• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel soliton molecule solutions for the second extend (3+1)-dimensional Jimbo-Miwa equation in fluid mechanics

    2023-12-28 09:20:08HongcaiMaXiaoyuChenandAipingDeng
    Communications in Theoretical Physics 2023年12期

    Hongcai Ma,Xiaoyu Chen and Aiping Deng

    Department of Applied Mathematics,Donghua University,Shanghai 201620,People’s Republic of China

    Abstract The main aim of this paper is to investigate the different types of soliton molecule solutions of the second extend (3+1)-dimensional Jimbo-Miwa equation in a fluid.Four different localized waves:line solitons,breather waves,lump solutions and resonance Y-type solutions are obtained by the Hirota bilinear method directly.Furthermore,the molecule solutions consisting of only line waves,breathers or lump waves are generated by combining velocity resonance condition and long wave limit method.Also,the molecule solutions such as line-breather molecule,lumpline molecule,lump-breather molecule,etc.consisting of different waves are derived.Meanwhile,higher-order molecule solutions composed of only line waves are acquired.

    Keywords: second extend(3+1)-dimensional Jimbo-Miwa equation,N-soliton solution,velocity resonance,soliton molecule solution

    1.Introduction

    The study of analytical solutions helps us to clarify the physical properties and behaviour of nonlinear equations,which are structural models for many physical phenomena[1].There are a number of theoretical approaches to solving analytical solutions,such as the tanh-coth method [2–4],Riemann–Hilbert method[5–7],the inverse scattering method[8,9],Darboux transformation method [10–13],the Painlevé analysis [14],the generalized symmetry method [15],Hirota bilinear method [16,17,38] and others [18–21].

    In the subject area of the natural sciences,solitons demonstrate remarkable order in the presence of nonlinear effects.In general,we refer to a wave that retains its original size,shape and direction during motion or propagation,and has stability,as a soliton wave [22].In recent years,a new topic soliton molecules has emerged in the study of solitons,which are bound states of one or more solitons [23–27,41–43].The three well-known local waves: lump waves,breathers and line waves are very significant components of soliton molecule solutions.

    The (3+1)-dimensional Jimbo-Miwa equation

    first introduced by Jimbo and Miwa [28] is the second equation of the KP hierarchy.This equation is used to describe certain interesting (3+1)-dimensional waves in physics and then discussed by many authors on its solutions[29],integrability properties[30],symmetries[31–33]and so on.Wazwaz have proposed two extended (3+1)-dimensional Jimbo-Miwa (3D-eJM) equations [34].The second 3D-eJM equation is deduced by replacinguytwithuxt+uyt+uztas

    where u=u(x,y,z,t)is a function with respect to three spatial coordinates x,y,z and temporal variable t which indicates the amplitude of the wave in the physics of fluids,especially in ocean engineering and science [1].Although equation (2)belongs to the Kadomtsev–Petviashvili hierarchy,but it does not satisfy the classical productability condition [28].

    Figure 2.Double soliton solution to the 3D-eJM equation with p1=1,q1=1,r1=2,p2=2,q2=4,r2=1,φ1=φ2=0,z=0 in equation (10).

    In contrast to other 3D-eJM equation,relatively little research has been done on this equation.For equation (2),Wazwaz derived multiple soliton solutions [34],Guo et al presented four different localized waves and interaction solutions between lump solutions,line solitons,breathers and rogue waves using the Hirota bilinear method,Sun et al found lump and lump-kink solution [36],Xu et al constructed the resonance behavior with the aid of special parameter restrictions[37].But as far as we know,no molecule solution of this equation has been studied,especially for the lump molecule solution,a special structural phenomenon that does not exist in most (2+1)-dimensional physical models by using long wave limit method [38,39].All of findings in this paper can be used to explain some natural phenomena in the ocean waves and nonlinear optics.Further,the study can be extended to investigate several other nonlinear systems to understand the physical insights of the molecule phenomenon in their dynamics.

    This paper has following structure.In section 2,we give four different types of localized waves and the expression of their velocity through the use of N-soliton solution,module and velocity resonance conditions,long wave limit method.We present three molecule solutions consisting of the same localized wave e.g: line molecule,breather molecule and lump molecule solution in section 3.In section 4,a number of molecule solutions with a mixture of different localized waves are obtained.And two forms of the higher order line molecule solutions are derived.Some conclusions and discussions are given in section 5.

