久久| 美女国产高潮福利片在线看| 亚洲熟妇熟女久久| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 免费看十八禁软件| 国产伦一二天堂av在线观看| 88av欧美| 亚洲欧美日韩高清在线视频| 国产真人三级小视频在线观看| 国产精华一区二区三区| 美国免费a级毛片| 亚洲激情在线av| 亚洲人成伊人成综合网2020| 在线观看66精品国产| 日韩欧美一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 国产成人欧美| cao死你这个sao货| 热re99久久国产66热| 久久精品国产亚洲av香蕉五月| 中文字幕人妻熟女乱码| 精品福利观看| 叶爱在线成人免费视频播放| 高潮久久久久久久久久久不卡| 免费看a级黄色片| 日韩高清综合在线| 日韩国内少妇激情av| 国产精品久久久人人做人人爽| 国产精品成人在线| 动漫黄色视频在线观看| 亚洲国产精品一区二区三区在线| 人妻丰满熟妇av一区二区三区| 日韩成人在线观看一区二区三区| 国产av又大| 欧美 亚洲 国产 日韩一| 十八禁网站免费在线| 国产单亲对白刺激| 免费在线观看影片大全网站| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 女警被强在线播放| 激情视频va一区二区三区| 久久人妻熟女aⅴ| 精品一区二区三区av网在线观看| 日本 av在线| 免费在线观看亚洲国产| 身体一侧抽搐| cao死你这个sao货| 韩国av一区二区三区四区| 深夜精品福利| 美女扒开内裤让男人捅视频| 18禁观看日本| 久久精品成人免费网站| 女性被躁到高潮视频| 久久久久久大精品| 成人18禁高潮啪啪吃奶动态图| 老熟妇仑乱视频hdxx| 波多野结衣一区麻豆| 色老头精品视频在线观看| 亚洲中文av在线| 高清在线国产一区| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 欧美乱码精品一区二区三区| 日韩三级视频一区二区三区| 搡老乐熟女国产| 国产精品久久久av美女十八| 12—13女人毛片做爰片一| 交换朋友夫妻互换小说| 国产亚洲精品综合一区在线观看 | 亚洲五月天丁香| 免费观看精品视频网站| 精品一品国产午夜福利视频| 多毛熟女@视频| 久久欧美精品欧美久久欧美| tocl精华| 最近最新中文字幕大全电影3 | 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 日本欧美视频一区| 免费不卡黄色视频| 99re在线观看精品视频| 极品人妻少妇av视频| 国产一区二区三区视频了| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 免费高清视频大片| 久久人妻av系列| 日本五十路高清| 国产精品偷伦视频观看了| 无限看片的www在线观看| 日本欧美视频一区| 无人区码免费观看不卡| 国产成人欧美| 久久久久九九精品影院| 国产一区二区三区视频了| 欧美激情 高清一区二区三区| 免费搜索国产男女视频| 色婷婷久久久亚洲欧美| 国产三级黄色录像| 亚洲在线自拍视频| 国产蜜桃级精品一区二区三区| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 久久性视频一级片| 午夜激情av网站| 国产精品av久久久久免费| 黄色怎么调成土黄色| 免费av毛片视频| 精品日产1卡2卡| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器 | 最新美女视频免费是黄的| 欧美激情 高清一区二区三区| 夜夜躁狠狠躁天天躁| av有码第一页| 日日夜夜操网爽| 国产精品爽爽va在线观看网站 | 成人国产一区最新在线观看| 女人被狂操c到高潮| 丰满饥渴人妻一区二区三| 一个人观看的视频www高清免费观看 | 一二三四社区在线视频社区8| svipshipincom国产片| 亚洲国产看品久久| 在线观看免费午夜福利视频| 身体一侧抽搐| 成年人黄色毛片网站| 亚洲精品成人av观看孕妇| 又紧又爽又黄一区二区| 午夜福利,免费看| svipshipincom国产片| 一区福利在线观看| 亚洲成国产人片在线观看| 亚洲av成人一区二区三| 色综合站精品国产| 国产精品野战在线观看 | 他把我摸到了高潮在线观看| 久久人人爽av亚洲精品天堂| 啦啦啦 在线观看视频| 看黄色毛片网站| 国内毛片毛片毛片毛片毛片| 老司机在亚洲福利影院| 中文欧美无线码| 国产深夜福利视频在线观看| 欧美乱妇无乱码| netflix在线观看网站| 男女下面插进去视频免费观看| 又紧又爽又黄一区二区| a在线观看视频网站| av免费在线观看网站| 欧美日韩视频精品一区| 精品国产亚洲在线| 久久久久久久久久久久大奶| 动漫黄色视频在线观看| 久久天躁狠狠躁夜夜2o2o| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看.