    2.Different localized waves to the second 3D-eJM equation

    According to the Hirota bilinear method and Bell polynomial technique,with logarithmic transform

    the equation (2) can be converted to following bilinear form:

    where operators Dx,Dtare defined by

    To facilitate mathematical calculations,the equation (4) can be expanded as

    The N order solution of equation (4) has the following form:

    where

    Figure 3.First order line breather solution to the 3D-eJM equation with=2 +i,φ1=φ2=0,z=0 in equation (6).

    Here,pk,qk,rk,φk(k=1,2,…,N) are arbitrary constants,Σμ=0,1denotes all combinations of μk=0 or 1.The N-soliton solution of equation(2)can be expressed through substituting equation (6) into equation (3).Based on the N-soliton solution,we construct a number of different localized waves.

    Figures 1(a),(b) depicts the 3D-plot and density plot of single line soliton with parameters p1=1,q1=1,r1=2,φ1=0 at z=0 plane.Subject to this parameter,equation (3)is reduced to

    Actually the ratio of p1to-q1determines the slope of the line in figure 1(b),φ1affects the initial position (t=0) of the solution in the diagram.In other words,if φ1is not equal to zero,then the centre of the solution at the initial position must not pass through (0,0) at z=0.In order to better study the motion of line wave,we decompose the velocity of the solution orthogonally in the x,y perpendicular directions and give its expression as follows

    whereωksatisfies equation (7).The velocity of single line wave in equation (8) is.The correctness of the above assertion can be demonstrated in figure 1(b).

    Double soliton solution can be seen as a morphism consisting of the nonlinear superposition of two single soliton solutions.Its kinematic process can be split into two mutually independent single line wave motions and its velocity can be elaborated by two velocity expressions in equation (9).This also indicates that the collision between two soliton waves is elastic: the velocity,phase shift and amplitude do not change before or after the collision.With p1=1,q1=1,r1=2,p2=2,q2=4,r2=1,φ1=φ2=0,a double soliton solution to the 3D-eJM equation is presented as

    It can be seen in figure 2 and travels at a speed of

    The N-order breather solution can be obtained by imposing module resonance condition on the parameters of the 2N-order soliton solution,i.e.

    where the symbol ?indicates the complex conjugate number of the parameter.It is similar in nature since the breather solution is derived from the soliton solution.But the pace expression of breather is

    For N=2,second order breather solution can be deduced fromu=2 (l nfx) with

    The N-order lump solution also can be derivated from 2N-order soliton solution.As the procedure for finding the exact solution of lump using the long-wave limit method is well established,we directly provide following constraints:

    Then the N-order lump solution to the 3D-eJM equation can be acquired if we take δ →0,specific forms are

    whereξk,Aks(k,s=1,2,3,4) fulfills the equation (7).The second-order breather solution can similarly be viewed as the interaction situation between two first order ones.In order to clearly show the interaction solution described,we make the directions of motion of the two first order breather solutions orthogonal to each other and show in figure 4.One along thePk,Qk,Rk,φkare arbitrary constants,Φkaffects the initial position of the corresponding lump solution.We usually study the trajectory of the wave crest of the lump wave.According to the solution of the system of equations{ux=0,uy=0},we accquire the velocity formula of lump wave

    negative direction of the y and the other along the negative direction of the x,with velocitiesrespectively.

    When N=1,with specific parameters,the expression of a first order lump wave is reduced as below:

    We put the three-dimensional plot,density plot and sectional plot of the above solution in figure 5.

    When N=2

    whereθk,Bksmeet the equation (16).Second order lump solution can be represented by placing equation (19) in equation (3) as shown in figure 6.We makeφk(k=1,2,3,4) not all zero,allowing us to split the trajectory of the two first order lump solutions.Their speeds arerespectively.

    As we all know that two soliton will transform to resonance Y-type soliton if we take suitablepi,qi,ri(i=1,2) in accordance with exp (Aks)=0and{pk≠psorqk≠qsorrk≠rs}.The speed of Y-type structure solution has rarely been investigated in the previous literature.We likewise provide an expression for its velocity by analysing the variation with time of the position of the intersection point,

    Let N=2,the f is transformed to 2-resonance Y-type solution as

    where ξkare given by equation(7),and this phenomenon can be observed in figure 7.The velocity of above solution is

    Let N=3,with exp(A12)=exp (A13)=0,the f is reduced as

    where ξk,bksare given by equation (7) and equation (13).Substitute equation(22)in equation(3),we achieve two different kinds of 3-resonance Y-type solutions as show in figure 8.One in x-y and z=0 plane,the other is in y-z and x=0 plane.The shape of solution in figure 8(a) is similar to that of X.

    3.Molecules composed of the same waves

    In the last section we focused on four types of local waves and gave expressions for their respective velocities.It is not hard to see from the images of the higher-order solutions that a higher-order solution can be seen as an interaction phenomenon between several lower-order solutions.Much literature shows that collisions between these four local waves are all elastic collisions,the same as between two line waves[44–46].It is well known that assuming that the velocities of the two lower order solutions are identical (including the x,y axes),the two solutions are bound into a new structure during the motion called molecule solution.This section demonstrates several molecule solutions consisting of the same local wave.

    To investigate the single line molecule solution,the fuction f can be choosed as same as second order soliton solution.With the parameters as the figures 9(a)–(c),the u can be unfolded as

    In particular,we find the velocity resonance among two breather waves by picking parameters in equation (13) meet module resonance condition and

    Based the bilinear form,like the lump molecule solution which does not exist in many (2+1)-dimensional integrable models,such as the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko model [38],Kadomtsev–Petviashvili(KP)system[39],(3+1)-dimensional nagative order KdV-CBS model [47],etc.But for KP systerm,lump molecules can be discovered by using the reduced version of the Grammian form[35,40].With the aid of equation (17),we find the lump molecule solution in equation (2),which needs to cater for

    in equation(19).figure 12 vividly depicts this type of molecule solution with speed,the distance between the centres of two single lump solution is constant.

    4.Molecules made up of the different waves

    In this section,we investigate molecule solutions consisting of different localized waves.It is obvious from the previous analysis that,again,no contact occurs between waves,which remain relatively stationary.The function f can be chosen as

    if we want to look for the line-breather molecule which consisting of a single line and a single wave.ξk,bksare given by equation(7)and(13).Like the one shown in the figure 13,the line wave move parallel to the breather with the same speed.Once the coefficients of x,y,z,t have been determined,φ1,φ3determines the distance between the two solutions.By φ1=φ3,we find a phenomenon shown in figure 14,the breather collides line wave continuously and changes its own form.

    When searching for a molecule solution consisting of lump solution and other solutions,the partial long-wave limit method is required.For example,let

    the lump-line solution will be located on figure 15 with velocity

    When adjusting φ3to 0,the line wave passes exactly through the centre of the lump solution and the two waves merge to form a lump-kink solution.And the lump solution is divided into exactly two section,with the upwardly raised part on top of the kinked area and vice versa.The method used for the idea just mentioned is different from the test We promote on the basis of equation (28) that

    Figure 14.Always collide case with φ1=φ2=φ3=0,other parameters are consistent with figure 13.

    Figure 16.Lump-kink solution to the 3D-eJM equation with Φ3=0,other parameters are consistent with figure 15.

    then the interaction solution between lump and two line waves is derived from weak sense.Another case is that the lump solution and the two line waves as a whole form a molecule solution,i.e.lump-2 line solution.These two cases are shown in figures 17 and 18.The velocity of the molecule solution in both diagrams is,and other line wave is (0,0).

    Since the 2-resonance Y-type solution is derived from the two-soliton solution and we have given lump-2 line molecule in figure 17,it follows that molecule solution consisting of lump solution and 2-resonance Y-type solution must exist in this system.If equation (35) meet the following parameter restrictions

    where ξk,θk,Bks,b34suit equations(7),(13)and(30).On this basis we find two different scenarios.The first case is where the lump solution forms a bound molecule with one of the line waves and moves in the direction in which the other line wave is located.The distance between the lump solution and the two line waves remains fixed,although there is a change in relative position between the two line waves as time changes,and this can be interpreted as a lump-2 line solution in the then it can be denoted as lump-resonance Y-type molecule solution in figure 19.Lump solution is located in the middle of the two branches of the resonance Y-type solution,and the distance between the lump solution and the two branches remains the same from the beginning to the end.This molecule solution is moving at