| 国产有黄有色有爽视频| 黄色成人免费大全| 1024视频免费在线观看| 水蜜桃什么品种好| 欧美人与性动交α欧美精品济南到| 久久国产精品影院| 一个人观看的视频www高清免费观看 | 老汉色∧v一级毛片| 国产麻豆69| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 国产在线观看jvid| 大码成人一级视频| av在线播放免费不卡| 我的亚洲天堂| 天堂动漫精品| 脱女人内裤的视频| 亚洲精品美女久久av网站| 91老司机精品| 精品一品国产午夜福利视频| 国产精品电影一区二区三区| 国产欧美日韩精品亚洲av| 精品国产乱子伦一区二区三区| 久久中文看片网| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 国产片内射在线| 日本 av在线| 校园春色视频在线观看| 亚洲国产精品sss在线观看 | 欧美乱色亚洲激情| 亚洲精华国产精华精| 午夜精品国产一区二区电影| 国产亚洲欧美精品永久| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看| 亚洲五月婷婷丁香| 亚洲自拍偷在线| 久久人妻av系列| 俄罗斯特黄特色一大片| 麻豆成人av在线观看| 久久这里只有精品19| 国产av一区二区精品久久| 啦啦啦在线免费观看视频4| 午夜亚洲福利在线播放| 亚洲精品国产区一区二| 久久精品国产99精品国产亚洲性色 | 色在线成人网| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 精品国产亚洲在线| www国产在线视频色| 男女床上黄色一级片免费看| 欧美乱码精品一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲国产精品合色在线| 十八禁人妻一区二区| 亚洲一区二区三区色噜噜 | 一区二区三区国产精品乱码| 国产精品爽爽va在线观看网站 | 欧美日韩中文字幕国产精品一区二区三区 | 18禁黄网站禁片午夜丰满| 波多野结衣高清无吗| 日本vs欧美在线观看视频| 宅男免费午夜| 9色porny在线观看| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 露出奶头的视频| 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 桃色一区二区三区在线观看| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 欧美精品一区二区免费开放| 欧美精品亚洲一区二区| 国产精品成人在线| 亚洲国产毛片av蜜桃av| 正在播放国产对白刺激| 国产一区二区三区综合在线观看| 日韩国内少妇激情av| 久久精品成人免费网站| 亚洲午夜精品一区,二区,三区| 亚洲aⅴ乱码一区二区在线播放 | 不卡av一区二区三区| 91成年电影在线观看| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 欧美亚洲日本最大视频资源| 国产激情久久老熟女| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 国产精品久久视频播放| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 国产av一区二区精品久久| 亚洲男人的天堂狠狠| 一二三四社区在线视频社区8| 国产亚洲精品综合一区在线观看 | 国产精品免费一区二区三区在线| 黄色a级毛片大全视频| 一区福利在线观看| 久久精品国产综合久久久| 天堂中文最新版在线下载| 老司机靠b影院| 99久久国产精品久久久| 欧美av亚洲av综合av国产av| 啦啦啦在线免费观看视频4| 国产有黄有色有爽视频| 老司机深夜福利视频在线观看| www.www免费av| 色哟哟哟哟哟哟| svipshipincom国产片| 久久精品影院6| 啦啦啦在线免费观看视频4| 精品免费久久久久久久清纯| 国产熟女xx| 一级作爱视频免费观看| 免费看a级黄色片| 色婷婷av一区二区三区视频| 十八禁网站免费在线| 一级毛片高清免费大全| 欧美黄色片欧美黄色片| 激情在线观看视频在线高清| 大型av网站在线播放| 97碰自拍视频| 老司机午夜福利在线观看视频| 色综合站精品国产| 在线国产一区二区在线| 一级,二级,三级黄色视频| 成年版毛片免费区| 午夜精品在线福利| 亚洲精品在线美女| 99国产综合亚洲精品|