    If equation (36) meet the module resonance condition and

    where ω3is given by equation (12),then the lump-breather solution is vividly described in figure 20 with

    Since the three branches in the resonance Y-type solution(see figure 7) are not parallel to each other,neither the line wave nor the breather can form molecule solution that never collides with the resonance Y-type solution,but there are cases where they always collide but do not move relative to each other over time.It is sufficient to ensure that the velocities of the resonance Y-type solution and the line wave or breather solution are identical.We can also accquire lumpbreather-line molecule solution by making full use of the conditions (9),(12) and (17) inu=2 (l nfx),where

    In equation (3) and (6),we can obtain integral structure made from lump solution and two resonance Y-type solutions under the following condition

    Here,ξk,θk,Bksare given by equations (7),(13) and (30).It can be seen in figure 21 that lump solution lies between breather and line wave,and the speed is

    where ξk,θk,Bks,bksare given by equation(7),(13)and(30).The two white lines in figure 22 are the trajectories of the two resonance Y-type solutions and the black one is the lump solution.In terms of the positive direction of the x,two resonance Y-type solutions are all the fusion case.The fact that the three lines are parallel means that the lump solution will not collide with the other two solutions,and they have a common velocity.Three trajectories respectively are

    Finally we have generalised the order of the molecule solution consisting of only line waves.On the basis of the specificity expression of the N-order soliton solution (6),the N-line molecule solution has two forms One that we can let arbitrary rkand

    5.Conclusions

    Based on the bilinear form of the second extend (3+1)-dimensional Jimbo-Miwa equation,we concentrate on investigating molecule solution,the bound state that consisting of one or more soliton solutions of the 3D-eJM equation.Through the assistance of long wave limit method,module resonant condition and resonant condition,dynamical features of some one or two order localized waves are presented in figures 1–8.Although we have given an expression for the velocity of each individual localized wave,it should be noted that this is only true for the x–y plane.Of course these expressions can be extended to the x–z or y–z plane by simply replacing the coefficients of x,y in the equation (9),(12) and (20) with coefficients of x,z or y,z simultaneously.In order to achieve the velocity of the lump solution in the x–z or y–z plane,it is sufficient to solve for{ux=0,uz=0},{uy=0,uz=0}respectively.

    With velocity resonance mechanism,a wide range of molecule solutions consisting of line wave,breather wave,lump wave and resonance Y-type solution are graphed in figures 9–24.Particularly the lump-lump molecule in figure 12 which is not common in other low-dimensional physical models.An intersecting rather than parallel line molecule solution with various order are demonstrated in figures 9,23 and 24.We believe that above idea can be applied to other (3+1)-dimensional physical models.These molecule solutions may enlighten our understanding of the phenomenon of nonlinear wave propagation in fluids without collisional patterns.In future work,we are committed to finding new methods that allow us to obtain lump-lump molecule solutions in (2+1)-dimensional productable systems.

    Acknowledgments

    The authors are grateful to the anonymous referees of the journal for helpful comments on an earlier draft.

    Ethical approval

    The authors declare that they have adhered to the ethical standards of research execution.

    Conflict of interest

    The authors declare that there is no conflict of interest regarding the publication of this paper.

    Availability of data and materials

    All data generated or analyzed during this study are included in this published article.

    亚洲av成人一区二区三| av国产精品久久久久影院| 久久亚洲真实| 一夜夜www| 一个人免费在线观看的高清视频| 久久精品国产清高在天天线| 久久中文看片网| 亚洲成人国产一区在线观看| 日韩 欧美 亚洲 中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲欧美激情在线| 久久精品亚洲熟妇少妇任你| 亚洲午夜精品一区,二区,三区| 美女国产高潮福利片在线看| 亚洲欧美精品综合一区二区三区| 手机成人av网站| 亚洲欧美日韩另类电影网站| 国产亚洲精品久久久久久毛片 | 女人被躁到高潮嗷嗷叫费观| 丝袜在线中文字幕| 精品电影一区二区在线| 好男人电影高清在线观看| 精品人妻1区二区| 免费看a级黄色片| 国产精品久久电影中文字幕 | www.精华液| 黄片播放在线免费| 黄色a级毛片大全视频| 怎么达到女性高潮| 国产成人精品久久二区二区免费| 亚洲av成人一区二区三| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图av天堂| 在线观看www视频免费| 精品国产亚洲在线| 老熟女久久久| 一区福利在线观看| 国产一卡二卡三卡精品| 宅男免费午夜| 国产一区二区三区综合在线观看| 91精品三级在线观看| 另类亚洲欧美激情| 天堂动漫精品| 成人亚洲精品一区在线观看| 91成年电影在线观看| 亚洲欧美一区二区三区黑人| 亚洲中文av在线| 久久久国产精品麻豆| 久久久国产精品麻豆| 欧美日韩亚洲综合一区二区三区_| 日韩视频一区二区在线观看| 午夜亚洲福利在线播放| 99国产精品一区二区蜜桃av | 亚洲色图av天堂| 激情视频va一区二区三区| 老司机深夜福利视频在线观看| 一二三四在线观看免费中文在| 久久国产精品影院| 免费在线观看影片大全网站| 精品久久久久久,| 久久天堂一区二区三区四区| 午夜福利免费观看在线| 91av网站免费观看| 久久99一区二区三区| av超薄肉色丝袜交足视频| 久久午夜亚洲精品久久| 欧美日韩成人在线一区二区| 夜夜夜夜夜久久久久| 欧美成人免费av一区二区三区 | 热re99久久国产66热| 欧美不卡视频在线免费观看 | 欧美精品一区二区免费开放| 久久香蕉激情| 日本vs欧美在线观看视频| 日本撒尿小便嘘嘘汇集6| 亚洲综合色网址| 搡老乐熟女国产| 黄色怎么调成土黄色| 国产免费男女视频| 黄色成人免费大全| 999久久久精品免费观看国产| 国产精品综合久久久久久久免费 | 男女免费视频国产| 亚洲一区二区三区欧美精品| 国产精品美女特级片免费视频播放器 | 男人操女人黄网站| 可以免费在线观看a视频的电影网站| 欧美日韩亚洲国产一区二区在线观看 | 高潮久久久久久久久久久不卡| 一区二区三区国产精品乱码| 欧美 亚洲 国产 日韩一| 国产视频一区二区在线看| 天天躁夜夜躁狠狠躁躁| 国产成人欧美| 久久久国产欧美日韩av| 少妇被粗大的猛进出69影院| 久久久久久久午夜电影 | 满18在线观看网站| 一边摸一边抽搐一进一小说 | 亚洲第一青青草原| 90打野战视频偷拍视频| 91av网站免费观看| 成年人黄色毛片网站| 亚洲成a人片在线一区二区| 国产成人欧美在线观看 | 精品国产美女av久久久久小说| 国产三级黄色录像| 久久天躁狠狠躁夜夜2o2o| 在线观看日韩欧美| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品电影一区二区三区 | 香蕉国产在线看| 首页视频小说图片口味搜索| 成人18禁高潮啪啪吃奶动态图| 曰老女人黄片| 嫩草影视91久久| 男女床上黄色一级片免费看| 亚洲av日韩在线播放| 国产精品成人在线| 国产单亲对白刺激| 精品国内亚洲2022精品成人 | 国产一卡二卡三卡精品| 叶爱在线成人免费视频播放| 欧美日韩成人在线一区二区| 十分钟在线观看高清视频www| 免费观看精品视频网站| 欧美日韩av久久| 12—13女人毛片做爰片一| 一a级毛片在线观看| 国产欧美亚洲国产| 日韩人妻精品一区2区三区| 在线观看免费午夜福利视频| 夜夜夜夜夜久久久久| 夫妻午夜视频| 王馨瑶露胸无遮挡在线观看| 不卡av一区二区三区| 国产欧美日韩一区二区三区在线| 80岁老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 午夜精品在线福利| 777米奇影视久久| 欧美日韩国产mv在线观看视频| 在线观看免费视频日本深夜| 丝袜在线中文字幕| 亚洲,欧美精品.| 欧美日韩亚洲综合一区二区三区_| av福利片在线| 777米奇影视久久| 亚洲一区二区三区不卡视频| 美国免费a级毛片| 欧美日韩亚洲高清精品| 黄色女人牲交| 久久中文字幕人妻熟女| 国产av又大| 高清在线国产一区| 久久精品亚洲精品国产色婷小说| 999久久久精品免费观看国产| 国产在线观看jvid| 五月开心婷婷网| 最新的欧美精品一区二区| 69精品国产乱码久久久| 国产精品免费大片| 看片在线看免费视频| 亚洲五月色婷婷综合| 亚洲 国产 在线| 成年动漫av网址| 国产欧美亚洲国产| 视频在线观看一区二区三区| 精品久久久久久电影网| av天堂久久9| 精品一区二区三区av网在线观看| 亚洲综合色网址| 亚洲人成伊人成综合网2020| 夫妻午夜视频| 欧美性长视频在线观看| av天堂在线播放| 日韩三级视频一区二区三区| 色精品久久人妻99蜜桃| 亚洲成国产人片在线观看| 国产激情欧美一区二区| www日本在线高清视频| 国产亚洲av高清不卡| 十八禁高潮呻吟视频| 亚洲成av片中文字幕在线观看| 免费高清在线观看日韩| 18禁裸乳无遮挡免费网站照片 | 久久性视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片精品| 一级黄色大片毛片| 免费少妇av软件| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 亚洲欧美日韩高清在线视频| 亚洲欧美精品综合一区二区三区| 99久久人妻综合| 国产精品二区激情视频| 国产精品 国内视频| 首页视频小说图片口味搜索| 看黄色毛片网站| 国产精品影院久久| 亚洲精品粉嫩美女一区| 在线观看日韩欧美| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 成年动漫av网址| 亚洲aⅴ乱码一区二区在线播放 | 欧美在线一区亚洲| 91麻豆av在线| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费 | 黄色a级毛片大全视频| 成人特级黄色片久久久久久久| 精品人妻在线不人妻| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 国产一区二区三区综合在线观看| 麻豆国产av国片精品| 最近最新中文字幕大全电影3 | 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 热99re8久久精品国产| 国产99久久九九免费精品| 麻豆乱淫一区二区| 欧美黑人欧美精品刺激| 波多野结衣一区麻豆| 成人精品一区二区免费| 成人特级黄色片久久久久久久| www.999成人在线观看| 中文字幕人妻熟女乱码| 久久国产亚洲av麻豆专区| 国产男靠女视频免费网站| 亚洲精品国产精品久久久不卡| 欧美人与性动交α欧美精品济南到| 久久国产精品人妻蜜桃| 超碰97精品在线观看| 国产欧美日韩精品亚洲av| 黄色片一级片一级黄色片| 一级毛片精品| 欧美av亚洲av综合av国产av| 日韩人妻精品一区2区三区| 亚洲在线自拍视频| 国产精品综合久久久久久久免费 | 高清在线国产一区| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 精品无人区乱码1区二区| 中文字幕高清在线视频| 亚洲成人免费av在线播放| 99re6热这里在线精品视频| 超色免费av| 精品国产乱子伦一区二区三区| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 少妇的丰满在线观看| 在线观看舔阴道视频| 亚洲欧美色中文字幕在线| 在线观看午夜福利视频| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 99热网站在线观看| 老司机亚洲免费影院| 亚洲精品一二三| 在线观看免费午夜福利视频| 精品高清国产在线一区| av中文乱码字幕在线| 男女免费视频国产| 久久ye,这里只有精品| 热re99久久精品国产66热6| 国产一区二区激情短视频| 国产成人av教育| 久久精品亚洲熟妇少妇任你| 少妇被粗大的猛进出69影院| 男人的好看免费观看在线视频 | 午夜福利在线观看吧| 黑人欧美特级aaaaaa片| 久久久精品区二区三区| 国产成人精品在线电影| 亚洲精品乱久久久久久| 热99国产精品久久久久久7| 国产蜜桃级精品一区二区三区 | 久久香蕉精品热| 99久久人妻综合| а√天堂www在线а√下载 | 在线观看免费视频日本深夜| 亚洲片人在线观看| 国产精品成人在线| 日韩免费高清中文字幕av| 波多野结衣av一区二区av| 这个男人来自地球电影免费观看| xxx96com| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 国产亚洲一区二区精品| 午夜福利免费观看在线| 狂野欧美激情性xxxx| 超碰成人久久| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 中文亚洲av片在线观看爽 | 国精品久久久久久国模美| 国产深夜福利视频在线观看| 久久久久久久久久久久大奶| 怎么达到女性高潮| 亚洲第一av免费看| 国产精品偷伦视频观看了| 午夜91福利影院| 午夜福利一区二区在线看| 无人区码免费观看不卡| 亚洲五月色婷婷综合| 久久久久久久午夜电影 | 国产精品欧美亚洲77777| 成人特级黄色片久久久久久久| 美女高潮到喷水免费观看| 国产97色在线日韩免费| 国产精品98久久久久久宅男小说| 日本黄色日本黄色录像| 欧美丝袜亚洲另类 | 在线观看舔阴道视频| 精品视频人人做人人爽| 欧美乱妇无乱码| 一本综合久久免费| 黄色毛片三级朝国网站| www.自偷自拍.com| 免费观看人在逋| 精品一区二区三区av网在线观看| 国产在线一区二区三区精| 国产成人精品无人区| 窝窝影院91人妻| 在线观看一区二区三区激情| 母亲3免费完整高清在线观看| 免费观看精品视频网站| 日韩欧美国产一区二区入口| 亚洲七黄色美女视频| 国产aⅴ精品一区二区三区波| 日韩欧美国产一区二区入口| cao死你这个sao货| 久久久久久久久免费视频了| 18禁观看日本| 成在线人永久免费视频| 日韩欧美在线二视频 | 如日韩欧美国产精品一区二区三区| 在线观看免费高清a一片| 欧美在线黄色| 久久香蕉激情| 中文字幕精品免费在线观看视频| 欧美黑人精品巨大| 91国产中文字幕| 久久 成人 亚洲| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 久久精品国产综合久久久| 热99久久久久精品小说推荐| 欧美日韩一级在线毛片| 超碰成人久久| 国产欧美日韩精品亚洲av| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 大香蕉久久网| 熟女少妇亚洲综合色aaa.| 三上悠亚av全集在线观看| 欧美精品人与动牲交sv欧美| 日日爽夜夜爽网站| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区久久| 国产在线观看jvid| 国产色视频综合| 久久精品亚洲精品国产色婷小说| 国产精品国产av在线观看| 久久这里只有精品19| 亚洲专区国产一区二区| 91成年电影在线观看| 国产精品免费大片| 18禁观看日本| 人成视频在线观看免费观看| 看免费av毛片| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 精品福利观看| 91成人精品电影| 亚洲国产欧美一区二区综合| 精品少妇久久久久久888优播| 久久国产精品男人的天堂亚洲| 在线观看日韩欧美| 色婷婷久久久亚洲欧美| 十八禁网站免费在线| 国产精品久久电影中文字幕 | 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 国产一区二区三区视频了| 91av网站免费观看| 精品久久久久久久久久免费视频 | 午夜激情av网站| 五月开心婷婷网| 亚洲情色 制服丝袜| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 国产亚洲精品一区二区www | 黑人欧美特级aaaaaa片| 极品少妇高潮喷水抽搐| 久久天躁狠狠躁夜夜2o2o| 欧美日韩国产mv在线观看视频| 亚洲第一青青草原| 91麻豆av在线| 午夜视频精品福利| 麻豆av在线久日| 欧美人与性动交α欧美软件| 捣出白浆h1v1| svipshipincom国产片| 99国产极品粉嫩在线观看| 日韩大码丰满熟妇| 咕卡用的链子| 亚洲av成人av| 国产精品永久免费网站| 乱人伦中国视频| 在线观看午夜福利视频| 高清欧美精品videossex| 啦啦啦 在线观看视频| 久久久久精品国产欧美久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久午夜亚洲精品久久| 女性被躁到高潮视频| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 欧美日韩精品网址| 丝袜美腿诱惑在线| 99精品在免费线老司机午夜| 午夜福利一区二区在线看| 中文字幕色久视频| 男人舔女人的私密视频| 国产成人影院久久av| 不卡av一区二区三区| 大香蕉久久网| 国产人伦9x9x在线观看| 啦啦啦免费观看视频1| 99香蕉大伊视频| 久久国产精品影院| 日韩欧美免费精品| 一级毛片精品| 一进一出好大好爽视频| 老司机午夜福利在线观看视频| 波多野结衣一区麻豆| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 亚洲欧美激情综合另类| 身体一侧抽搐| av超薄肉色丝袜交足视频| 搡老熟女国产l中国老女人| 在线天堂中文资源库| 国产精品 欧美亚洲| 女人高潮潮喷娇喘18禁视频| 波多野结衣一区麻豆| 国产亚洲精品久久久久久毛片 | 两性午夜刺激爽爽歪歪视频在线观看 | 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲 | 免费在线观看完整版高清| 亚洲avbb在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 99久久国产精品久久久| 免费在线观看影片大全网站| 国产黄色免费在线视频| 一边摸一边抽搐一进一出视频| 国产男女超爽视频在线观看| xxxhd国产人妻xxx| 91麻豆精品激情在线观看国产 | 别揉我奶头~嗯~啊~动态视频| 欧美成人午夜精品| 在线观看午夜福利视频| a级毛片黄视频| 亚洲av第一区精品v没综合| 精品高清国产在线一区| 亚洲av成人av| xxx96com| 久久天堂一区二区三区四区| 国产男女内射视频| 免费少妇av软件| 美女 人体艺术 gogo| 建设人人有责人人尽责人人享有的| 久久亚洲真实| 曰老女人黄片| 欧美激情高清一区二区三区| 看黄色毛片网站| av有码第一页| 免费在线观看日本一区| 在线免费观看的www视频| 男女高潮啪啪啪动态图| 亚洲国产看品久久| 狂野欧美激情性xxxx| av天堂在线播放| 很黄的视频免费| 国产欧美日韩一区二区三区在线| 亚洲精品自拍成人| 老司机在亚洲福利影院| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频| 亚洲性夜色夜夜综合| 亚洲欧美一区二区三区久久| 女人久久www免费人成看片| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 人妻 亚洲 视频| svipshipincom国产片| 精品一品国产午夜福利视频| 少妇的丰满在线观看| 久久人人97超碰香蕉20202| tocl精华| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 在线观看www视频免费| 桃红色精品国产亚洲av| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 老司机在亚洲福利影院| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 香蕉丝袜av| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 大陆偷拍与自拍| 亚洲专区字幕在线| 男女之事视频高清在线观看| av不卡在线播放| 亚洲七黄色美女视频| 国产免费男女视频| 男女之事视频高清在线观看| 亚洲午夜理论影院| 视频区欧美日本亚洲| 色综合婷婷激情| 久久中文字幕人妻熟女| 香蕉久久夜色| 少妇裸体淫交视频免费看高清 | 亚洲九九香蕉| 香蕉久久夜色| 午夜亚洲福利在线播放| 亚洲自偷自拍图片 自拍| 在线看a的网站| 国产乱人伦免费视频| 18在线观看网站| 亚洲五月色婷婷综合| 超色免费av| 久久婷婷成人综合色麻豆| 午夜精品久久久久久毛片777| 日韩免费av在线播放| 很黄的视频免费| 男女午夜视频在线观看| 亚洲免费av在线视频| 在线视频色国产色| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| www.熟女人妻精品国产| 久久久精品免费免费高清| √禁漫天堂资源中文www| av视频免费观看在线观看| 中文字幕最新亚洲高清| 99re6热这里在线精品视频| 啦啦啦在线免费观看视频4| 久久精品人人爽人人爽视色| 热re99久久国产66热| 免费观看人在逋| 色老头精品视频在线观看| 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 久久精品亚洲av国产电影网| 一进一出抽搐gif免费好疼 | 欧美丝袜亚洲另类 | 欧美精品亚洲一区二区| 大香蕉久久成人网| 国产无遮挡羞羞视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| 国产成人av教育| 搡老岳熟女国产| 高清在线国产一区| 老汉色av国产亚洲站长工具| 看黄色毛片网站| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影 | 99久久人妻综合| 女人精品久久久久毛片| 国产主播在线观看一区二区| 国产精品一区二区免费欧美| 人妻一区二区av| 中文字幕av电影在线播放| 香蕉丝袜av| 欧美精品亚洲一区二区| 久久精品亚洲av国产电影网| 18禁观看日本| 亚洲精品乱久久久久久| 久久精品国产亚洲av香蕉五月 | 黄片小视频在线播放| 人妻丰满熟妇av一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 黄片小视频在线播放| 精品高清国产在线一区| 狠狠狠狠99中文字幕| 麻豆乱淫一区二区| 国产成人av教育| 国产一区有黄有色的免费视频| 黄色丝袜av网址大全| 国产欧美日韩精品亚洲av| 99久久99久久久精品蜜桃|